Innovation in Commercial Supersonic Aircraft with ...

134
Kennesaw State University DigitalCommons@Kennesaw State University Senior Design Project For Engineers 5-2018 Innovation in Commercial Supersonic Aircraſt with Candidate Engine for Next Generation Supersonic Aircraſt Christopher D. Roper Kennesaw State University Jordan Fraser Kennesaw State University Alain J. Santos Kennesaw State University Follow this and additional works at: hps://digitalcommons.kennesaw.edu/egr_srdsn Part of the Aerospace Engineering Commons is Senior Design is brought to you for free and open access by DigitalCommons@Kennesaw State University. It has been accepted for inclusion in Senior Design Project For Engineers by an authorized administrator of DigitalCommons@Kennesaw State University. For more information, please contact [email protected]. Recommended Citation Roper, Christopher D.; Fraser, Jordan; and Santos, Alain J., "Innovation in Commercial Supersonic Aircraſt with Candidate Engine for Next Generation Supersonic Aircraſt" (2018). Senior Design Project For Engineers. 1. hps://digitalcommons.kennesaw.edu/egr_srdsn/1

Transcript of Innovation in Commercial Supersonic Aircraft with ...

Page 1: Innovation in Commercial Supersonic Aircraft with ...

Kennesaw State UniversityDigitalCommons@Kennesaw State University

Senior Design Project For Engineers

5-2018

Innovation in Commercial Supersonic Aircraft withCandidate Engine for Next Generation SupersonicAircraftChristopher D. RoperKennesaw State University

Jordan FraserKennesaw State University

Alain J. SantosKennesaw State University

Follow this and additional works at: https://digitalcommons.kennesaw.edu/egr_srdsn

Part of the Aerospace Engineering Commons

This Senior Design is brought to you for free and open access by DigitalCommons@Kennesaw State University. It has been accepted for inclusion inSenior Design Project For Engineers by an authorized administrator of DigitalCommons@Kennesaw State University. For more information, pleasecontact [email protected].

Recommended CitationRoper, Christopher D.; Fraser, Jordan; and Santos, Alain J., "Innovation in Commercial Supersonic Aircraft with Candidate Engine forNext Generation Supersonic Aircraft" (2018). Senior Design Project For Engineers. 1.https://digitalcommons.kennesaw.edu/egr_srdsn/1

Page 2: Innovation in Commercial Supersonic Aircraft with ...

 

InnovationinCommercialSupersonicAircraftwith

CandidateEngineforNextGenerationSupersonicAircraft

Authors:

ChristopherD.Roper|JordanFraser|AlainJ.Santos

KennesawStateUniversity

SouthernPolytechnicCollegeofEngineeringandEngineeringTechnology

DepartmentofSystemsandIndustrialEngineering

FacultyAdvisor:AdeelKhalid,Ph.D.

May2018

Page 3: Innovation in Commercial Supersonic Aircraft with ...

‐1‐

Abstract

The objective of this design study and competition - Next Generation Supersonic Candidate

Engine and Aircraft Design, is a response to a proposal and is motivated by NASA’s National

Research Announcement in 2006. The requirements of this design study are provided by AIAA

(American Institute of Aeronautics and Astronautics). The aircraft designed is a private business

class. The aircraft engine performs at a maximum speed of Mach 1.8 and supersonic cruise speed

of Mach 1.6 at 55,000 feet and a range of 4000 nmi. A generated mission profile through

considerations in flight regime will drive the design involved in the development of aircraft

characteristics. Interior cabin configurations are expected to support seating for up to 100

passengers. Using parametric cycle analysis, computational fluid dynamics, and system

modeling/experimentation, a refined aircraft and engine design will be produced. Detailed analyses

to meet the baseline requirements involve interpretation of trends of current generation aircraft

engines are considered for the finalized design. The performance of the aircraft engine will involve

calculations on wave drag, supersonic turbulent flow, and integrated methods of design of the

nacelle enveloped within the aircraft fuselage. Through these various iterative methods,

considerations in supersonic aircraft propulsion and aircraft design are presented. Projected

technical specifications are to be implemented for the next generation of supersonic aircraft

expected to be debuted in 2025. A robust composition of advanced material composites, methods

of manufacturing, and forecasted advancements in technology are utilized to develop a proposal

for the next generation of supersonic aircraft.

Page 4: Innovation in Commercial Supersonic Aircraft with ...

