Innovative low carbon steel building envelopes · 4 1.064 0.575 0.394 0.299 0.242 0.202 0.174 0.153...

59
Prof. Ray Ogden BA (hons), Dip. Arch (1 st ), PhD (Mech. Eng.) Associate Dean Research and Knowledge Exchange and Director of the Architectural Engineering Research Group, Oxford Brookes University, UK Innovative low carbon steel building envelopes

Transcript of Innovative low carbon steel building envelopes · 4 1.064 0.575 0.394 0.299 0.242 0.202 0.174 0.153...

Page 1: Innovative low carbon steel building envelopes · 4 1.064 0.575 0.394 0.299 0.242 0.202 0.174 0.153 0.136 0.123 0.112 0.103 0.095 0.088 0.082 0.077 0.073 0.069 0.065 0.062 20 40 60

Prof. Ray Ogden

BA (hons), Dip. Arch (1st), PhD (Mech. Eng.)

Associate Dean Research and Knowledge Exchange and Director of the Architectural

Engineering Research Group, Oxford Brookes University, UK

Innovative low carbon steel building

envelopes

Page 2: Innovative low carbon steel building envelopes · 4 1.064 0.575 0.394 0.299 0.242 0.202 0.174 0.153 0.136 0.123 0.112 0.103 0.095 0.088 0.082 0.077 0.073 0.069 0.065 0.062 20 40 60

OXFORD BROOKES UNIVERSITY

• Top new University with one of the most highly rated Schools of

Architecture

• Architectural Engineering Research Group jointly based in the

School of Architecture and Department of Mechanical

Engineering, specialising in ‘Close to Industry’ activities.

• One of the largest building physics and sustainability portfolios in

the UK

Newly constructed award winning John

Henry Brookes Building

Page 3: Innovative low carbon steel building envelopes · 4 1.064 0.575 0.394 0.299 0.242 0.202 0.174 0.153 0.136 0.123 0.112 0.103 0.095 0.088 0.082 0.077 0.073 0.069 0.065 0.062 20 40 60

FACILITIES

• Dedicated building envelope and light steel structures laboratory

• World class computational analysis capabilities for structures and

building physics

John Payne laboratory

Page 4: Innovative low carbon steel building envelopes · 4 1.064 0.575 0.394 0.299 0.242 0.202 0.174 0.153 0.136 0.123 0.112 0.103 0.095 0.088 0.082 0.077 0.073 0.069 0.065 0.062 20 40 60

CORE ACTIVITIES

• Offsite and modular construction

• Physical element testing

• Accreditation and CE marking

• Construction and life cycle costing

• Construction design guidance and regulation

• Regulatory compliance including energy and

structural

• Building physics analysis including: thermal,

acoustic, structural and air-tightness testing and

analysis

• Building envelope systems

• Low carbon building systems

• Product and systems development

• CAD and computer modelling

• Long span solutions

• Building Performance Evaluation (POE)

Page 5: Innovative low carbon steel building envelopes · 4 1.064 0.575 0.394 0.299 0.242 0.202 0.174 0.153 0.136 0.123 0.112 0.103 0.095 0.088 0.082 0.077 0.073 0.069 0.065 0.062 20 40 60

PRIORITY DEVELOPMENT THEMES

• Low carbon and sustainable design

• Efficiency

• Performance

• Cost

Page 6: Innovative low carbon steel building envelopes · 4 1.064 0.575 0.394 0.299 0.242 0.202 0.174 0.153 0.136 0.123 0.112 0.103 0.095 0.088 0.082 0.077 0.073 0.069 0.065 0.062 20 40 60

UK markets

Highly developed metal building envelope market

Page 7: Innovative low carbon steel building envelopes · 4 1.064 0.575 0.394 0.299 0.242 0.202 0.174 0.153 0.136 0.123 0.112 0.103 0.095 0.088 0.082 0.077 0.073 0.069 0.065 0.062 20 40 60

