Calculations of γZ corrections-Box diagrams · PVDIS 0.0001 0.001 0.01 0.1 1 10 100 1000 10000 μ...

28
Calculations of γZ corrections-Box diagrams Carl E. Carlson William and Mary Intense Electron Beams Workshop June17-19, 2015, Cornell 1

Transcript of Calculations of γZ corrections-Box diagrams · PVDIS 0.0001 0.001 0.01 0.1 1 10 100 1000 10000 μ...

Page 1: Calculations of γZ corrections-Box diagrams · PVDIS 0.0001 0.001 0.01 0.1 1 10 100 1000 10000 μ [GeV] 0.228 0.23 0.232 0.234 0.236 0.238 0.24 0.242 0.244 0.246 0.248 0.25 sin 2

Calculations of γZ corrections-Box diagrams

Carl E. Carlson William and Mary

Intense Electron Beams Workshop June17-19, 2015, Cornell

1

Page 2: Calculations of γZ corrections-Box diagrams · PVDIS 0.0001 0.001 0.01 0.1 1 10 100 1000 10000 μ [GeV] 0.228 0.23 0.232 0.234 0.236 0.238 0.24 0.242 0.244 0.246 0.248 0.25 sin 2

Topics

PV in ep scattering and QWeak

A startling (at least in 2009) calculation

It may be settled

But we would like to be sure

How PVDIS can help

2

Page 3: Calculations of γZ corrections-Box diagrams · PVDIS 0.0001 0.001 0.01 0.1 1 10 100 1000 10000 μ [GeV] 0.228 0.23 0.232 0.234 0.236 0.238 0.24 0.242 0.244 0.246 0.248 0.25 sin 2

relevant for today

Parity violating (PV) electron scattering

Usually, polarized electron, unpolarized target

Parity violation exists in SM, from (small at low energy) Z-exchange

Usually report (R,L = helicity of electron)

3

APV =�R � �L�R + �L

Z

e e

p p

g Ae

g Vp

Page 4: Calculations of γZ corrections-Box diagrams · PVDIS 0.0001 0.001 0.01 0.1 1 10 100 1000 10000 μ [GeV] 0.228 0.23 0.232 0.234 0.236 0.238 0.24 0.242 0.244 0.246 0.248 0.25 sin 2

QWeak---from elastic ep scatt.At LO, asymmetry comes from interference between photon exchange and Z-boson exchange,

4

Z

e e

p p

g Ae

g Vp

• For Q2->0,

!• LO only, For later, JLab QWeak runs at Eelec=1.165 GeV, Q2 = 0.026 GeV2

Mainz (P2 at MESA) plans for Eelec = 150 MeV

APV = � GF

4���

2Q2QP

W

Qp,LOW = 1� 4 sin2 �W

Page 5: Calculations of γZ corrections-Box diagrams · PVDIS 0.0001 0.001 0.01 0.1 1 10 100 1000 10000 μ [GeV] 0.228 0.23 0.232 0.234 0.236 0.238 0.24 0.242 0.244 0.246 0.248 0.25 sin 2

QWeak

Interesting because of HO corrections, e.g.,

5

• Changes balance between “1” and “4sin2θW”.

1� 4 sin2 �W � 1� 4 �(Q2) sin2 �W � 1� 4 sin2 �W(Q2)

• Thus, sin2θW “runs” or “evolves” with Q2.

• If SM complete---particle content and interactions known---evolution can be precisely calculated.

f++

W W

Z

Z Z_

f

Z

+

p p p p1 − 4 sin2

W "1" "1"

e e

p

W W

Page 6: Calculations of γZ corrections-Box diagrams · PVDIS 0.0001 0.001 0.01 0.1 1 10 100 1000 10000 μ [GeV] 0.228 0.23 0.232 0.234 0.236 0.238 0.24 0.242 0.244 0.246 0.248 0.25 sin 2

SM sin2𝜽W evolution

6

• If SM correct, result from QWeak will lie on curve.

• If not ....

• Precision needed!

