Interpolation - IntroductionInterpolation - Introduction Estimation of intermediate values between...

50
Interpolation - Introduction Estimation of intermediate values between precise data points. The most common method is polynomial interpolation: Polynomial interpolation is used when the point determined are very precise. The curve representing the behavior has to pass through every point (has to touch). There is one and only one nth-order polynomial that fits n+1 points f ( x )= a 0 + a 1 x + a 2 x 2 ++ a n x n

Transcript of Interpolation - IntroductionInterpolation - Introduction Estimation of intermediate values between...

Page 1: Interpolation - IntroductionInterpolation - Introduction Estimation of intermediate values between ... Newton’s Divided-Difference Interpolating Polynomials Linear Interpolation

Interpolation - IntroductionEstimation of intermediate values betweenprecise data points. The most common method ispolynomial interpolation:

Polynomial interpolation is used when the pointdetermined are very precise. The curverepresenting the behavior has to pass throughevery point (has to touch).

There is one and only one nth-order polynomialthat fits n+1 points

f ( x )=a0+a1 x+a2 x2+⋯ +an x n

Page 2: Interpolation - IntroductionInterpolation - Introduction Estimation of intermediate values between ... Newton’s Divided-Difference Interpolating Polynomials Linear Interpolation

Introduction

First order (linear) 3rd order (cubic)2nd order (quadratic)

n = 2 n = 3 n = 4

Page 3: Interpolation - IntroductionInterpolation - Introduction Estimation of intermediate values between ... Newton’s Divided-Difference Interpolating Polynomials Linear Interpolation

3

Interpolation

Polynomials are the most commonchoice of interpolation because theyare easy to:

EvaluateDifferentiate, andIntegrate.

Page 4: Interpolation - IntroductionInterpolation - Introduction Estimation of intermediate values between ... Newton’s Divided-Difference Interpolating Polynomials Linear Interpolation

Introduction

There are a variety of mathematical formats in which thispolynomial can be expressed:

The Newton polynomial (sec. 18.1)

The Lagrange polynomial (sec. 18.2)

Page 5: Interpolation - IntroductionInterpolation - Introduction Estimation of intermediate values between ... Newton’s Divided-Difference Interpolating Polynomials Linear Interpolation

5

Newton’s Divided-DifferenceInterpolating PolynomialsLinear Interpolation/

Is the simplest form of interpolation, connecting two data pointswith a straight line.

f1(x) designates that this is a first-order interpolating polynomial.

)()()(

)()(

)()()()(

001

0101

01

01

0

01

xxxx

xfxfxfxf

xx

xfxf

xx

xfxf

−−−+=

−−=

−−

Linear-interpolationformula

Slope and afinite divideddifferenceapproximation to1st derivative

Page 6: Interpolation - IntroductionInterpolation - Introduction Estimation of intermediate values between ... Newton’s Divided-Difference Interpolating Polynomials Linear Interpolation

6

Figure

18.2

Page 7: Interpolation - IntroductionInterpolation - Introduction Estimation of intermediate values between ... Newton’s Divided-Difference Interpolating Polynomials Linear Interpolation

7

Quadratic Interpolation/

If three data points are available, the estimate is improvedby introducing some curvature into the line connectingthe points.

A simple procedure can be used to determine the valuesof the coefficients.

))(()()( 1020102 xxxxbxxbbxf −−+−+=

02

01

01

12

12

22

01

0111

000

)()()()(

)()(

)(

xx

xx

xfxf

xx

xfxf

bxx

xx

xfxfbxx

xfbxx

−−−−

−−

==

−−==

==

Page 8: Interpolation - IntroductionInterpolation - Introduction Estimation of intermediate values between ... Newton’s Divided-Difference Interpolating Polynomials Linear Interpolation