‐2‐

TableofContents

Chapter1:Introduction......................................................................................................................................................13

1.1‐SystemOverview&MajorDevelopments....................................................................................................13

1.2‐DesignRequirements&Specifications.........................................................................................................14

1.3‐TradeStudyItems..................................................................................................................................................15

1.4‐Concepts.....................................................................................................................................................................17

1.5‐VerificationPlan.....................................................................................................................................................20

1.7‐Simulation:ComputationalFluidDynamicAnalysis&FiniteElementAnalysis.........................21

1.8‐Test:WindTunnelTesting.................................................................................................................................21

1.9‐MinimumSuccessCriteria..................................................................................................................................21

Chapter2:LiteratureReview...........................................................................................................................................25

2.1‐AircraftDesigns.......................................................................................................................................................25

2.2‐EngineDesign..........................................................................................................................................................28

2.3‐NumericalMethods...............................................................................................................................................29

2.4‐ComputationalMethods......................................................................................................................................30

2.5‐EngineMaterial.......................................................................................................................................................30

2.6‐InletDesign...............................................................................................................................................................32

2.7‐EngineSelection......................................................................................................................................................33

2.8‐NozzleDesign...........................................................................................................................................................34

Chapter3:DesignApproach.............................................................................................................................................36

3.1‐ProblemSolvingApproach.................................................................................................................................36

Page 5: Innovation in Commercial Supersonic Aircraft with ...

‐3‐

3.2‐GanttChart................................................................................................................................................................37

3.3‐Flowchart...................................................................................................................................................................38

3.4‐Resources..................................................................................................................................................................39

Chapter4:EngineeringAnalysis.....................................................................................................................................41

4.1‐ParametricCycleAnalysis(PCA).....................................................................................................................41

4.2‐SupersonicWaveDragCalculations...............................................................................................................46

4.3‐InletDesignCalculations.....................................................................................................................................50

4.4‐InitialWeightCalculations.................................................................................................................................52

4.5‐ComputationalFluidDynamics........................................................................................................................54

4.6‐ComputationalMethods‐PARA.......................................................................................................................54

4.7‐ComputationalMethods‐TURBN...................................................................................................................57

Chapter5:ResultsandDiscussion.................................................................................................................................60

5.1‐HistoricalData.........................................................................................................................................................60

5.2‐TradeStudyEngineDesign................................................................................................................................60

5.3‐DiscussionofHistoricalData.............................................................................................................................61

Chapter6:Prototype............................................................................................................................................................62

6.1‐ComponentDesign..................................................................................................................................................62

6.2‐AircraftModel..........................................................................................................................................................65

6.3‐EngineModel...........................................................................................................................................................70

6.4‐InteriorDesignConfiguration...........................................................................................................................71

Chapter7:Conclusion..........................................................................................................................................................79

Page 6: Innovation in Commercial Supersonic Aircraft with ...

‐4‐

Chapter8:FutureWork......................................................................................................................................................81

Acknowledgements..............................................................................................................................................................83

References................................................................................................................................................................................84

Appendices...............................................................................................................................................................................87

AppendixA:ComputationalFluidDynamicAnalysis........................................................................................87

AppendixB:InletDesignAnalysisTradeStudies...............................................................................................88

AppendixC:NozzleDesignAnalysis........................................................................................................................91

AppendixD:CarpetPlots..............................................................................................................................................93

AppendixE:AircraftDesignComputerAidModels...........................................................................................97

AppendixF:EngineInitialConcepts.....................................................................................................................101

AppendixG:FinalEngineDesignPowerplant...................................................................................................103

AppendixH:HistoricalDataPlots..........................................................................................................................104

AppendixI:ParametricCycleAnalysis.................................................................................................................120

AppendixJ:TOPSISAnalysisandDesignMatrix..............................................................................................123

AppendixK:InitialWeightCalculations..............................................................................................................125

AppendixL:TURBNTurbineAnalysisProgram...............................................................................................126

AppendixM:Reflections.............................................................................................................................................129

AppendixO:Contributions........................................................................................................................................131

Page 7: Innovation in Commercial Supersonic Aircraft with ...