Mark Dalton DNP, Fall 2012First direct measurement of proton weak charge

Weak mixing angle

7

6S → 7S 133Cs atomic transition

neutrino deep-inelastic scattering cross-sections(controversial hadronic

corrections not included)

Standard Model electroweak fit

with uncertainty

Parity violating moller scattering Colliders

Each experiment is differently sensitive to potential new physics

Extraction requires calculation of energy

dependent corrections

QpW =[⇢NC +�e][1� 4 sin2 ✓W(0) +�0

e]

+⇤WW +⇤ZZ +⇤�Z

Beringer et al. (PDG), Phys. Rev. D86, 010001 (2012)

Page 7: Calculations of γZ corrections-Box diagrams · PVDIS 0.0001 0.001 0.01 0.1 1 10 100 1000 10000 μ [GeV] 0.228 0.23 0.232 0.234 0.236 0.238 0.24 0.242 0.244 0.246 0.248 0.25 sin 2

and still more data will come

7

From PDG, or from Erler, 1208.6262,

with future hopes

PVDIS0.0001 0.001 0.01 0.1 1 10 100 1000 10000

μ [GeV]

0.228

0.23

0.232

0.234

0.236

0.238

0.24

0.242

0.244

0.246

0.248

0.25

sin2 θ

W(μ

)Q

Q

W

QW

(Ra)

(Cs) SLAC E158

W(e)

QWeak

QWeak

NuTeVν-DIS

LEP 1

SLC

Tevatron

CMSSOLID

MOLLER

JLab

JLabMainz

KVI

Boulder

JLabPVDIS 6 GeV

JLab

screening

anti-screening

SMpublishedongoingproposed

Z

γW W

Z

γf

FIGURE 1. Current and future measurements of the running weak mixing angle. The uncertainty in theprediction is small except possibly in the hadronic transition region roughly between 0.1 and 2 GeV [26].The relevant Q2 of the Tevatron and CMS values make them effectively additional Z-pole measurements,but for clarity they have been shifted horizontally to the right.

by the BNL–E821 Collaboration [6]. The prediction, aµ = (1165918.41±0.48)⇥10�9,from the SM includes e+e� as well as t-decay data in the dispersion integral neededto constrain the two- and three-loop vacuum polarization contributions and differs by3.0 s . The data based on t-decays requires an isospin rotation and a correspondingcorrection to account for isospin violating effects and suggest a smaller (2.4 s ) dis-crepancy, while the e+e�-based data sets (from annihilation and radiative returns) bythemselves would imply a 3.6 s conflict. Indeed, there is a 2.3 s discrepancy betweenthe experimental branching ratio, B(t� ! np0p�), and its SM prediction using thee+e� data [18]. In view of this, it is tempting to ignore the t-decay data and blamethe difference to the e+e� data on unaccounted for isospin violating effects. However,there is also a 1.9 s experimental conflict between KLOE and BaBar (both using theradiative return method [19]) the latter not being inconsistent with the t-data. As for thequestion whether the deviation in aµ may arise from physics beyond the SM (especiallysupersymmetry), my personal take is that I am less concerned about these hadronic is-sues than the absence of convincing new physics hints at the Tevatron or the LHC. Inany case there is an important new proposal at Fermilab to improve on the precision inEq. (6) by a factor of four [6].

Page 8: Calculations of γZ corrections-Box diagrams · PVDIS 0.0001 0.001 0.01 0.1 1 10 100 1000 10000 μ [GeV] 0.228 0.23 0.232 0.234 0.236 0.238 0.24 0.242 0.244 0.246 0.248 0.25 sin 2

Report: QWeak has data

8Mark Dalton DNP, Fall 2012First direct measurement of proton weak charge

Weak mixing angle result

33

QW(p)*(using(only(4%(of(Qweak(dataset)

(full(Qweak(dataset(expected(precision)

*(Uses(electroweak(radia<ve(correc<ons(from(Erler,(Kurylov,(RamseyCMusolf,(PRD(68,(016006((2003).(

4% of total data

Mark Dalton DNP, Fall 2012First direct measurement of proton weak charge

Weak mixing angle result

33

QW(p)*(using(only(4%(of(Qweak(dataset)

