Integración al metabolismo

43
CAMBIOS METABOLICOS: MUSCULO ESQUELETICO Estado de reposo: ATP Existen 2 clases de tejido muscular: ROJO BLANCO

Transcript of Integración al metabolismo

Page 1: Integración al metabolismo

CAMBIOS METABOLICOS:MUSCULO ESQUELETICO

Estado de reposo:

ATP Existen 2 clases de tejido muscular:

ROJO BLANCO

Page 2: Integración al metabolismo

Utilizan

Estado moderadamente activo:

• Glucosa• Acidos grasos• Cuerpos cetonicos

Músculos de contracción rápida con actividad máxima:

X cada glucosa se forma 3 ATP

Secreción de Adrenalina

Page 3: Integración al metabolismo

Puesto que el musculo esquelético almacenan cantidades

pequeñas de glucógeno (1%)

Recuperación del ejercicio físico vigoroso:

PHAcumulación de lactato

FOSFOCREATINARegenera rapidamente ATP a partir de ADP por medio de la CREATINA QUINASA

Page 4: Integración al metabolismo

METABOLISMO TEJIDO CARDIACO

• Actividad continua

• Ritmo regular de contraccion y relajacion

• Metabolismo completamente aerobico

Page 5: Integración al metabolismo

Respuesta metabólica en el ayuno “Abstinencia de toda comida y bebidadesde las doce de la noche antecedente”.

• Se considera que un individuo está en situación de ayuno cuando la ingesta es insuficiente para cubrir las necesidades de macronutrientes

• El cese total de la ingesta de alimentos y el logro de la supervivencia mediante la utilización de los sustratos endógenos almacenados.

Page 6: Integración al metabolismo

Ausencia de ayunoLa ingesta de nutrientes se produce de manera intermitente. Mecanismos fisiológicos que intentan amortiguar las variaciones en las concentraciones plasmáticas de glucosa.

Posprandial evita concentraciones elevadas.Postabsortivo (de 4 a 6 h después de la ingestión de una comida), concentraciones bajas.

Después de la ingesta y de la digestión, fluyen al torrentecirculatorio elementos como glucosa, aminoácidosy ácidos grasos libres, entre otros.

Page 7: Integración al metabolismo

Llegada masiva de nutrientes (glucosa) incrementa la síntesis y secreción de insulina para evitar excursiones hiperglucémicas excesivas.

Favorece un adecuado aporte energético al organismo con la metabolización periféricade glucosa.

Inhiben la glucogenólisis y la gluconeogénesis Glucosa se almacena en forma de glucógeno en el hígado y se favorece,el anabolismo lipídico y proteínico.

Page 8: Integración al metabolismo

Ayuno4 h después de haber comido, comienza el estado postabsortivo.

Sin comer durante 10 a 14 h por la noche.

Si el organismo no pusiera en marcha mecanismos; se produciría un descenso patológico de sus concentraciones sanguíneas.

Lo básico asegurar el aporte de energía (el cerebro). Moderar la pérdida demasiado rápida de las estructuras corporales que sirven como fuente de los productosenergéticos.

Page 9: Integración al metabolismo

Los procesos metabólicos no son estáticos, varían dependiendo de la duración del ayuno.

Se disminuye el consumo de glucosaen el músculo, el tejido adiposo y el hígado. Mecanismos de producción de glucosa y otros nutrientes, como ácidosgrasos libres (AGL) y cuerpos cetónicos, con variaciones catabolismo de los sustratos empleados en su síntesis o liberación.

Page 10: Integración al metabolismo

SeñalesDisminución de la glucemia

En las primeras 24 h.

75 mg/dl intenta asegurar el metabolismo del cerebro y de otros órganos vitales.

Tras 48 a 78 h de ayuno, la glucemia se estabiliza alrededor de 45 a 60 mg/dl.

Page 11: Integración al metabolismo

Disminución de la insulinemia

Ralentiza el consumo de glucosa en el músculo, en el tejido adiposo y en el hígado, observable ya el primer día de ayuno.

Aporte al cerebro y a los hematíes está asegurado, transporte de glucosa a estos tejidos es independiente de la insulina, transportadores no insulinodependientes GLUT-1 (cerebro y hematíes) y GLUT-3 (cerebro).

