Intro to Task 3: Core Instrumentationresearch.engr.oregonstate.edu/treat-irp/sites/... · Task 3:...

18
MIT NUCLEAR REACTOR LABORATORY an MIT Interdepartmental Center Intro to Task 3: Core Instrumentation David Carpenter and Kaichao Sun 11/19/2015 – DOE NE IRP Kickoff Meeting, INL Research Scientists

Transcript of Intro to Task 3: Core Instrumentationresearch.engr.oregonstate.edu/treat-irp/sites/... · Task 3:...

Page 1: Intro to Task 3: Core Instrumentationresearch.engr.oregonstate.edu/treat-irp/sites/... · Task 3: Core Instrumentation 3 3.1 Instrumentation Plan o 3.1.1 Review TREAT core design

MIT NUCLEAR REACTOR LABORATORYan MIT Interdepartmental Center

Intro to Task 3: Core InstrumentationDavid Carpenter and Kaichao Sun

11/19/2015 – DOE NE IRP Kickoff Meeting, INL

Research Scientists

Page 2: Intro to Task 3: Core Instrumentationresearch.engr.oregonstate.edu/treat-irp/sites/... · Task 3: Core Instrumentation 3 3.1 Instrumentation Plan o 3.1.1 Review TREAT core design

Task 3 Overview

2

Instrumentation Plano Identify TREAT core monitoring needso Select sensors and requirementso Develop instrumentation plan

Benchmarkingo Design and selection of in-reactor instrumentation testso Modeling (performance and safety)o Validation experiments

—Steady-state and transient testso Analyze data and develop instrumentation report

Page 3: Intro to Task 3: Core Instrumentationresearch.engr.oregonstate.edu/treat-irp/sites/... · Task 3: Core Instrumentation 3 3.1 Instrumentation Plan o 3.1.1 Review TREAT core design

Task 3: Core Instrumentation

3

3.1 Instrumentation Plano 3.1.1 Review TREAT core design and test plans MITo 3.1.2 Identify core parameter monitoring needs MITo 3.1.3 Determine applicable flux/measurement range MITo 3.1.4 Select TREAT core instrumentation MITo 3.1.5 Identify instrumentation calibration requirements MITo 3.1.6 Develop TREAT core instrumentation plan MIT

3.2 Initial Benchmark Evaluationo 3.2.1 Develop Benchmark experimental plan using the MITR MITo 3.2.2 Select test instrumentation MITo 3.2.3 Design test assembly for OSTR and MITR MITo 3.2.4 Conduct experiment safety review and approval MITo 3.2.5 Perform core analysis with MCODE MITo 3.2.6 Assemble and test data acquisition systems MITo 3.2.7 Perform steady-state experiments at MITR MITo 3.2.8 Perform steady-state experiments at OSTR OSUo 3.2.9 Perform transient experiments at MITR MITo 3.2.10 Perform transient experiments at OSTR OSUo 3.2.11 Analyze experimental data MITo 3.2.12 Evaluate core analysis and instrumentation measurement uncertainties MIT

Page 4: Intro to Task 3: Core Instrumentationresearch.engr.oregonstate.edu/treat-irp/sites/... · Task 3: Core Instrumentation 3 3.1 Instrumentation Plan o 3.1.1 Review TREAT core design

Task 3.1 Instrumentation Plan

4

Review of TREAT core design & test planso Conditionso Geometryo Facilities

What are the parameter monitoring needs?o Existing instrumentation vs. requirementso Opportunities for increasing technology readinesso Redundancy, complimentary techniques, advanced

methods

Page 5: Intro to Task 3: Core Instrumentationresearch.engr.oregonstate.edu/treat-irp/sites/... · Task 3: Core Instrumentation 3 3.1 Instrumentation Plan o 3.1.1 Review TREAT core design

Task 3.1 Instrumentation Plan (2)

5

Create plano Develop instrumentation list & down select

—Operations—Experiments

o Calibration requirements (QA)o Placement Sensor technologies

o Fission & ion chamberso SPDso Thermometryo Other?