(full(Qweak(dataset(expected(precision)

*(Uses(electroweak(radia<ve(correc<ons(from(Erler,(Kurylov,(RamseyCMusolf,(PRD(68,(016006((2003).(

4% of total data

from Mark Dalton, APS/DNP meeting, Fall 2012 Publ.: PRL 111 (2013) 14, 141803

Page 9: Calculations of γZ corrections-Box diagrams · PVDIS 0.0001 0.001 0.01 0.1 1 10 100 1000 10000 μ [GeV] 0.228 0.23 0.232 0.234 0.236 0.238 0.24 0.242 0.244 0.246 0.248 0.25 sin 2

But there are other corrections

9

QpW = (1 + �� + �e)

�Qp,LO

W + ��e

�+ �WW + �ZZ + Re ��Z

Correction to ρ

Corrections to the Z-boson and photon

vertices

1� 4 sin2 �W(0)

Well understood box corrections

Troublesome box

Page 10: Calculations of γZ corrections-Box diagrams · PVDIS 0.0001 0.001 0.01 0.1 1 10 100 1000 10000 μ [GeV] 0.228 0.23 0.232 0.234 0.236 0.238 0.24 0.242 0.244 0.246 0.248 0.25 sin 2

10

𝜸-Z Box

• (Dashed line for Z.)

• Only one heavy propagator. Low momenta dominate loop.

• Both vector and axial Z-proton couplings contribute. Abbreviated ☐𝜸ZV and ☐𝜸ZA.

k

p

q

k 1 k

p

q q q

k k

p p

k 1

Page 11: Calculations of γZ corrections-Box diagrams · PVDIS 0.0001 0.001 0.01 0.1 1 10 100 1000 10000 μ [GeV] 0.228 0.23 0.232 0.234 0.236 0.238 0.24 0.242 0.244 0.246 0.248 0.25 sin 2

11

Now starts a story

• Big note: ☐𝜸ZV(E) is odd in E; ☐𝜸ZA is even in E (electron beam en.) (Crossing symmetry argument… .)

• Old days (< 2009), calculated basic box at threshold E=0. Thought actual E low enough to use this result.

• Still old days: Dumped ☐𝜸ZV.

k

p

k 1 k

pZ

(+ reverse and crosses)

• Defacto just ☐𝜸ZA. (Will hardly talk about it today.)

Page 12: Calculations of γZ corrections-Box diagrams · PVDIS 0.0001 0.001 0.01 0.1 1 10 100 1000 10000 μ [GeV] 0.228 0.23 0.232 0.234 0.236 0.238 0.24 0.242 0.244 0.246 0.248 0.25 sin 2

12

𝜸-Z Box

• DR → calculate whole amplitude form imaginary part.

• Imaginary part comes when intermediate states on shell.

• Like inelastic amplitude squared, i.e., for DIS. Squares given and measured as structure functions Fi .

• Only problem: Fi𝜸𝜸 measured, not the interference term Fi𝜸Z.

• Gorchtein and Horowitz (PRL 102, 091806 (2009)) had insight to calculate the amplitude dispersively

γZ Box

• Gorchtein and Horowitz (PRL 102, 091806 (2009)) had insight to calculate the amplitude dispersively

• Optical Theorem

13

Page 13: Calculations of γZ corrections-Box diagrams · PVDIS 0.0001 0.001 0.01 0.1 1 10 100 1000 10000 μ [GeV] 0.228 0.23 0.232 0.234 0.236 0.238 0.24 0.242 0.244 0.246 0.248 0.25 sin 2

Maybe a problem

Gorchtein-Horowitz first estimate of ☐𝜸ZV (the thing that was supposed to be zero) was twice the size of the projected experimental uncertainty of the QWeak experiment.

!People got busy.