Concentración de 67 mg/dl produce un incremento de las hormonas contrarreguladoras (glucagón, noradrenalina y cortisol) reducir el consumo de glucosa y a estimular la lipólisis, la gluconeogénesis y la cetogénesis.

Page 12: Integración al metabolismo

Procesos metabólicos

1) Glucogenólisis

La hipoinsulinemia, glucagón, pone en marcha la glucogenólisis hepática (escisión del glucógeno, que dalugar a la liberación de glucosa) mediada por la fosforilasa. Aporta inicialmente unos 110 mg/min.

75% de toda la glucosa producida por el hígado, 25% restante proviene de la gluconeogénesis

Page 13: Integración al metabolismo

2) Proteólisis

La combinación de hipoinsulinemia y aumento de cortisol, hormona somatotrópica y noradrenalina inhibe el anabolismo proteínico e inicia su catabolismo. 70-90 g/día de aminoácidos, alanina.

Músculo <8%; mayoría del que llega al hígado; por transaminación del piruvato hepático y muscular.

Disminuye con la prolongación del ayuno.

Page 14: Integración al metabolismo

3) Lipólisis

Se agotan las reservas de glucógeno hepático, si persiste el ayuno, la hipoinsulinemia, la hiperglucagonemia, la hipoglucemia leve yla elevación de las hormonas contrainsulares;Inicia la lipólisis, con escisión de los triglicéridos en glicerol y AGL.

Vertidos en sangre. En el ayuno prolongado es la fuente fundamental de material energético.

Page 15: Integración al metabolismo

4) Gluconeogénesis

Agotadas las reservas hepáticas de glucógeno (12h), toda la glucosa aportada a la circulaciónproviene de la gluconeogénesis.

Fase postabsortiva en el hígado, con contribución del riñón (5%) pero, si el ayuno se prolonga, 25% a las 60 h de ayuno y al 50% en fases de ayuno prologado.

Dotados de glucosa-6-fosfatasa; aminoácidos, lactato, piruvato y glicerol, músculo, el tejido adiposo y el intestino, mediados por el descenso de la insulina y elevación de cortisol, GH, glucagón y noradrenalina.

Oxidación de los AGL, la piruvato carboxilasa, la acetil coenzima A. La gluconeogénesis renal a expensas de la glutamina, producciónde amonio, eliminaciónde cuerpos cetónicos.

Page 16: Integración al metabolismo

5) Cetogénesis

La lipólisis tras la depleción del glucógeno hepático aumenta valores plasmáticos de glicerol y de AGL.

En las mitocondrias sufren una beta oxidación, formación de acetil coenzima A y citrato, inhibición del ciclo de Krebs, disminución del metabolismo de la glucosa.

Acetil coenzima A derive hacia la formación de cuerpos cetónicos (acetoacetato y betahidroxibutirato)

Page 17: Integración al metabolismo

6) Consumo energético reducido.

Se preserva el metabolismo cerebral y disminuyeel periférico. Descenso de la glucemia, la hipoinsulinemia, disminuye el consumo de la glucosa.

La disminución de insulina contribuye al menor transporte de aminoácidos al interiorde las células, ahorro energético al desaparecer el anabolismo proteínico (proteólisis).

Menor cantidad de glucosa, el músculo consume reservas de glucógeno, su oxidación local, carece de la enzima glucosa-6-fosfatasa, vierte al torrente circulatorio lactato, que puede transformarse en glucosa o en alanina.

Page 18: Integración al metabolismo

A medida que se prolonga el ayuno, se van poniendo en marcha todas las alteraciones, que contribuyen, a disminuir el gasto calórico total y cambiar el origen energético y preservan siempre el metabolismo cerebral.

¿Si solamente los productos del catabolismo proteínico fueran los sustratos de la gluconeogénesis, que tan rápida seria la pérdida proteínica?

Si el ayuno persiste, mecanismos adaptativos que disminuyen dicho catabolismo.

La lipólisis se va incrementando y el glicerol liberado contribuye a la gluconeogénesis

Glucosa endógena disminuye, diversos tejidos periféricos emplean otros sustratos energéticos.

Page 19: Integración al metabolismo

El músculo, consumir su glucógeno, emplea glucosa de la circulación en cantidad reducida y, AGL ycuerpos cetónicos, para finalmente AGL.

El cerebro consume glucosa e incrementa el consumo de cuerpos cetónicos, pero no es capaz de metabolizar los AGL.

Tejido adiposo = principal fuente de energía.