8

General Form of Newton’s Interpolating Polynomials/

0

02111011

011

0122

011

00

01110

012100100

],,,[],,,[],,,,[

],[],[],,[

)()(],[

],,,,[

],,[

],[

)(

],,,[)())((

],,[))((],[)()()(

xx

xxxfxxxfxxxxf

xx

xxfxxfxxxf

xx

xfxfxxf

xxxxfb

xxxfb

xxfb

xfb

xxxfxxxxxx

xxxfxxxxxxfxxxfxf

n

nnnnnn

ki

kjjikji

ji

jiji

nnn

nnn

n

−−=

−−

=

−−

=

=

===

−−−++−−+−+=

−−−−

−−

Bracketed functionevaluations are finitedivided differences

Page 9: Interpolation - IntroductionInterpolation - Introduction Estimation of intermediate values between ... Newton’s Divided-Difference Interpolating Polynomials Linear Interpolation

Lagrange Interpolating Polynomials

The general form for n+1 data points is:

≠=

=

−−

=

=

n

ijj ji

ji

n

iiin

xx

xxxL

xfxLxf

0

0

)(

)()()(

designates the “product of”

Page 10: Interpolation - IntroductionInterpolation - Introduction Estimation of intermediate values between ... Newton’s Divided-Difference Interpolating Polynomials Linear Interpolation

Lagrange Interpolating Polynomials

f 1( x )=x− x1

x0− x1

f ( x0 )+x− x0

x1− x0

f ( x1 )

• Linear version (n = 1):Used for 2 points of data: (xo,f(xo)) and (x1,f(x1)),

Lo( x ) L1 ( x )

Page 11: Interpolation - IntroductionInterpolation - Introduction Estimation of intermediate values between ... Newton’s Divided-Difference Interpolating Polynomials Linear Interpolation

Lagrange InterpolatingPolynomials

L1 ( x ) , j≠ 1

f 2 ( x )=( x− x1)( x− x2)( x0− x1 )( x0− x 2 )

f ( x0)

+( x− x0) (x− x2)( x1− x0 )( x1− x 2 )

f ( x1 )

+( x− x0)( x− x1)( x2− x0 )( x2− x 1 )

f ( x 2) L2( x ) , j≠ 2

• Second order version (n = 2):

Lo( x ) , j≠ 0

Page 12: Interpolation - IntroductionInterpolation - Introduction Estimation of intermediate values between ... Newton’s Divided-Difference Interpolating Polynomials Linear Interpolation

Lagrange Interpolating Polynomials -Example

Use a Lagrange interpolating polynomial of the first andsecond order to evaluate ln(2) on the basis of the data:

x 0=1 f ( x 0 )=ln (1 )=0

x 1=4x 2=6

f ( x 1 )=ln (4 )=1.386294f ( x 2)=ln (6)=1.791760

Page 13: Interpolation - IntroductionInterpolation - Introduction Estimation of intermediate values between ... Newton’s Divided-Difference Interpolating Polynomials Linear Interpolation

Lagrange Interpolating Polynomials –Example (cont’d)

● First order polynomial:

f 1( x )=x− x 1

x 0− x 1f ( x 0)+

x− x 0

x 1− x 0f ( x 1 )

f 1( 2)=2− 41− 4

⋅ 0+ 2− 14− 1

⋅ 1 . 386294=0 . 4620981

Page 14: Interpolation - IntroductionInterpolation - Introduction Estimation of intermediate values between ... Newton’s Divided-Difference Interpolating Polynomials Linear Interpolation

Lagrange Interpolating Polynomials –Example (cont’d)

● Second order polynomial:

60

6x

40

4x

xx

xx

xx

xxxL

2o

2

1o

1o −

−⋅−−=

−−⋅

−−=)(

64

6x

04

0x

xx

xx

xx

xxxL

21

2

o1

o1 −

−⋅−−=

−−⋅

−−=)(

46

4x

06

0x

xx

xx

xx

xxxL

12

1

o2

o2 −

−⋅−−=

−−⋅

−−=)(

Page 15: Interpolation - IntroductionInterpolation - Introduction Estimation of intermediate values between ... Newton’s Divided-Difference Interpolating Polynomials Linear Interpolation