13

Page 14: Calculations of γZ corrections-Box diagrams · PVDIS 0.0001 0.001 0.01 0.1 1 10 100 1000 10000 μ [GeV] 0.228 0.23 0.232 0.234 0.236 0.238 0.24 0.242 0.244 0.246 0.248 0.25 sin 2

Vector box plots today

Central values close

Differences come from the treatment of the structure functions

BTW, we combined errors directly, Hall et al. in quadrature. Could repeat:

14

Re⇤V�Z(E = 1.165 GeV)

The Vector Box Plots

Hall et al. PRD 88, 013011 (2013)

Carlson and Rislow PRD 83, 113007 (2011)

Gorchtein et al. PRC 84, 015502 (2011)

19

• Differences come from the treatment of the

structure functions.

(5.6± 0.36)⇥ 10�3 (5.7± 0.52)⇥ 10�3 (5.4± 2.0)⇥ 10�3

Page 15: Calculations of γZ corrections-Box diagrams · PVDIS 0.0001 0.001 0.01 0.1 1 10 100 1000 10000 μ [GeV] 0.228 0.23 0.232 0.234 0.236 0.238 0.24 0.242 0.244 0.246 0.248 0.25 sin 2

Why not be happy?

Where from came results?

Resonance contributions: basically from fit of Bosted and Christy for Fi𝜸𝜸 modified using

NR quark model (Rislow and me)

Isospin rotations and neutron data (GHRM, Hall et al.), getting p/n ratio from PDG, finessing Q2 dependence

As above, getting resonant amplitudes and Q2 dependence from MAID fits (Rislow and me, later attempt)

15

Page 16: Calculations of γZ corrections-Box diagrams · PVDIS 0.0001 0.001 0.01 0.1 1 10 100 1000 10000 μ [GeV] 0.228 0.23 0.232 0.234 0.236 0.238 0.24 0.242 0.244 0.246 0.248 0.25 sin 2

Data plots and functions

The Bosted-Christy fits are good. Sample:

2nd plot shows difference Fi𝜸𝜸 to Fi𝜸Z

16

Q2 = 0.625 GeV2

F2gg

F2gZ

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.40.0

0.1

0.2

0.3

0.4

W HGeVL

F 2HQ2

,WL

ÊÊÊÊ

ÊÊÊ

ÊÊ

Ê

ÊÊÊÊ

Ê

ÊÊ

Ê

Ê

ÊÊÊÊÊÊÊÊÊ

ÊÊÊÊÊ

Ê

ÊÊ

ÊÊÊ

Ê

Ê

Ê

Ê

Ê

Ê

ÊÊÊÊÊÊÊÊÊÊÊÊÊÊ

Q2 = 0.625 GeV2

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.40.0

0.1

0.2

0.3

0.4

W HGeVL

F 2HQ2

,WL

Page 17: Calculations of γZ corrections-Box diagrams · PVDIS 0.0001 0.001 0.01 0.1 1 10 100 1000 10000 μ [GeV] 0.228 0.23 0.232 0.234 0.236 0.238 0.24 0.242 0.244 0.246 0.248 0.25 sin 2

Note on isospin rotationsBasic relation

17

2�R+|JZVµ |p� = (1 � 4 sin2 �W)�R+|J�

µ |p� � �R0|J�µ |n� � �R+|s�µs|p�

• Neglect contribution of strange quark (A4, G0, HAPPEX)

• Need two things: Proton electromagnetic matrix elements

• GHRM get them from identifiable resonance terms in Christy-Bosted fit

• (as we did also)

• and then need neutron matrix elements. GHRM obtain matrix elements at Q2 = 0 from PDG, form n/p ratios, and then use above relation. Omitted Q2 dependence in n/p ratios.

• Can also get resonance electroproduction amplitudes from MAID.

• Above is for resonances. Background, both under (in) resonance region and above resonance region still to be discussed.

Page 18: Calculations of γZ corrections-Box diagrams · PVDIS 0.0001 0.001 0.01 0.1 1 10 100 1000 10000 μ [GeV] 0.228 0.23 0.232 0.234 0.236 0.238 0.24 0.242 0.244 0.246 0.248 0.25 sin 2

Note on non-resonant contributions

The difficult region is low Q2 and high W

We took Christy-Bosted background, got guidance from scaling region to argue that for the 𝛾Z version was between 2/3 and 3/3 of the 𝛾𝛾 values.