Page 20: Integración al metabolismo

Productos energéticos

1) Glucosa

El consumo basal de glucosa en el ayuno es de 2 mg/kg/min, el cerebro consume la mitad.

70 kg consumo de glucosa de 140mg/min.

Glucogenólisis= 110 mg/min.Gluconeogénesis= 30-40 mg/min. 75 y 25%.

Page 21: Integración al metabolismo

Agotarse el glucógeno (12h) el 100% de la glucosa hepática se produce por la gluconeogénesis, se añade la gluconeogénesis renal.

Cada sustrato se estima que es 20g desde el glicerol. 75 desde los aminoácidos y el resto desde el lactato.

Fuente de energía los AGL y los cuerpos cetónicos, la glucosa se reduce, las 72 h disminuye a 1 mg/min.

Page 22: Integración al metabolismo

2) AGL

Lipólisis → glicerol y AGL.

Concentración máx. 3 días, se mantienen elevados y seguir distintas vías metabólicas.

Producir triglicéridos en el hígado.

Beta oxidación y convertirse en cuerpos cetónicos (hígado).

Combustible en todo el organismo.

Page 23: Integración al metabolismo

3) Cuerpos cetónicos.

2 o 3 días mayor producción.

Concentración en sangre no se incrementa; excepto hígado, mayoría de los tejidos lo consumen.

Consumo alternativo de AGL como de cuerpos cetónicos disminuye las necesidades del consumo de glucosa

Page 24: Integración al metabolismo

4) Glicerol, aminoácidos, lactato, piruvato.

Sirven como sustrato para la formación de glucosa o cuerpos cetónicos, pero no producen energía directamente.

Page 25: Integración al metabolismo

Alteraciones Metabólicas en la Diabetes

Page 26: Integración al metabolismo
Page 27: Integración al metabolismo

• Diabetes Mellitus Tipo 1

• Diabetes Mellitus Tipo 2

• Diabetes Gestacional

Clasificación

Page 28: Integración al metabolismo

• Factor genético determinante.

• Respuesta autoinmune a las células β del páncreas.

• Infantil.

Diabetes Mellitus Tipo 1

Page 29: Integración al metabolismo

Fisiopatología

Inhibición de la Glucólisis

Catabolismo de Ácidos Grasos

Page 30: Integración al metabolismo

Polidipsia Polifagia PoliuriaPérdida de Peso

Las 4 “P” del paciente Diabético

Page 31: Integración al metabolismo

Catabolismo de Ácidos Grasos

• Hiponatremia• Hipokalemia• Hipocalcemia• Nefropatía• Hepatopatía• Anemia

Page 32: Integración al metabolismo

• Componente ambiental o alteraciones genéticas.

• Daño en la producción, en la hormona o en los receptores de insulina.

• Después de los 30 años.

Diabetes Mellitus Tipo 2

Page 33: Integración al metabolismo

Las 4 “P”

Catabolismo de Ácidos Grasos

Diabetes Mellitus Tipo 2

Page 34: Integración al metabolismo

Diabetes Mellitus Tipo 2

Obesidad/ Obesidad Mórbida

Diabetes Mellitus Tipo 2

Page 35: Integración al metabolismo

• Predispone para la diabetes Mellitus tipo 2, se acompaña de Preclampsia.

• Desaparece tras el parto.

Diabetes Gestacional

Page 36: Integración al metabolismo

Diabetes Gestacional

Fetos Macrosómicos

Diabetes Gestacional

Page 37: Integración al metabolismo

Complicaciones de laDiabetes

Page 38: Integración al metabolismo

Sindrome Hiperosmolar

Y Edema

Page 39: Integración al metabolismo

Acidosis Láctica

Page 40: Integración al metabolismo
Page 41: Integración al metabolismo

en una aterorosclerosis otrombosis coronaria porque razon provoca la necrosis a esta zona del musculo?

En una aterorosclerosis o trombosis coronaria ¿Por qué

mecanismo se produce la necrosis?

Page 42: Integración al metabolismo

en una aterorosclerosis otrombosis coronaria porque razon provoca la necrosis a esta zona del musculo?

En un paciente diabético conacidosis láctica ¿Qué

tratamiento usaría? ¿Deberíaadministrar alguna solución?

Page 43: Integración al metabolismo

El género humano tiene, para saber conducirse, el arte y el razonamiento.

Aristóteles