‐5‐

ListofTables

Table1:GeneralAircraftCharacteristics(Welge,etal,2010).........................................................13

Table2:BaselineEngine:BasicData,OverallGeometryandPerformance...............................15

Table3:Respectivecycletimesforsubsonicandsupersonicengines.........................................23

Table4:ThrustandTSFCrequirementsforaninstalledengine.....................................................23

Table5:ThrustandTSFCrequirementsforanuninstalledengine...............................................24

Table6:Thedesignmatrixusedtoidentifyapreliminaryselection............................................27

Table8:ParametricCycleAnalysisExcelSheet....................................................................................120

Table9:Tableofconstantvaluesforparametriccycleanalysis...................................................121

Table10:Detailedcalculationsinvolvingpropulsiveandthermalefficiency.........................121

Page 8: Innovation in Commercial Supersonic Aircraft with ...

‐6‐

ListofFigures

Figure1:GeneralEngineSchematic(AIAA).............................................................................................14

Figure2:Supersonicgeometryaircraftdesignsiteration1..............................................................17

Figure3:Supersonicinletdesigns,aerospikeanddoorpanelconfigurations..........................18

Figure4:Supersonicinletdesigns,bodydiffuseranddiamondshapedspikeconfigurations.

.......................................................................................................................................................................................18

Figure5:SupersonicVehicleDesignConcepts........................................................................................19

Figure6:SupersonicVehicleDesignConcepts........................................................................................19

Figure7:BoeingIcon‐II.....................................................................................................................................25

Figure8:Boeing765‐072Baircraftdesign...............................................................................................26

Figure9:Boeing765‐076Edesign................................................................................................................26

Figure10:LockheedN+2concept................................................................................................................27

Figure11:WideChordFanBlade.................................................................................................................28

Figure12:Screenshotfrom[26]showingGE’sconceptTAPSIIcombustor.............................29

Figure13:SupersonicPlugSpikeNozzle Figure14:SupersonicPlugNozzle.....................34

Figure15:Nozzlewithchevrons...................................................................................................................35

Figure16:ImplementedGanttChart...........................................................................................................38

Figure17:DesignFlowChart.........................................................................................................................39

Figure 18: Numerical and analytical wave drag estimation for high speed supersonic

compressibleflow.................................................................................................................................................49

Page 9: Innovation in Commercial Supersonic Aircraft with ...

‐7‐

Figure19:SupersonicspikeCFDanalysisforinletdesign................................................................50

Figure20:SupersonicpanelchannelCFDanalysisforinletdesign..............................................51

Figure21:SupersonicextendedandoptimizedpanelchannelCFDanalysisforinletdesign

(a)Pressure(b)MachNumber(c)Velocity...............................................................................................52

Figure22:Themissionprofileoftheaircraft..........................................................................................52

Figure 23: Computer Aid Model demonstrating cruise climb prior to supersonic cruise

mission.......................................................................................................................................................................54

Figure24:Inputparametersintotheprogram.......................................................................................55

Figure25:OutputvaluesfromtheprogrambasedoniteratedLPCPressureRatio..............56

Figure26:OutputvaluesfromtheprogrambasedoniteratedLPCPressureRatio..............57

Figure27:TURBNStage1calculations......................................................................................................58

Figure28:TurbineBladeProfile...................................................................................................................59

Figure29:TableofTurbineConstraints(AngularVel.vs.MeanRadius)...................................59

Figure30:EngineFanBlade Figure31:EngineFanHub...........................................................63

Figure32:NASACalculationsforNozzleBehavior...............................................................................63

Figure33:Modelsof:nozzle(a),plugdesign(b),fullyopenednozzleexit(c),fullyclosed

nozzleexit(d).........................................................................................................................................................64

Figure34:Isometricandprofileviewofsupersonicprototypeaircraft....................................65

Figure35:ComputerAidModelbodyloftingprocessofsupersonicaircraftvehicle............66

Figure36:Design1conceptwithdoubledeltastraightwinggeometry(isometricandright

siderespectivelyprofiles).................................................................................................................................66

Page 10: Innovation in Commercial Supersonic Aircraft with ...