Lagrange Interpolating Polynomials –Example (cont’d)

f 2 (2)=(2− 4 )(2− 6)(1− 4 )(1− 6)

⋅ 0

+( 2− 1)( 2− 6 )( 4− 1 )(4− 6)

⋅ 1.386294

+(2− 1)(2− 4 )(6− 1)(6− 4 )

1.791760=0 . 5658444

∑=

=n

0iiin xfxLxf )()()( )()( ij

xx

xxxL

n

0j ji

ji ≠

−−

= ∏=

Page 16: Interpolation - IntroductionInterpolation - Introduction Estimation of intermediate values between ... Newton’s Divided-Difference Interpolating Polynomials Linear Interpolation

Lagrange Interpolating Polynomials –Example (cont’d)

Page 17: Interpolation - IntroductionInterpolation - Introduction Estimation of intermediate values between ... Newton’s Divided-Difference Interpolating Polynomials Linear Interpolation

Coefficients of an Interpolating Polynomial

● Although “Lagrange” polynomials are well suitedfor determining intermediate values betweenpoints, they do not provide a polynomial inconventional form:

● Since n+1 data points are required to determinen+1 coefficients, simultaneous linear systems ofequations can be used to calculate “a”s.

f ( x )=a0+a1 x+a2 x2+⋯ +a x xn

Page 18: Interpolation - IntroductionInterpolation - Introduction Estimation of intermediate values between ... Newton’s Divided-Difference Interpolating Polynomials Linear Interpolation

Coefficients of an InterpolatingPolynomial (cont’d)

f ( x0 )=a0+a1 x0+a2 x02⋯ +an x0

n

f ( x1 )=a0+a1 x1+a2 x12⋯ +an x1

n

⋮f ( xn )=a0+a1 xn+a2 x n

2⋯ +an xnn

Where “x”s are the knowns and “a”s are theunknowns.

Page 19: Interpolation - IntroductionInterpolation - Introduction Estimation of intermediate values between ... Newton’s Divided-Difference Interpolating Polynomials Linear Interpolation

Possible divergence of an extrapolatedproduction

Page 20: Interpolation - IntroductionInterpolation - Introduction Estimation of intermediate values between ... Newton’s Divided-Difference Interpolating Polynomials Linear Interpolation

20

Why Spline Interpolation?

Apply lower-order polynomials to subsets of data points. Splineprovides a superior approximation of the behavior of functions thathave local, abrupt changes.

Page 21: Interpolation - IntroductionInterpolation - Introduction Estimation of intermediate values between ... Newton’s Divided-Difference Interpolating Polynomials Linear Interpolation

Spline Interpolation

● Polynomials are the most common choice ofinterpolants.

● There are cases where polynomials can lead toerroneous results because of round off error andovershoot.

● Alternative approach is to apply lower-orderpolynomials to subsets of data points. Suchconnecting polynomials are called splinefunctions.

Page 22: Interpolation - IntroductionInterpolation - Introduction Estimation of intermediate values between ... Newton’s Divided-Difference Interpolating Polynomials Linear Interpolation

22

Why Splines ?

f ( x )=1

1+25 x2

Table : Six equidistantly spaced points in [-1, 1]

Figure : 5th order polynomial vs. exact function

x 2251

1

xy

+=

-1.0 0.038461

-0.6 0.1

-0.2 0.5

0.2 0.5

0.6 0.1

1.0 0.038461

Page 23: Interpolation - IntroductionInterpolation - Introduction Estimation of intermediate values between ... Newton’s Divided-Difference Interpolating Polynomials Linear Interpolation

23

Why Splines ?