UK markets

High proportion of buildings with steel structures

Page 8: Innovative low carbon steel building envelopes · 4 1.064 0.575 0.394 0.299 0.242 0.202 0.174 0.153 0.136 0.123 0.112 0.103 0.095 0.088 0.082 0.077 0.073 0.069 0.065 0.062 20 40 60

UK markets

• Commitment to low and zero carbon

buildings

• Focus on renewable energy solutions

• Fabric first approaches generally

favoured

Page 9: Innovative low carbon steel building envelopes · 4 1.064 0.575 0.394 0.299 0.242 0.202 0.174 0.153 0.136 0.123 0.112 0.103 0.095 0.088 0.082 0.077 0.073 0.069 0.065 0.062 20 40 60

UK markets

Good quality design culture

Page 10: Innovative low carbon steel building envelopes · 4 1.064 0.575 0.394 0.299 0.242 0.202 0.174 0.153 0.136 0.123 0.112 0.103 0.095 0.088 0.082 0.077 0.073 0.069 0.065 0.062 20 40 60

Sectors

Manufacturing

Page 11: Innovative low carbon steel building envelopes · 4 1.064 0.575 0.394 0.299 0.242 0.202 0.174 0.153 0.136 0.123 0.112 0.103 0.095 0.088 0.082 0.077 0.073 0.069 0.065 0.062 20 40 60

Sectors

Distribution

Page 12: Innovative low carbon steel building envelopes · 4 1.064 0.575 0.394 0.299 0.242 0.202 0.174 0.153 0.136 0.123 0.112 0.103 0.095 0.088 0.082 0.077 0.073 0.069 0.065 0.062 20 40 60

Sectors

Industrial

Page 13: Innovative low carbon steel building envelopes · 4 1.064 0.575 0.394 0.299 0.242 0.202 0.174 0.153 0.136 0.123 0.112 0.103 0.095 0.088 0.082 0.077 0.073 0.069 0.065 0.062 20 40 60

Sectors

Offices and commercial

Page 14: Innovative low carbon steel building envelopes · 4 1.064 0.575 0.394 0.299 0.242 0.202 0.174 0.153 0.136 0.123 0.112 0.103 0.095 0.088 0.082 0.077 0.073 0.069 0.065 0.062 20 40 60

Sectors

Agricultural

Page 15: Innovative low carbon steel building envelopes · 4 1.064 0.575 0.394 0.299 0.242 0.202 0.174 0.153 0.136 0.123 0.112 0.103 0.095 0.088 0.082 0.077 0.073 0.069 0.065 0.062 20 40 60

Sectors

Housing

Page 16: Innovative low carbon steel building envelopes · 4 1.064 0.575 0.394 0.299 0.242 0.202 0.174 0.153 0.136 0.123 0.112 0.103 0.095 0.088 0.082 0.077 0.073 0.069 0.065 0.062 20 40 60

Systems

Composite and built-up

Page 17: Innovative low carbon steel building envelopes · 4 1.064 0.575 0.394 0.299 0.242 0.202 0.174 0.153 0.136 0.123 0.112 0.103 0.095 0.088 0.082 0.077 0.073 0.069 0.065 0.062 20 40 60

Systems

Rainscreen

Page 18: Innovative low carbon steel building envelopes · 4 1.064 0.575 0.394 0.299 0.242 0.202 0.174 0.153 0.136 0.123 0.112 0.103 0.095 0.088 0.082 0.077 0.073 0.069 0.065 0.062 20 40 60

Developments

Wide ranging areas of technical development

Page 19: Innovative low carbon steel building envelopes · 4 1.064 0.575 0.394 0.299 0.242 0.202 0.174 0.153 0.136 0.123 0.112 0.103 0.095 0.088 0.082 0.077 0.073 0.069 0.065 0.062 20 40 60

1. Modelling and simulation

Page 20: Innovative low carbon steel building envelopes · 4 1.064 0.575 0.394 0.299 0.242 0.202 0.174 0.153 0.136 0.123 0.112 0.103 0.095 0.088 0.082 0.077 0.073 0.069 0.065 0.062 20 40 60

20

Thermal modelling: simulation

Whole buildings can be modelled using dynamic thermal simulation

software to predict thermal comfort, shading, ventilation, and energy use

for heating and cooling.