GHRM took two 𝛾𝛾 fits to HERA and ZEUS data (much higher energies) and extrapolated to the support region for the present case. Difference between the two extrapolations gave the bulk of their uncertainty.

18

Page 19: Calculations of γZ corrections-Box diagrams · PVDIS 0.0001 0.001 0.01 0.1 1 10 100 1000 10000 μ [GeV] 0.228 0.23 0.232 0.234 0.236 0.238 0.24 0.242 0.244 0.246 0.248 0.25 sin 2

Think of something!

Although results similar, they come after doing some integrals, and there are regions where the integrands are fairly different.

The interference structure functions Fi𝜸Z actually are measurable. Use Parity Violating Deep Inelastic Scattering (PVDIS).

19

Page 20: Calculations of γZ corrections-Box diagrams · PVDIS 0.0001 0.001 0.01 0.1 1 10 100 1000 10000 μ [GeV] 0.228 0.23 0.232 0.234 0.236 0.238 0.24 0.242 0.244 0.246 0.248 0.25 sin 2

PVDIS, esp. in res. reg.

PVDIS asymmetry directly depends on Fi𝜸Z

20

A

PVDIS

= g

e

A

G

F

Q

2

2�

2��

xy

2F

�Z

1 +�

1� y� x

2y

2M

2

Q

2

�F

�Z

2 + g

e

V

g

e

A

�y� y

2

2

�xF

�Z

3

xy

2F

��1 +

�1� y� x

2y

2M

2

Q

2

�F

��2

• x = Q2/2mp𝜈 ; y = 𝜈/E ; gAe = -½ ; gVe = -½+2sin2𝜽W

• with unlimited data can obtain all Fi𝜸Z(𝜈,Q2)

• with some data, can check other models

• for ☐𝜸ZV, resonance region dominates integrals

+ Z

Page 21: Calculations of γZ corrections-Box diagrams · PVDIS 0.0001 0.001 0.01 0.1 1 10 100 1000 10000 μ [GeV] 0.228 0.23 0.232 0.234 0.236 0.238 0.24 0.242 0.244 0.246 0.248 0.25 sin 2

for context—scaling regionwrite Fi𝜸Z in terms of quark distribution functions,

Scaling region is x → 1, y → 1, Y → 1, antiquark and

strange distributions → 0, and for deuteron, uA = dA ,

The C1’s are better known, can test BSM for C2’s.21

APV DIS =3GFQ2

2p2⇡↵

2C1u(uA + uA)� C1d(dA + dA + sA + sA) + Y�2C2u(uA � uA)� C2d(dA � dA)

4(uA + uA) + dA + dA + sA + sA

C1q = 2geAgqV , C2q = 2geV g

qAY (y) =

1� (1� y)2

1 + (1� y)2,

APV DIS =3GFQ2

2p2⇡↵

2C1u � C1d + 2C2u � C2d

5

Page 22: Calculations of γZ corrections-Box diagrams · PVDIS 0.0001 0.001 0.01 0.1 1 10 100 1000 10000 μ [GeV] 0.228 0.23 0.232 0.234 0.236 0.238 0.24 0.242 0.244 0.246 0.248 0.25 sin 2

PVDIS in res. reg.

For sparser data case, here are predictions from existing models,

22

Q2! 1.1 GeV

2

E ! 6 GeV

Black!CB

Red!Mod I

Blue!Mod II

Green!MAID

1.2 1.4 1.6 1.8 2.0 2.2 2.40.2

0.4

0.6

0.8

1.0

1.2

W !GeV"

AP

VD

IS#!

gAeG

FQ

2#2

2ΠΑ"

• this is proton target • CB = CQM modified

Christy-Bosted F1,2𝜸𝜸 fit

• Model I, II = GHRM based results

• MAID from isospin rotated MAID p & n EM fits

• Vertical dashed line = 6 GeV PVDIS expt. point

• JLab expt has some public data in scaling region

Page 23: Calculations of γZ corrections-Box diagrams · PVDIS 0.0001 0.001 0.01 0.1 1 10 100 1000 10000 μ [GeV] 0.228 0.23 0.232 0.234 0.236 0.238 0.24 0.242 0.244 0.246 0.248 0.25 sin 2

deuteron predictions and datafor the deuteron, there is PVDIS data in the resonance region: Wang et al., PRL 111, 082501 (2013)

Calc: Rislow and me, PRD 85, 073002 (2012), Matsui et al. (2005); Gorchtein et al. (2011); Hall et al (2013).