‐8‐

Figure37:Design2conceptwithdoubledeltastraightwinggeometry(isometricandright

siderespectivelyprofiles).................................................................................................................................67

Figure38:Design3conceptwitharceddeltastraightwinggeometry(isometric,front,right

siderespectivelyprofiles).................................................................................................................................68

Figure39:Design3conceptwithcomputationalfluiddynamicmodelmeasuring(a)Mach

number,(b)pressure,and(c)temperaturerespectively....................................................................69

Figure40:DesignconceptwithenginelocationconfigurationforOrientation1(oneengine

above,withonebelow).......................................................................................................................................70

Figure41:DesignconceptwithenginelocationconfigurationforOrientation2(twoengines

belowfuselage)......................................................................................................................................................70

Figure42:Designconceptforsupersonicenginepowerplant(a)sideprofile(b)frontprofile

.......................................................................................................................................................................................71

Figure43:Standardconfigurationlayout.................................................................................................72

Figure44:Sideviewofstandardseating...................................................................................................72

Figure45:Overheadviewofstandardconfiguration(Left),............................................................73

Figure46:IsometricView(Right)................................................................................................................73

Figure47:Detailedviewofseating[28]....................................................................................................74

Figure48:Detailedviewofseating[28]....................................................................................................74

Figure49:Luxury/PremiumEconomySeating......................................................................................75

Figure50:Sideviewofseating......................................................................................................................75

Figure51:Overheadviewofconfiguration..............................................................................................76

Figure52:IsometricView(BottomRight)................................................................................................76

Page 11: Innovation in Commercial Supersonic Aircraft with ...

‐9‐

Figure53:Detailedviewsofmodernandupdatedluxuryclassseating.....................................77

Figure54:(a)ridesideprofileofsimulatedpressureandmachspeeds(b)Shearstressand

pressureformation(c)Acousticpowerlevelreadingatcruiseconditions.................................87

Figure55:TradeStudyandBaselineInletDesignChoiceSelection..............................................88

Figure56: Design1sidecutplotprofileviewfor:(a)Pressure(b)Velocity(c)Acoustic

PowerLevel.............................................................................................................................................................89

Figure57:Design2sidecutplotprofileviewfor:(a)Pressure(b)Velocity(c)Temperature

.......................................................................................................................................................................................90

Figure 58: Design 1 side cut plot profile view: (a) Pressure, (b) Mach Number, (c)

Temperature,and(d)Velocity........................................................................................................................91

Figure 59: Design 2 side cut plot profile view: (a) Pressure, (b) Mach Number, (c)

Temperature,and(d)Velocity........................................................................................................................92

Figure60:Design1conceptwithstraightdeltawinggeometry(isometric,front,rightside

respectivelyprofiles)...........................................................................................................................................97

Figure61:Design2conceptwithdoubledeltastraightwinggeometry(isometric,front,right

siderespectivelyprofiles).................................................................................................................................98

Figure62:Design3conceptwitharceddeltastraightwinggeometry(isometric,front,right

siderespectivelyprofiles).................................................................................................................................99

Figure63:Frontalnoseaircraftdesignbaseline: (isometric, right side, frontrespectively

profiles)...................................................................................................................................................................100

Figure64:Frontalnoseaircraftdesignextendednoseoptimization:(isometric,rightside,

frontrespectivelyprofiles).............................................................................................................................100

Figure65:EngineConcept.............................................................................................................................101

Page 12: Innovation in Commercial Supersonic Aircraft with ...

‐10‐

Figure66:ConceptNozzleGeometries....................................................................................................102

Figure67: Engine isometric and sideprofile of internal viewingof supersonic geometry

.....................................................................................................................................................................................103

Figure68:SpecificFuelConsumptionvsoverallefficiencyforcommercial/civilaircraft104

Figure69:BypassRatiovsOverallEfficiencyforcommercial/civilaircraft...........................104

Figure70:OverallPressureRatiovsOverallEfficiencyforcommercial/civilaircraft.......105

Figure71:Specificfuelconsumptionvsthrustforcommercial/civilaircraft........................105

Figure72:Graphofoverallefficiencyversusbypassratioformilitaryaircraft....................106

Figure73:SpecificfuelconsumptionvsOverallefficiencyformilitaryvehicles...................106

Figure74:Overallpressureratiovsoverallefficiencyformilitary/civilaircraft.................107

Figure75:Specificfuelconsumptionvsthrustformilitary/civilaircraft................................107

Figure76:OverallPressureRatiovsThrustforMilitaryAircraft................................................108

Figure77:BypassRatiovsThrustforMilitaryAircraft....................................................................108

Figure78:WeightvsThrustforMilitaryAircraft................................................................................109

Figure79:InletTemperaturevsThrustforMilitaryAircraft.........................................................109

Figure80:TSFCvsThrustforMilitaryAircraft....................................................................................110

Figure81:BypassRatiovsTSFCandFanPressureRatioforMilitaryAircraft......................110

Figure82:InletTemperaturevsOverallPressureRatioandTSFCforMilitaryAircraft...111

Figure83:InletTemperaturevsBypassRatioandTSFCforMilitaryAircraft.......................111

Figure84: Inlet Temperature vs Overall Pressure Ratio and EngineWeight forMilitary

Aircraft.....................................................................................................................................................................112

Page 13: Innovation in Commercial Supersonic Aircraft with ...