Figure : Higher order polynomial interpolation is a bad idea

OriginalFunction

17th OrderPolynomial

9th OrderPolynomial

5th OrderPolynomial

Page 24: Interpolation - IntroductionInterpolation - Introduction Estimation of intermediate values between ... Newton’s Divided-Difference Interpolating Polynomials Linear Interpolation

Spline InterpolationThe concept of spline is using a thin , flexible strip(called a spline) to draw smooth curves through aset of points….natural spline (cubic)

Page 25: Interpolation - IntroductionInterpolation - Introduction Estimation of intermediate values between ... Newton’s Divided-Difference Interpolating Polynomials Linear Interpolation
Page 26: Interpolation - IntroductionInterpolation - Introduction Estimation of intermediate values between ... Newton’s Divided-Difference Interpolating Polynomials Linear Interpolation

Linear Spline

The first order splines for a group of ordered datapoints can be defined as a set of linear functions:

mi=f ( xi+1 )− f ( x i )

x i+1− x i

f ( x )= f ( x0)+m0( x− x0 ) x0≤ x≤ x1

f ( x )= f ( x1 )+m1 ( x− x1 ) x1≤ x≤ x2

f ( x )= f ( xn− 1 )+mn− 1 ( x− x n− 1 ) xn− 1≤ x≤ xn

Page 27: Interpolation - IntroductionInterpolation - Introduction Estimation of intermediate values between ... Newton’s Divided-Difference Interpolating Polynomials Linear Interpolation

Linear spline - ExampleFit the following data with first order splines. Evaluatethe function at x = 5.

x f(x)

3.0 2.54.5 1.07.0 2.59.0 0.5

m=2. 5− 17− 4 . 5

=0 . 6

f (5)= f (4 .5 )+m(5− 4 .5)=1 . 0+0 . 6×0. 5=1 . 3

Page 28: Interpolation - IntroductionInterpolation - Introduction Estimation of intermediate values between ... Newton’s Divided-Difference Interpolating Polynomials Linear Interpolation

Linear Spline● The main disadvantage of linear spline is that

they are not smooth. The data points where 2splines meets called (a knot), the changesabruptly.

● The first derivative of the function is discontinuousat these points.

● Using higher order polynomial splines ensuresmoothness at the knots by equating derivativesat these points.

Page 29: Interpolation - IntroductionInterpolation - Introduction Estimation of intermediate values between ... Newton’s Divided-Difference Interpolating Polynomials Linear Interpolation

Quadric Splines

f i( x )=a i x2+bi x+ci

• Objective: to derive a second order polynomial for eachinterval between data points.• Terms: Interior knots and end points

For n+1 data points:• i = (0, 1, 2, …n),• n intervals,• 3n unknownconstants (a’s, b’s andc’s)

Page 30: Interpolation - IntroductionInterpolation - Introduction Estimation of intermediate values between ... Newton’s Divided-Difference Interpolating Polynomials Linear Interpolation

Quadric Splines (3n conditions)

● The function values of adjacent polynomialmust be equal at the interior knots 2(n-1).

● The first and last functions must passthrough the end points (2).

a i− 1 xi− 1

2+bi− 1 xi− 1+ci− 1= f i ( xi− 1 ) i=2, 3, 4, . .. , n

a i xi− 1

2+b i x i− 1+ci= f i( xi− 1 ) i=2, 3, 4, . .. , n

a1 x0

2+b1 x0+c1= f ( x0 )

an xn

2+bn xn+cn= f ( xn )

Page 31: Interpolation - IntroductionInterpolation - Introduction Estimation of intermediate values between ... Newton’s Divided-Difference Interpolating Polynomials Linear Interpolation

Quadric Splines (3n conditions)● The first derivatives at the interior knots

must be equal (n-1).

● Assume that the second derivate is zeroat the first point (1)

(The first two points will be connected by a straight line)

fi' ( x )=2ai x+bi

2ai− 1 x i− 1+bi− 1=2a i xi− 1+bi

a 1=0

Page 32: Interpolation - IntroductionInterpolation - Introduction Estimation of intermediate values between ... Newton’s Divided-Difference Interpolating Polynomials Linear Interpolation

Quadric Splines - Example

Fit the following data with quadraticsplines. Estimate the value at x = 5.