A geometric model of the building is created, and construction elements

are defined (with appropriate thermo-physical properties – density, thermal

capacity, thermal conductivity etc)

Internal heat loads from people, lighting and equipment are added to

schedules that reflect usage. Real or standard hourly weather data is then

applied.

Page 21: Innovative low carbon steel building envelopes · 4 1.064 0.575 0.394 0.299 0.242 0.202 0.174 0.153 0.136 0.123 0.112 0.103 0.095 0.088 0.082 0.077 0.073 0.069 0.065 0.062 20 40 60

21

Thermal modelling: simulation

Outputs include zone air, radiant and operative (resultant) temperatures,,

humidity, bulk air flow, and heating/cooling energy use on an hourly basis.

Page 22: Innovative low carbon steel building envelopes · 4 1.064 0.575 0.394 0.299 0.242 0.202 0.174 0.153 0.136 0.123 0.112 0.103 0.095 0.088 0.082 0.077 0.073 0.069 0.065 0.062 20 40 60

22

Thermal modelling: conductionBuilding details such as interfaces and framing can be modelled in two or

three dimensions as necessary to determine the effect on U-value, linear

or point thermal bridging, and surface temperatures (to establish

condensation risk)

The results are presented as both graphical outputs (e.g. temperature

distributions) and as numerical data (such as energy flows) which enable

the required thermal bridging characteristics to be calculated.

Page 23: Innovative low carbon steel building envelopes · 4 1.064 0.575 0.394 0.299 0.242 0.202 0.174 0.153 0.136 0.123 0.112 0.103 0.095 0.088 0.082 0.077 0.073 0.069 0.065 0.062 20 40 60

2. Physical Testing

Page 24: Innovative low carbon steel building envelopes · 4 1.064 0.575 0.394 0.299 0.242 0.202 0.174 0.153 0.136 0.123 0.112 0.103 0.095 0.088 0.082 0.077 0.073 0.069 0.065 0.062 20 40 60

24

Airtightness testing

Airtightness of building components can be measured using a bespoke rig.

This is a pressurised box, one side of which is closed by the component

under test, for example a cladding panel joint. It can be pressurised to

50Pa and the resulting airflow is measured. The difference between the air

flow with the joint taped up and the air flow with the joint un-taped is the

leakage at that pressure.

Page 25: Innovative low carbon steel building envelopes · 4 1.064 0.575 0.394 0.299 0.242 0.202 0.174 0.153 0.136 0.123 0.112 0.103 0.095 0.088 0.082 0.077 0.073 0.069 0.065 0.062 20 40 60

25

Airtightness testing

Page 26: Innovative low carbon steel building envelopes · 4 1.064 0.575 0.394 0.299 0.242 0.202 0.174 0.153 0.136 0.123 0.112 0.103 0.095 0.088 0.082 0.077 0.073 0.069 0.065 0.062 20 40 60

26

Airtightness testing

Page 27: Innovative low carbon steel building envelopes · 4 1.064 0.575 0.394 0.299 0.242 0.202 0.174 0.153 0.136 0.123 0.112 0.103 0.095 0.088 0.082 0.077 0.073 0.069 0.065 0.062 20 40 60

3. Effective energy balances

Page 28: Innovative low carbon steel building envelopes · 4 1.064 0.575 0.394 0.299 0.242 0.202 0.174 0.153 0.136 0.123 0.112 0.103 0.095 0.088 0.082 0.077 0.073 0.069 0.065 0.062 20 40 60

28

Industrial Roofing in Europe

In-plane rooflights, sloping roof

Separate rooflights on flat roof

Page 29: Innovative low carbon steel building envelopes · 4 1.064 0.575 0.394 0.299 0.242 0.202 0.174 0.153 0.136 0.123 0.112 0.103 0.095 0.088 0.082 0.077 0.073 0.069 0.065 0.062 20 40 60

29

Results: Daylighting

Daylight factor:

‘the ratio of interior illuminance on a horizontal surface to the exterior

illuminance on a horizontal surface from an overcast sky.’