Size (miniaturization)Range & resolutionTemporal responseCost & availability

Page 6: Intro to Task 3: Core Instrumentationresearch.engr.oregonstate.edu/treat-irp/sites/... · Task 3: Core Instrumentation 3 3.1 Instrumentation Plan o 3.1.1 Review TREAT core design

Task 3.2 Initial Benchmark Evaluation

6

Development of Instrumentation Experimentso Benchmarking plan for steady-state and transientso Selection of test instrumentationo Design and review of experiments for MITR and OSTR

Irradiations and Model Validationo Core analysis (MCODE)o Bench sensor data acquisition testingo Conduct experiments and MITR and OSTRo Analysis of experiment data vs. predictionso Uncertainty analysis

Page 7: Intro to Task 3: Core Instrumentationresearch.engr.oregonstate.edu/treat-irp/sites/... · Task 3: Core Instrumentation 3 3.1 Instrumentation Plan o 3.1.1 Review TREAT core design

Reactor Irradiations

7

Leveraging strengths for combination of:

o Expert review and selection o Experiment data generationo Explicit modeling

Opportunity to test proposed instrumentation (sensors + data acquisition)

Opportunity to evaluate new technology

Page 8: Intro to Task 3: Core Instrumentationresearch.engr.oregonstate.edu/treat-irp/sites/... · Task 3: Core Instrumentation 3 3.1 Instrumentation Plan o 3.1.1 Review TREAT core design

In-Core Options

8

Variety of test variableso Neutronic impacto Range & sensitivityo Temporal responseo Thermal effectso Repeatability / activation effects

1-to-1 instrument comparisons

MITRo Steady-state 0-6 MWo Transient T≥20s (<1kW)

OSTRo Steady-state 0-1MWo Transient ≤$2.25

ICSA thimble

Page 9: Intro to Task 3: Core Instrumentationresearch.engr.oregonstate.edu/treat-irp/sites/... · Task 3: Core Instrumentation 3 3.1 Instrumentation Plan o 3.1.1 Review TREAT core design

MITR Irradiation Locations

9

Facility Size Neutron Flux (n/cm2‐s)

In‐core

3 availableMax in‐core volume ~ 1.8” ID x 24” long 

Thermal:  3.6x1013Fast: up to 1.2x1014(E>0.1 MeV)

Beam ports Various radial: 4” to 12” ID

Thermal: 1x1010 ‐1x1013 (source)

Vertical irradiation position

2 vertical (3GV) 3” ID x 24” long

Thermal: 4x1012 ‐1x1013

Through ports One 4” port (4TH)One 6” port (6TH). 

Avg thermal: 2.5x1012to 5.5x1012

Pneumatic Tubes

One 1” ID tube* (1PH1) Thermal: up to 8x1012

One 2” ID tube* (2PH1) Thermal: up to 5x1013

Fission Converter BeamFacility (FCB)

Beam aperture ~ 6” ID Epithermal: ~ 5x109

Thermal Beam Facility (TNB)

Beam aperture ~ 6” ID Thermal: up to 1x1010

Page 10: Intro to Task 3: Core Instrumentationresearch.engr.oregonstate.edu/treat-irp/sites/... · Task 3: Core Instrumentation 3 3.1 Instrumentation Plan o 3.1.1 Review TREAT core design

Recent In-Core Experiments

10

ACI (Water Loop)o SiC LWR cladding in PWR conditions

BSiC (Water Loop)o SiC channel box and guide tubes

WATF (Water Loop)o Accident-tolerant cladding and coatings

HYFIo U-Zr-H LWR fuel rods with liquid metal

bonding

AFTRo Internally- and Externally-Cooled Annular

Fuel

HTIFo Very high-temperature gas irradiation

Drexel (ICSA)o MAX-phase materials at 300-700°C in

inert gas

LUNA (ICSA)o Fiber optics at 700°C in inert gas

FS-1 (ICSA)o FHR coupons in flibe salt at 700°C

FS-2o FHR coupons in flibe salt at 700°C

ULTRA (ICSA)o Ultrasonic transducer and self-powered

detector test

ICCGMo Actively-loaded real-time crack growth

monitor

Page 11: Intro to Task 3: Core Instrumentationresearch.engr.oregonstate.edu/treat-irp/sites/... · Task 3: Core Instrumentation 3 3.1 Instrumentation Plan o 3.1.1 Review TREAT core design