Solutions:There are 3 intervals (n=3), 9 unknowns.

x 3.0 4.5 7.0 9.0

f(x) 2.5 1.0 2.5 0.5

Page 33: Interpolation - IntroductionInterpolation - Introduction Estimation of intermediate values between ... Newton’s Divided-Difference Interpolating Polynomials Linear Interpolation

Quadric Splines - Example1. Equal interior points:

For first interior point (4.5, 1.0)

The 1st equation:

The 2nd equation:

Page 34: Interpolation - IntroductionInterpolation - Introduction Estimation of intermediate values between ... Newton’s Divided-Difference Interpolating Polynomials Linear Interpolation

Quadric Splines - Example

For second interior point (7.0, 2.5)

The 3rd equation:

The 4th equation:

49 a2+7b2+c2=2. 5

49 a3+7b3+c3=2 .5

x22 a2+ x2 b2+c2= f ( x2 )

(7)2 a2+7b2+c2= f (7)

x22 a3+x2 b3+c3= f ( x2 )

(7)2 a3+7b3+c3= f (7 )

Page 35: Interpolation - IntroductionInterpolation - Introduction Estimation of intermediate values between ... Newton’s Divided-Difference Interpolating Polynomials Linear Interpolation

Quadric Splines - Example

First and last functions pass the endpoints

For the start point (3.0, 2.5)

For the end point (9, 0.5)

9a1+3b1+c1=2. 5

81a3+9b3+c3=0 .5

x02 a1+x0 b1+c1= f ( x0 )

x32 a1+x3 b3+c3= f ( x3 )

Page 36: Interpolation - IntroductionInterpolation - Introduction Estimation of intermediate values between ... Newton’s Divided-Difference Interpolating Polynomials Linear Interpolation

Quadric Splines - ExampleEqual derivatives at the interior knots.

For first interior point (4.5, 1.0)

For second interior point (7.0, 2.5)

Second derivative at the first point is 0

Page 37: Interpolation - IntroductionInterpolation - Introduction Estimation of intermediate values between ... Newton’s Divided-Difference Interpolating Polynomials Linear Interpolation

Quadric Splines - Example

[ ] [ ] [ ] [ ] [ ] [ ] [ ]

righ

righ

c

b

a

c

b

a

c

b

[]

righ

0

0

0.5

2.5

2.5

2.5

1

1

0114011400

00001901

198100000

00000013

174900000

000174900

00014.520.2500

00000014.5

3

3

3

2

2

2

1

1

−−−−

Page 38: Interpolation - IntroductionInterpolation - Introduction Estimation of intermediate values between ... Newton’s Divided-Difference Interpolating Polynomials Linear Interpolation

Quadric Splines - ExampleSolving these 8 equations with 8 unknowns

a1=0, b1=− 1, c1=5 . 5

a2=0 . 64 , b2=− 6. 76 , c2=18. 46a3=− 1. 6, b3=24. 6, c3=− 91. 3

f 1( x )=− x+5. 5, 3 .0≤ x≤ 4 . 5

f 2 ( x )=0. 46 x2− 6 .76 x+18 . 46 , 4 . 5≤ x≤ 7 . 0

f 3( x )=− 1. 6x2+24 .6x− 91. 3, 7 . 0≤ x≤ 9 .0

Page 39: Interpolation - IntroductionInterpolation - Introduction Estimation of intermediate values between ... Newton’s Divided-Difference Interpolating Polynomials Linear Interpolation

Cubic Splines

f i( x )=a i x3+bi x2+c i x+d i

Objective: to derive a third order polynomial foreach interval between data points.Terms: Interior knots and end points

For n+1 data points:• i = (0, 1, 2, …n),• n intervals,• 4n unknown constants (a’s, b’s ,c’s and d’s)

Page 40: Interpolation - IntroductionInterpolation - Introduction Estimation of intermediate values between ... Newton’s Divided-Difference Interpolating Polynomials Linear Interpolation

Cubic Splines (4n conditions)● The function values must be equal at the interior

knots (2n-2).● The first and last functions must pass through the

end points (2).● The first derivatives at the interior knots must be

equal (n-1).● The second derivatives at the interior knots must

be equal (n-1).● The second derivatives at the end knots are zero (2),

(the 2nd derivative function becomes a straight line atthe end points)

Page 41: Interpolation - IntroductionInterpolation - Introduction Estimation of intermediate values between ... Newton’s Divided-Difference Interpolating Polynomials Linear Interpolation

Alternative technique to get CubicSplines● The second derivative within each interval [xi-1, xi ] is a straight line.