‐11‐

Figure85:InletTemperaturevsBypassRatioandEngineWeightforMilitaryAircraft...112

Figure86:OverallPressureRatiovsThrustforCommercialAircraft........................................113

Figure87:BypassRatiovsThrustforCommercialAircraft............................................................113

Figure88:WeightvsThrustforCommercialAircraft.......................................................................114

Figure89:TSFCvsThrustforCommercialAircraft............................................................................114

Figure90:FanPressureRatiovsBypassRatioforCommercialAircraft..................................115

Figure91:FanPressureRatiovsBPRvsSFCforSupersonicMilitaryAircrafts....................115

Figure92:FanPressureRatiovsOPRvsSFCforSupersonicMilitaryAircrafts....................116

Figure93:FanPressureRatiovsBPRvsEngineWeight forSupersonicMilitaryAircrafts

.....................................................................................................................................................................................116

Figure94:FanPressureRatiovsOPRvsEngineWeight forSupersonicMilitaryAircrafts

.....................................................................................................................................................................................117

Figure95:FanPressureRatiovsBPRvsEngineWeightforCommercialAircrafts.............117

Figure96:FanPressureRatiovsOPRvsSFCforCommercialAircrafts...................................118

Figure97:FanPressureRatiovsBPRvsEngineWeightforCommercialAircrafts.............118

Figure98:FanPressureRatiovsOPRvsEngineWeightforCommercialAircrafts.............119

Figure99:ParametricCycleAnalysisProgramforCandidateEngine(Trial1).....................122

Figure100:Designmatrixforpreliminaryselection.........................................................................123

Figure101:PrioritizationMatrixforTOPSIS........................................................................................123

Figure102:QualitativeScaleandFinalRankingforTOPSIS..........................................................123

Figure103:FinalizedTOPSISDataMatrix..............................................................................................123

Page 14: Innovation in Commercial Supersonic Aircraft with ...

‐12‐

Figure104:Normalized,criteria,weighteddata,idealsolution,distancefromthepositive,

andnegativematricesforTOPSIS................................................................................................................124

Figure105:SizingCalculation......................................................................................................................125

Figure106:InputsfortheBeguetRangeequation.............................................................................125

Figure107:BreguetRangeEquationcalculation................................................................................126

Figure108:TURBNStage2Analysis.........................................................................................................126

Figure109:TURBNStage3Analysis.........................................................................................................127

Figure110:TURBNStage4Analysis.........................................................................................................127

Figure111:TURBNStage5Analysis.........................................................................................................128

Figure112:TURBNStage6Analysis.........................................................................................................128

Page 15: Innovation in Commercial Supersonic Aircraft with ...

‐13‐

Chapter1:Introduction

1.1‐SystemOverview&MajorDevelopments

The progression of time ignites the invention of many exciting and daring

technologiesastheworldbecomesmoredemanding.Doctorsmusttravelacrossstatesto

retrieve organs, businessmen have to venture across countries to negotiate corporate

dealings, and everyone has to get somewhere faster. This dire need for promptness has

become the catalyst foraerospace leaders tobegindesigningnextgeneration supersonic

transportvehicles.Topowersuchforcefulandfastvehicles,newenginedesignsarebeing

exploredandcreated.NASAisoneofthemajorfacilitatorsofthisengineeringmovement.

What they need is an aircraft that goes beyond current supersonic business aircraft in

performancebutissmallerthanpastNASAairlinersofthesameclass.Theenginethatwill

beusedasareferencepointistheonedemonstratedinNASA/CR‐2010‐216842.Theaircraft

willhavetheusebaselinecharacteristicsshowninTable1.

Table1:GeneralAircraftCharacteristics(Welge,etal,2010)

Page 16: Innovation in Commercial Supersonic Aircraft with ...