Page 30: Innovative low carbon steel building envelopes · 4 1.064 0.575 0.394 0.299 0.242 0.202 0.174 0.153 0.136 0.123 0.112 0.103 0.095 0.088 0.082 0.077 0.073 0.069 0.065 0.062 20 40 60

30

Results: Daylighting

Flat roof (5% rooflights)

Average daylight factor 1.8%

Sloping roof (12% rooflights)

Average daylight factor 5%

Page 31: Innovative low carbon steel building envelopes · 4 1.064 0.575 0.394 0.299 0.242 0.202 0.174 0.153 0.136 0.123 0.112 0.103 0.095 0.088 0.082 0.077 0.073 0.069 0.065 0.062 20 40 60

31

Results: Energy

Annual energy for heating

0

10

20

30

40

50

60

70

London Naples Strasbourg Warsaw

Location

kW

h/m

2

Flat roof 5%

Pitched roof 12%

Total CO2 emissions from heating and lighting

0

2

4

6

8

10

12

14

16

18

London Naples Strasbourg Warsaw

Location

kg

/m2

Flat roof 5%

Pitched roof 12%

Page 32: Innovative low carbon steel building envelopes · 4 1.064 0.575 0.394 0.299 0.242 0.202 0.174 0.153 0.136 0.123 0.112 0.103 0.095 0.088 0.082 0.077 0.073 0.069 0.065 0.062 20 40 60

4. High performance finishes

Page 33: Innovative low carbon steel building envelopes · 4 1.064 0.575 0.394 0.299 0.242 0.202 0.174 0.153 0.136 0.123 0.112 0.103 0.095 0.088 0.082 0.077 0.073 0.069 0.065 0.062 20 40 60

High reflectivity liner sheets

• ≥ 85% reflectance, reducing the

amount of energy required to achieve

the same level of lighting.

• Significantly reduces CO2 emissions

by 2-3% per year, helping to achieve

compliance with tightening

regulations.

• Can improve daylight factor by 10%

• Possible energy savings of up to 12%

per annum

These preserve light within buildings allowing designers to reduce roof light areas so

increasing the levels of thermal insulation in the building envelope and reduce the levels

of electric lighting needed. They are proving a low cost and effective energy efficiency

improvement.

Page 34: Innovative low carbon steel building envelopes · 4 1.064 0.575 0.394 0.299 0.242 0.202 0.174 0.153 0.136 0.123 0.112 0.103 0.095 0.088 0.082 0.077 0.073 0.069 0.065 0.062 20 40 60

High reflectivity liner sheets

Typical enhancement levels:

50m x 80m x 5m warehouse (4000m2)

10% rooflights

Average

Daylight

factor %

Standard liner, standard 140mm purlins 3.56

Standard liner, reflective 140mm purlins 3.68

Reflective liner, standard 140mm purlins 3.84

Reflective liner, reflective 140mm purlins 3.95

Standard liner, standard 240mm purlins 3.22

Standard liner, reflective 240mm purlins 3.42

Reflective liner, standard 240mm purlins 3.42

Reflective liner, reflective 240mm purlins 3.66

Page 35: Innovative low carbon steel building envelopes · 4 1.064 0.575 0.394 0.299 0.242 0.202 0.174 0.153 0.136 0.123 0.112 0.103 0.095 0.088 0.082 0.077 0.073 0.069 0.065 0.062 20 40 60

5. Transpired solar

Page 36: Innovative low carbon steel building envelopes · 4 1.064 0.575 0.394 0.299 0.242 0.202 0.174 0.153 0.136 0.123 0.112 0.103 0.095 0.088 0.082 0.077 0.073 0.069 0.065 0.062 20 40 60

36

Operation

Page 37: Innovative low carbon steel building envelopes · 4 1.064 0.575 0.394 0.299 0.242 0.202 0.174 0.153 0.136 0.123 0.112 0.103 0.095 0.088 0.082 0.077 0.073 0.069 0.065 0.062 20 40 60

37

Performance

Transpired Solar Collectors can capture around 50% of the energy falling

on the surface of a building, equating to approximately 500wp/m2 of

collector surface area.