In-Core Sample Assembly

11

Reactor core tank ICSA thimble In‐core region

Page 12: Intro to Task 3: Core Instrumentationresearch.engr.oregonstate.edu/treat-irp/sites/... · Task 3: Core Instrumentation 3 3.1 Instrumentation Plan o 3.1.1 Review TREAT core design

MIT Nuclear Reactor

Laboratory

12

ICSA Thimble in MITR Core

Page 13: Intro to Task 3: Core Instrumentationresearch.engr.oregonstate.edu/treat-irp/sites/... · Task 3: Core Instrumentation 3 3.1 Instrumentation Plan o 3.1.1 Review TREAT core design

MIT Nuclear Reactor

Laboratory

13

Fiber-Optic Sensors in ICSA

Page 14: Intro to Task 3: Core Instrumentationresearch.engr.oregonstate.edu/treat-irp/sites/... · Task 3: Core Instrumentation 3 3.1 Instrumentation Plan o 3.1.1 Review TREAT core design

Ultrasonic Sensors (INL & PSU)

Magnetostrictive and Piezoelectric ultrasonic sensors operating in-core

o Particularly interested in fast neutron damageo Real-time monitoring throughout irradiationo Two types of magnetostrictive magnetso Three types of piezoelectric crystals

Self-powered detectors included for local power monitoring

o Vanadium neutron detector (SPND)o Platinum gamma detector (SPGD)

14

Page 15: Intro to Task 3: Core Instrumentationresearch.engr.oregonstate.edu/treat-irp/sites/... · Task 3: Core Instrumentation 3 3.1 Instrumentation Plan o 3.1.1 Review TREAT core design

ULTRA Design

AlN‐1

BiTi

AlN‐2

ZnO

TC2

TC1Galfenol‐1 and Remendur‐1

Piezo Drop‐Ins

Meltwires

ULTRA Capsule Axial Layout

Magnetostrictive Drop‐Insand Flux Wires

15

Page 16: Intro to Task 3: Core Instrumentationresearch.engr.oregonstate.edu/treat-irp/sites/... · Task 3: Core Instrumentation 3 3.1 Instrumentation Plan o 3.1.1 Review TREAT core design

Reactor Physics Code System

16

Fuel Cycle Part

Static Part

Dynamic Part

NeutronicsMCNP

Core Thermal‐HydraulicsRELAP5 / StarCCM+

DepletionMCODE (ORIGEN)

MITR Fuel ManagementMCODE‐FM

Uncertainty QuantificationDAKOTA

Calculation of X‐sections and Reactivity Coefficients

System Thermal‐Hydraulics RELAP5 (LOF)

1D Reactor Kinetics PARET (RIA)

Design Basis Accident SCALE

Power Distribution

OpenMC

Page 17: Intro to Task 3: Core Instrumentationresearch.engr.oregonstate.edu/treat-irp/sites/... · Task 3: Core Instrumentation 3 3.1 Instrumentation Plan o 3.1.1 Review TREAT core design

MCNP/MCODE Model and Validation

17

Core center-line~5 cm below

Page 18: Intro to Task 3: Core Instrumentationresearch.engr.oregonstate.edu/treat-irp/sites/... · Task 3: Core Instrumentation 3 3.1 Instrumentation Plan o 3.1.1 Review TREAT core design

Uncertainty Quantification

18

Fuel peak temperature satisfy K-S normal distribution test Rank correlation coefficients adopts Pearson model

1 1 1

2 22 2

1 1 1 1

1

ˆ1 1

n n n

i i i ii i i

n n n n

i i i ii i i i

x y x yn

x x y yn n

1360 1400 1440 1480 1520 1560 16000.00

0.05

0.10

0.15

0.20

0.25

0.30

Prob

abili

ty

Temperature (K)

Peak fuel temperature

Temperature limit 1573K

Sensitivity Analysis95/95 Criteria UQ