‐14‐

Newmaterialswillbeexploredforthedifferentcomponentsintheenginebasedon

predicteddiscoveriesthatcouldbemadefromnowuntil2025.Thesematerialscanhelpwith

manyfactorsthatwillbestudiedingreatdetailandincorporatedintotheenginedesignand

performancetests.

By the completion of the project, the prototypewill show improvements in TSFC

(thrustspecificfuelconsumption)ofatleast5%withsignificantweightsavings,meetthe

cruise emissions goals, and address specified noise constraints (exit jet velocity). A

preliminaryschematicofourenginedesignisshowninFigure1withthemajorpartsbeing

labeled.

Figure1:GeneralEngineSchematic(AIAA)

1.2‐DesignRequirements&Specifications

The engine designed byTeam Supersonicwill power a transport vehicle that can

carry100passengersatMach1.6over4000nmi.Theenginewillbeadualspoolmixed‐flow

turbofan.Thebaselinefandiameteris87.5inches,andtheengineweightexcludingtheinlet

Page 17: Innovation in Commercial Supersonic Aircraft with ...

‐15‐

willbe13,000pounds.Thenewenginedesignwillbe,basedontradestudies,optimizedfor

minimum engine mass and fuel consumption by determining the best mixture of fan

pressureratio,overallpressureratio,bypassratio,andturbineentrytemperature.Itwillbe

alsooptimizedtomaximizetheflightrange.Usingthefactorsfromthetradestudies,possible

compromisescanbemadebetweenengineweightandfuelconsumptionontheaircraft's

performance.BelowinitialdesignspecificationscanbefoundinTable2.Theinitialinstalled

thrustcharacteristicsareshownbelowinTable4,andtheuninstalledonesareinTable5.

Table2:BaselineEngine:BasicData,OverallGeometryandPerformance

Fortheinlet,onemustbedesignedtooptimizeinternalperformanceandminimize

inletpropulsionsystemdrags.Thenozzlemustalsomeetcertaindesignspecificationsto

allowefficientsupersoniccruiseandmeetcurrentnoiserestrictions.Thiswillbedoneby

designing a convergent‐divergent noise‐attenuating nozzle. The nozzle will be made to

optimizethegrossthrustcoefficientandtominimizenozzlepropulsionsystemdrags.Many

differentmethodswillbeexploredfornoisereduction.

1.3‐TradeStudyItems

Athorough investigationwillbemadeonvaryingconditions to thegeometryandthe

parametric cycle analysis. The geometries selectedwill determine the supersonic engine

Page 18: Innovation in Commercial Supersonic Aircraft with ...

‐16‐

parameters.Usingadesignmatrix,acompilationofconceptdesignideaswillbeassessed,

andkeyfeaturesandhighlightswillbetakenintoconsiderationfortheappliedapproachin

the preliminary design. The parametric cycle analysis trade studies will investigate the

trendsassociatedwiththerespectivevariablestodetermineathoroughdescriptionofthe

overallperformanceofourenginedesign.Belowarealistoftradestudiesthatwillbedone.

● Geometry

○ InletGeometry

○ WingGeometry

○ Fuselage

○ EnginePlacement

● ParametricCycleAnalysis

○ FPRvs.BPRvs.MissionFuelBurn

○ OPRvs.T4.1maxvs.MissionFuelBurn

○ FPRvs.OPRvs.MissionFuelBurn

○ BPRvs.T4.1vs.MissionFuelBurn

○ FPRvs.BPRvs.cruiseTSFC

○ OPRvs.T4.1maxvs.cruiseTSFC

○ FPRvs.OPRvs.cruiseTSFC

○ BPRvs.T4.1vs.cruiseTSFC

○ FPRvs.BPRvs.engineweight

○ OPRvs.T4.1maxvs.engineweight

Page 19: Innovation in Commercial Supersonic Aircraft with ...

‐17‐

○ FPRvs.OPRvs.engineweight

○ BPRvs.T4.1vs.engineweight

This list of trade studies will guide the engine design. An analysis will be done

comparingvaluessuchasoverallpressureratio,turbineinlettemperature,overallpressure

ratiotomissionfuelburn,cruiseTSFCandEngineweight.Giventhattherequirementsfor

theenginedesignaretocreateanengine that increases theTSFCmarginby fivepercent

whilemaintainingalowerweight,analysisofthesetradestudyitemswillassistindesign

parametersfortheengine.