Systems can deliver around 250 KWH/M2 per year or up to 50% of space

heating requirements depending on building configuration and usage but

good availability of useful heat at the times required necessitates careful

design.

Page 38: Innovative low carbon steel building envelopes · 4 1.064 0.575 0.394 0.299 0.242 0.202 0.174 0.153 0.136 0.123 0.112 0.103 0.095 0.088 0.082 0.077 0.073 0.069 0.065 0.062 20 40 60

Optimisation

Complex CFD capability to optimse performance recognising a range of

complex factors including:

• Variable flow regimes

• Flow non-uniformities

• Jet flow through perforations

• Multi-scale modelling geometries

• Complex boundary layer conditions

• Varied forms of heat transfer

World leading sophistication of

models now exceeds that used

for most automotive

applications.

Page 39: Innovative low carbon steel building envelopes · 4 1.064 0.575 0.394 0.299 0.242 0.202 0.174 0.153 0.136 0.123 0.112 0.103 0.095 0.088 0.082 0.077 0.073 0.069 0.065 0.062 20 40 60

Advanced systems

Development of system engineered solutions.

Page 40: Innovative low carbon steel building envelopes · 4 1.064 0.575 0.394 0.299 0.242 0.202 0.174 0.153 0.136 0.123 0.112 0.103 0.095 0.088 0.082 0.077 0.073 0.069 0.065 0.062 20 40 60

6. Life Cycle Assessment

Page 41: Innovative low carbon steel building envelopes · 4 1.064 0.575 0.394 0.299 0.242 0.202 0.174 0.153 0.136 0.123 0.112 0.103 0.095 0.088 0.082 0.077 0.073 0.069 0.065 0.062 20 40 60

Energy used to manufacture a product, from extraction of raw materials, to

transport, manufacture, assembly, installation, disassembly, recycling or

disposal

0

0,5

1

1,5

2

2,5

3

3,5

4

1.064 0.575 0.394 0.299 0.242 0.202 0.174 0.153 0.136 0.123 0.112 0.103 0.095 0.088 0.082 0.077 0.073 0.069 0.065 0.062

20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400

CO

2e

mis

sio

ns

(kgC

O2/m

2.y

r)

U-value (W/m2.K), Insulation thickness (mm)

25 years ECO2

Linear relationship between embodied carbon and insulation thickness

based on PUR insulation for a medium size distribution warehouse.

Embodied Energy

Page 42: Innovative low carbon steel building envelopes · 4 1.064 0.575 0.394 0.299 0.242 0.202 0.174 0.153 0.136 0.123 0.112 0.103 0.095 0.088 0.082 0.077 0.073 0.069 0.065 0.062 20 40 60

0

2

4

6

8

10

12

14

16

18

1.064 0.575 0.394 0.299 0.242 0.202 0.174 0.153 0.136 0.123 0.112 0.103 0.095 0.088 0.082 0.077 0.073 0.069 0.065 0.062

20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400

CO

2e

mis

sio

ns

(kgC

O2/m

2.y

r)

U-value (W/m2.K), Insulation thickness (mm)

25 years ECO2

Operational CO2

Embodied and Operational Energy

Page 43: Innovative low carbon steel building envelopes · 4 1.064 0.575 0.394 0.299 0.242 0.202 0.174 0.153 0.136 0.123 0.112 0.103 0.095 0.088 0.082 0.077 0.073 0.069 0.065 0.062 20 40 60

0

2

4

6

8

10

12

14

16

18

1.064 0.575 0.394 0.299 0.242 0.202 0.174 0.153 0.136 0.123 0.112 0.103 0.095 0.088 0.082 0.077 0.073 0.069 0.065 0.062

20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400

CO

2e

mis

sio

ns

(kgC

O2/m

2.y

r)

U-value (W/m2.K), Insulation thickness (mm)

25 years ECO2

25 years total CO2

Operational CO2

Minimum carbon

Point of minimum combined carbon.