(the 2nd derivatives can be represented by first order Lagrangeinterpolating polynomials.

fi''( x )= f

i''( xi− 1)

x− x i

x i− 1− x i

+ fi''( xi )

x− x i− 1

xi− xi− 1

A straight lineconnecting the firstknot f’’(xi-1) and thesecond knot f’’(xi)

The second derivative at any point x within the interval

Page 42: Interpolation - IntroductionInterpolation - Introduction Estimation of intermediate values between ... Newton’s Divided-Difference Interpolating Polynomials Linear Interpolation

Cubic Splines● The last equation can be integrated twice

2 unknown constants of integration can be evaluatedby applying the boundary conditions:1. f(x) = f (xi-1) at xi-1

2. f(x) = f (xi) at xi

Unknowns:

i = 0, 1,…, n

Page 43: Interpolation - IntroductionInterpolation - Introduction Estimation of intermediate values between ... Newton’s Divided-Difference Interpolating Polynomials Linear Interpolation

Cubic Splines

( xi− x i− 1) f ''( x i− 1)+2( xi+1− x i− 1 ) f ''( xi )

+( x i+1− xi ) f ''( xi+1 )=6x i+1− xi

[ f ( x i+1 )− f ( xi )]

+6xi− xi− 1

[ f ( x i− 1)− f ( x i)]

• For each interior point xi (n-1):

This equation result with n-1 unknown secondderivatives where, for boundary points:f˝(xo) = f˝(xn) = 0

fi− 1

' ( x i )= f i' ( x i)

Page 44: Interpolation - IntroductionInterpolation - Introduction Estimation of intermediate values between ... Newton’s Divided-Difference Interpolating Polynomials Linear Interpolation

Cubic Splines - Example

Fit the following data with cubic splinesUse the results to estimate the value at x=5.

Solution:

Natural Spline:

x 3.0 4.5 7.0 9.0

f(x) 2.5 1.0 2.5 0.5

f ''( x0)= f ''(3 )=0, f ''( x3 )= f ''(9 )=0

Page 45: Interpolation - IntroductionInterpolation - Introduction Estimation of intermediate values between ... Newton’s Divided-Difference Interpolating Polynomials Linear Interpolation

Cubic Splines - Example For 1st interior point (x1 = 4.5)

---Apply the following equation:

( xi− x i− 1) f ''( x i− 1)+2( xi+1− x i− 1 ) f ''( xi )+( x i+1− x i) f ''( xi+1 )

¿6xi+1− x i

[ f ( xi+1 )− f ( x i )] +6x i− xi− 1

[ f ( xi− 1 )− f ( xi )]

x 3.0 4.5 7.0 9.0

f(x) 2.5 1.0 2.5 0.5x i− x i− 1=x1− x0=4 . 5− 3 . 0=1. 5

x i+1− xi= x2− x1=7− 4.5=2 . 5

x i+1− xi− 1= x2− x0=7− 3. 0=4

Page 46: Interpolation - IntroductionInterpolation - Introduction Estimation of intermediate values between ... Newton’s Divided-Difference Interpolating Polynomials Linear Interpolation