1.4‐Concepts

Conceptsketchesarecreatedtogenerateavisualontheaircraftandtheinletforthe

nacelle for the engine. Three view sketches for the aircraft as well as inlet designs are

covered.Thesesketchesareabasisfortheframeworkinwhichanalysiswillbedone.Below

aretheattachedconceptsketchesthatwillaidincreatingthefinalizedCADfortheaircraft.

Figure2:Supersonicgeometryaircraftdesignsiteration1

Page 20: Innovation in Commercial Supersonic Aircraft with ...

‐18‐

Figure3:Supersonicinletdesigns,aerospikeanddoorpanelconfigurations

Figure4:Supersonicinletdesigns,bodydiffuseranddiamondshapedspikeconfigurations.

Page 21: Innovation in Commercial Supersonic Aircraft with ...

‐19‐

Figure5:SupersonicVehicleDesignConcepts

Figure6:SupersonicVehicleDesignConcepts

Page 22: Innovation in Commercial Supersonic Aircraft with ...

‐20‐

1.5‐VerificationPlan

Analysis

Numerical analysis is conducted for the overall project. Using parametric cycle

analysis,empiricalequations,andinitialsizingcalculations,ananalysisoftheaircraftwas

made.Furtherapplicationsandstudiesforthisprojectarelaterdiscussedinthefollowing

chapters.

Simulation

By using simulations, a refined design can be accomplished. The main source of

simulationsforthisprojectarecompletedusingSolidWorks.ComputationalFluidDynamics

(CFD) allows for the simulationof air under various conditions.Themain condition this

project focuses on is supersonic cruise. CFD Simulations for the engine components and

aircraftdesignareseeninthefollowingchapters.

Testing

Testingforthisprojectwillbeset inplaceasaplanofactionforfuturework.The

mainscopeofthisprojectwastocreatemodelsandconductnumericalandcomputational

analyses.Furthertestingcanbegeneratedusingawindtunnelusing3Dprintedmodelsand

utilizingthewindtunnelatKennesawStateUniversity.Giventhescalingfactorswiththe

windtunnel,testingandexperimentationwillbeplacedunderfuturework.

1.6‐Analysis:ParametricCycleAnalysisandNumericalAnalysis

Designbaselineengineparametersaregiveninsection4ofAIAAsupersonicengine

design challenge. To conduct parametric cycle analysis, optimization techniques can be

performedwith various parameters such as: enginemass and fuel burn, based on trade

studiestodeterminethebestcombinationof:

1. Fanpressureratio

2. Bypassratio

Page 23: Innovation in Commercial Supersonic Aircraft with ...

‐21‐

3. Overallpressureratio

4. Turbineentrytemperature

Inordertohelpquantifyandtabulatethenumericalanalysisvalues,AIAAapproved

packagessuchas:AxSTREAMbySoftInWayInc,NumericalPropulsionSystemSimulation

(NPSS),GasTurb12.Thesesoftwarepackageswill serveasaguide inorder toshape the

computational fluid dynamic analysis and finite element analysis with respect to fan

pressureratio,bypassratio,overallpressureratio,andturbineentrytemperature.

1.7‐Simulation:ComputationalFluidDynamicAnalysis&FiniteElementAnalysis

The team will explore advanced and sophisticated computational simulations in

order to verify the design compliance matrix. CFD and FEA simulations will work

coincidentlywiththeparametriccycleanalysis.Thenumericalandanalyticalcalculations

will shape and structure the environmental conditions for both CFD and FEA. The next

proceedingstepswillallowaniterativedesignandsequentialprocess.

1.8‐Test:WindTunnelTesting

The teamwill undergo 3D physical printing processes for rapid prototyping. The

ideology allows for wind tunnel testing for aerodynamic design exploration. Possible

components to undergo dynamic testing are: fan blades, high pressure turbines, low

pressureturbines,aircraftwing,airfoils,thecompletedassemblyaircraftandengineetc.

1.9‐MinimumSuccessCriteria

Minimumsuccesscriteriaforthisprojectistodesigncomponentsforamixed‐flow

turbofan engine that meet the baseline requirements set forth by AIAA and create a

preliminary aircraft design to supplement the engine design. The minimum criteria for

Page 24: Innovation in Commercial Supersonic Aircraft with ...