Combined Operational and Embodied Energy

Page 44: Innovative low carbon steel building envelopes · 4 1.064 0.575 0.394 0.299 0.242 0.202 0.174 0.153 0.136 0.123 0.112 0.103 0.095 0.088 0.082 0.077 0.073 0.069 0.065 0.062 20 40 60

PUR

180mm

Mineral wool

330mm

Mineral wool insulation achieves its minimum carbon

performance at 330mm thickness. This will result in 1

kgCO2/m2 additional saving compared to PUR insulation for a

similar scenario.

Impact of Insulation Materials

Page 45: Innovative low carbon steel building envelopes · 4 1.064 0.575 0.394 0.299 0.242 0.202 0.174 0.153 0.136 0.123 0.112 0.103 0.095 0.088 0.082 0.077 0.073 0.069 0.065 0.062 20 40 60

7. Improved structural solutions

Page 46: Innovative low carbon steel building envelopes · 4 1.064 0.575 0.394 0.299 0.242 0.202 0.174 0.153 0.136 0.123 0.112 0.103 0.095 0.088 0.082 0.077 0.073 0.069 0.065 0.062 20 40 60

Optimised structural design of metal building envelope buildings

• At least 80% reduction of greenhouse gas emissions by 2050

compared to 1990 levels.

• Buildings responsible for 36% of CO2 emissions in the EU (50% in UK).

• Insulation thicknesses increasing. Current thickness typically: Walls

70-120mm, Roofs 80-120mm.

• Accounts for around 60% of building envelope market

• Structural capability of deeper composite envelope panels not yet fully

exploited.

• Potential significant implications for optimising building structure.

strength stiffness

Insulation depth

Similar to a beam with a deeper web

Page 47: Innovative low carbon steel building envelopes · 4 1.064 0.575 0.394 0.299 0.242 0.202 0.174 0.153 0.136 0.123 0.112 0.103 0.095 0.088 0.082 0.077 0.073 0.069 0.065 0.062 20 40 60

Possible optimisations

Include:

1. Long span envelope systems

2. Better use of diaphragm action

3. Frameless construction

Of these long span solutions are attracting particular interest as a means of

reducing steel weights, embodied carbon and growing the market for panel

systems with high levels of thermal insulation.

Page 48: Innovative low carbon steel building envelopes · 4 1.064 0.575 0.394 0.299 0.242 0.202 0.174 0.153 0.136 0.123 0.112 0.103 0.095 0.088 0.082 0.077 0.073 0.069 0.065 0.062 20 40 60

Long span: systems

Duo-pitch portal frame with purlins

(base case)

Duo-pitch portal frame without purlins

Re-oriented portal frames

Trussed roof frames with north lights

Page 49: Innovative low carbon steel building envelopes · 4 1.064 0.575 0.394 0.299 0.242 0.202 0.174 0.153 0.136 0.123 0.112 0.103 0.095 0.088 0.082 0.077 0.073 0.069 0.065 0.062 20 40 60

Long span: Potential weight savings

Scheme Steelwork reduction Optimal frame spacing

1

Duo-pitch portal frame with purlins

N/A (base case) Small: 6.67m

Medium (1-bay): 10.00m

Medium (2-bay): 8.00m

Large: 8.33m

2

Duo-pitch portal frame without

purlins

Small: 6%

Medium (1-bay): 1%-13%

Medium (2-bay): 6%-16%

Large: 4%-19%

Small: 6.67m

Medium (1-bay): 8.00m-13.34m

(negligible difference)

Medium (2-bay): 8.00m

Large: 10.00m-13.33m (negligible

difference)

3

Flat-pitch multi-bay re-oriented

portal frames

Small: 13%

Medium: 51%-53%

Large: 34%-42%

Small: 6.25m

Medium: 8.33m / 6.25m (negligible

difference)

Large: 10.00m-13.33m (negligible

difference)

4

Trussed roof frames with north

lights

Small: 20%-38%

Medium (1-bay): 46%-53%

Medium (2-bay): 53%-60%

Large: 49%-55%

Small: 6.67m

Medium (1-bay): 6.67m-10.00m

(negligible difference)