Cubic Splines - Example

1. 5f ''(3 )+2×4f ''(4 .5)+2 . 5f ''(7 )=6

2 . 5(2 . 5− 1 )+

61 .5(2 . 5− 1 )

f ''(3 )=0

8f ''( 4. 5 )+2 .5f ''(7)=9. 6 .. . .. .. . .. .. . . (eq .1 )

x 3.0 4.5 7.0 9.0

f(x) 2.5 1.0 2.5 0.5

Since

For 2nd interior point (x2 = 7 )

x i− x i− 1=x2− x1=7− 4 . 5=2. 5

x i+1− xi− 1= x3− x1=9− 4 . 5=4 . 5

x i+1− xi= x3− x2=9− 7=2

Page 47: Interpolation - IntroductionInterpolation - Introduction Estimation of intermediate values between ... Newton’s Divided-Difference Interpolating Polynomials Linear Interpolation

Cubic Splines - Example

Apply the following equation:

( xi− x i− 1) f ''( x i− 1)+2( xi+1− x i− 1 ) f ''( xi )+( x i+1− x i) f ''( xi+1 )

¿6xi+1− x i

[ f ( xi+1 )− f ( x i )] +6x i− xi− 1

[ f ( xi− 1 )− f ( xi )]

2 . 5f ''( 4. 5)+2×4 .5f ''(7)+2f ''(9 )=62(0. 5− 2 . 5)+

62.5(1− 2. 5)

Since f ''(9 )=0

2 . 5f ''(4 . 5)+9f ''(7 )=− 9 .6 . .. .. . .. .. . .. ( equ 2 )

Page 48: Interpolation - IntroductionInterpolation - Introduction Estimation of intermediate values between ... Newton’s Divided-Difference Interpolating Polynomials Linear Interpolation

Cubic Splines - ExampleSolve the two equations:

The first interval (i=1), apply for the equation:

8f i''( 4. 5 )+2 .5f i

''(7)=9.6

2. 5f i''( 4. 5 )+9f i

''(7)=− 9 . 6

¿ }¿¿ yeild f ''(4 . 5)=1. 67909 , f ''(7)=− 1 .53308¿

f i( x )=f

i''( xi− 1 )

6( x i− x i− 1)(xi− x )3+

fi''( xi )

6( xi− xi− 1 )( x− xi− 1)

3

+[ f i ( xi− 1)xi− xi− 1

−f

i''( xi− 1 )(xi− x i− 1)

6 ]( x i− x)+[ f i( x i )xi− x i− 1

−f

i''( xi )(x i− x i− 1)

6 ]( x− x i− 1)

f 1( x )=0 .186566 ( x− 3 )3+1 .6667 (4 . 5− x )+0 . 24689( x− 3 )

f 1( x )=0 ( xi− 3 )3+1. 679096(1. 5)

( x− 3 )3+[ 2 . 51 . 5

− 0(1.5 )6 ](4 . 5− x )+[ 1

1. 5− 1. 67909(1. 5)

6 ]( x− 3)

Page 49: Interpolation - IntroductionInterpolation - Introduction Estimation of intermediate values between ... Newton’s Divided-Difference Interpolating Polynomials Linear Interpolation

Cubic Splines - Example

f 2 ( x )=1 . 679096 (2 .5 )

(7− x )3+− 1 .533086(2 .5 )

( x− 4 .5 )3+[12 .5− − 1. 67909(2 .5)

6 ](7− x)

+[2.52.5

− − 1 . 53308(2 . 5)6 ]( x− 4 . 5)

f 2 ( x )=0. 111939(7− x )3− 0 . 102205 ( x− 4 .5 )3− 0 . 29962(7− x )+1. 638783 ( x− 4 . 5)

f 3( x )=− 0 .127757 (9− x )3+1.761027 (9− x )+0. 25 ( x− 7 )

f 2 ( x )= f 2(5)=1. 102886

The 2nd interval (i =2), apply for the equation:

The 3rd interval (i =3),

For x = 5:

Page 50: Interpolation - IntroductionInterpolation - Introduction Estimation of intermediate values between ... Newton’s Divided-Difference Interpolating Polynomials Linear Interpolation

Credits:● Chapra, Canale● The Islamic University of Gaza, Civil Engineering Department