23

32X. Zheng, CIPANP 2015, Vail, CO

Resonance PV Asymmetry Results

Wang et al., PRL 111, 082501 (2013);“duality works at the (10-15)% level”

helps to constraint g-Z box diagram correction for PVES experiments

A: Matsui, Sato, Lee, PRC72,025204(2005)B: Gorchtein, Horowitz, Ramsey-Musolf, PRC84,015502(2011)C: Hall, Blunden, Melnitchouk, Thomas, Young, PRD88, 013011 (2013)

Will a better measurement of res-parity help to constrain g-Z models?

W (GeV)

Q2 = 1.1 GeV2E = 6 GeV Black=CQM

Red=GHRMGreen=MAID

1.2 1.4 1.6 1.8 2.0 2.2 2.4

-150

-100

-50

0

Weff (GeV)

APVDIS

d(ppm

)/Q2(GeV

-2)

Page 24: Calculations of γZ corrections-Box diagrams · PVDIS 0.0001 0.001 0.01 0.1 1 10 100 1000 10000 μ [GeV] 0.228 0.23 0.232 0.234 0.236 0.238 0.24 0.242 0.244 0.246 0.248 0.25 sin 2

general statements regarding data

also want data on proton

more precise

useful: lower Q2 (few tenths GeV2) and high W. This is where the background disagreements lie.

24

Page 25: Calculations of γZ corrections-Box diagrams · PVDIS 0.0001 0.001 0.01 0.1 1 10 100 1000 10000 μ [GeV] 0.228 0.23 0.232 0.234 0.236 0.238 0.24 0.242 0.244 0.246 0.248 0.25 sin 2

SummaryThe world is saved—maybe—regarding the 𝜸Z corr. to QWeak.

I.e., ☐𝜸ZV now calculated.

About (8.1±1.4)% of QWp at Eelec=1.165 GeV.

Proportional to Eelec.

Not discussed here: ☐𝜸ZA also now calculated w/o

guesswork certain log terms About (6.3±0.6%) of QW

p at Eelec threshold. Small dependence on Eelec. Might still like to improve. For goal of 1% or better measurement of QWeak (Mesa), energy is about 1/6 of JLab experiment, and corrections and error in ☐𝜸Z

V scale with energy.

PVDIS can help shrink uncertainty limits.25

Page 26: Calculations of γZ corrections-Box diagrams · PVDIS 0.0001 0.001 0.01 0.1 1 10 100 1000 10000 μ [GeV] 0.228 0.23 0.232 0.234 0.236 0.238 0.24 0.242 0.244 0.246 0.248 0.25 sin 2

Beyond the end

26

Page 27: Calculations of γZ corrections-Box diagrams · PVDIS 0.0001 0.001 0.01 0.1 1 10 100 1000 10000 μ [GeV] 0.228 0.23 0.232 0.234 0.236 0.238 0.24 0.242 0.244 0.246 0.248 0.25 sin 2

Cusps and kinks

A smoother view, albeit from year 2000

27

Czarnecki & Marciano

Page 28: Calculations of γZ corrections-Box diagrams · PVDIS 0.0001 0.001 0.01 0.1 1 10 100 1000 10000 μ [GeV] 0.228 0.23 0.232 0.234 0.236 0.238 0.24 0.242 0.244 0.246 0.248 0.25 sin 2

Comments on ☐𝜸ZA

For some of integral, F3𝜸Z is in resonance region. No e.m. analog (parity violating). Get by

fits to neutrino resonance region data (Lalakulich et al., ‘06)

but there is ≈ no data

or by quark modeled modifications of e.m. case.

Published results (BMT) are with first. Rislow and I have done the second. Not wildly different overall for ☐𝜸ZA although noticeably different for resonance part alone. Adds to uncertainty.

28