Medium (2-bay): 8.00m

Large: 8.00m

Page 50: Innovative low carbon steel building envelopes · 4 1.064 0.575 0.394 0.299 0.242 0.202 0.174 0.153 0.136 0.123 0.112 0.103 0.095 0.088 0.082 0.077 0.073 0.069 0.065 0.062 20 40 60

8. Structural Testing

Page 51: Innovative low carbon steel building envelopes · 4 1.064 0.575 0.394 0.299 0.242 0.202 0.174 0.153 0.136 0.123 0.112 0.103 0.095 0.088 0.082 0.077 0.073 0.069 0.065 0.062 20 40 60

Structural testing

Dedicated laboratory equipped

for structural testing of:

• Building envelope

components

• Light gauge and composite

structures

• Full assembly testing eg.

building modules

• Support of innovative systems

and materials.

Composite panel testing.

Page 52: Innovative low carbon steel building envelopes · 4 1.064 0.575 0.394 0.299 0.242 0.202 0.174 0.153 0.136 0.123 0.112 0.103 0.095 0.088 0.082 0.077 0.073 0.069 0.065 0.062 20 40 60

Compliance

Comprehensive testing capabilities for:

• Proof of concept

• Product development

• Span and load tables

• Compliance , e.g. CE marking, BBA certification

Sway testing of spacer brackets. Deeper brackets for

lower U values.

Page 53: Innovative low carbon steel building envelopes · 4 1.064 0.575 0.394 0.299 0.242 0.202 0.174 0.153 0.136 0.123 0.112 0.103 0.095 0.088 0.082 0.077 0.073 0.069 0.065 0.062 20 40 60

9. Advanced insulation systems

Page 54: Innovative low carbon steel building envelopes · 4 1.064 0.575 0.394 0.299 0.242 0.202 0.174 0.153 0.136 0.123 0.112 0.103 0.095 0.088 0.082 0.077 0.073 0.069 0.065 0.062 20 40 60

54

Benefits of metal roofs

• Pitched roofs enable better day lighting and less use of artificial light .

• Whilst there can occasionally be some increase in heating demands

this is offset by reductions electric lighting.

• Overall CO2 emissions are reduced.

• Peak internal temperatures can increase due to solar gain so correct

design is essential

• Optimal rooflight area must be found for location

Page 55: Innovative low carbon steel building envelopes · 4 1.064 0.575 0.394 0.299 0.242 0.202 0.174 0.153 0.136 0.123 0.112 0.103 0.095 0.088 0.082 0.077 0.073 0.069 0.065 0.062 20 40 60

Vaccum and advanced insulation

• Keep simple

Page 56: Innovative low carbon steel building envelopes · 4 1.064 0.575 0.394 0.299 0.242 0.202 0.174 0.153 0.136 0.123 0.112 0.103 0.095 0.088 0.082 0.077 0.073 0.069 0.065 0.062 20 40 60

K value of insulation materials

Insulation material kcore

(mW/mK)

Glass fibres 35

EPS, PUR 30-25

Fumed silica 20

VIP 4

Page 57: Innovative low carbon steel building envelopes · 4 1.064 0.575 0.394 0.299 0.242 0.202 0.174 0.153 0.136 0.123 0.112 0.103 0.095 0.088 0.082 0.077 0.073 0.069 0.065 0.062 20 40 60

Effect of Gas pressure• Gas pressure within panels influences thermal conductivity.

• Core materials respond differently to pressure variations.

Page 58: Innovative low carbon steel building envelopes · 4 1.064 0.575 0.394 0.299 0.242 0.202 0.174 0.153 0.136 0.123 0.112 0.103 0.095 0.088 0.082 0.077 0.073 0.069 0.065 0.062 20 40 60

Systems Development

Page 59: Innovative low carbon steel building envelopes · 4 1.064 0.575 0.394 0.299 0.242 0.202 0.174 0.153 0.136 0.123 0.112 0.103 0.095 0.088 0.082 0.077 0.073 0.069 0.065 0.062 20 40 60

Systems Development