‐22‐

deliverables on this project include the report, presentation, and video associated with

aeronauticsseniordesign.Someofthedesignspecificationsandgoalsareoutlinedbythe

objectives in the request reportbyAIAA.Basedon thedesigndecisions and calculations

throughoutthedurationofthisproject,effortswillbemadetofocusonmeetingbaseline

specificationsoutlined.Thedesignmustbeabletotake‐offfromstaticsea‐level.Thedesign

mustbeabletomeetcruiserequirementsandovercometheeffectsofwavedrag.

Thedesignmustbealsobeabletobeprototypedtogenerateascaled3Dmodelor

partstodisplay.UsingSolidWorks,aworkingCADmodelmustalsobeutilizedtosuccessfully

conductCFDandFEA analysis. Computation and studies of aworkingdesign are closely

dependentonhowmuchisaccomplishedindevelopingaworkingCADmodel.Throughwind

tunneltesting,amorethoroughunderstandingoftheaerodynamicdesigncanbeassessed

todetermineoutcomesandtooptimizeafinaldesignforreview.Belowarealistofspecified

conditions and requirements along with tabulated values for various conditions for the

engine.

Prototype:DevelopascaledmodelinSolidWorkstobeutilizedforfutureworkingregarding

windtunneltesting

CADModel: Generate a working CADmodel to utilize CFD and FEA analysis on engine

componentsandaircraft

BaselineEngineFanDiameter:87.5inches(7.29ft)

ConditionsforTake‐Off:StaticSea‐LevelConditions

ConditionsforCruise:55,000ft,Mach1.6

AsperAIAA,asetoftablesandvaluesareprovidedforastartingpointandwillaidin

startinganalysisontherequiredenginedesign.Eachtablewillprovidesetparametersare

variousconditionsduringflight.Withineachoftheseflightregimes,characteristicsofthe

enginearechanged.Forthisproject,thefocuswillbetooptimizethedesignbasedonthe

flightcharacteristicsduringcruise.Belowarethevarioustablesusedinthedesign.

Page 25: Innovation in Commercial Supersonic Aircraft with ...

‐23‐

Table3:Respectivecycletimesforsubsonicandsupersonicengines

LandingTakeoff(LTO)CycleDefinitions

Mode SubsonicEngines SupersonicEngines

Power(%) TimeinMode(min) Power(%) TimeinMode(min)

Takeoff 100 0.7 100 1.2

Climbout 85 2.2 65 2.0

Descent N/A N/A 15 1.2

Approach 30 4.0 34 2.3

Taxi/Idle 7 26.0 5.8 26.0

Table4:ThrustandTSFCrequirementsforaninstalledengine

InstalledEngineThrustandTSFCRequirements

Conditions Altitude(ft) Mach dTamb(F) FN(lbf)TSFC(lbm/hr/lbf)

SLS 0 0 0 64625 0.520

HotDayTake‐Off 0 0.25 27 56570 0.652

TransonicPinch 40550 1.129 0 14278 0.950

SupersonicCruise 52500 1.6 0 14685 1.091

Page 26: Innovation in Commercial Supersonic Aircraft with ...

‐24‐

Table5:ThrustandTSFCrequirementsforanuninstalledengine

UninstalledEngineThrustandTSFCRequirements

Conditions Altitude(ft) Mach dTamb(F) FN(lbf) TSFC(lbm/hr/lbf)

SLS 0 0 0 70551 0.494

HotDayTake‐Off 0 0.25 27 61190 0.620

TransonicPinch 40550 1.129 0 17197 0.804

SupersonicCruise 52500 1.6 0 16471 0.993

Page 27: Innovation in Commercial Supersonic Aircraft with ...

‐25‐

Chapter2:LiteratureReview

2.1‐AircraftDesigns

Various concept designs currently exist in the aerospace industry in regards to

supersonic flight.Anumberofaircraftwereselectedbasedon theappropriategeometry

necessaryforsupersonicconditions.Theeffectsofsupersonicwavedragplayasignificant

role inselectingthegeometriestoovercomeit.Mainfeaturesthatwereobservedarethe

finenessratio,winggeometry,engineplacement,nacelledesign,andseatingconfigurations.

DesignsfromBoeing,NASA,andLockheedwereselectedfortheprototypedesign.Beloware

theaircraftdesignswhichwereconsidered.

Figure7:BoeingIcon‐II

Page 28: Innovation in Commercial Supersonic Aircraft with ...

‐26‐

Figure8:Boeing765‐072Baircraftdesign

Figure9:Boeing765‐076Edesign

Page 29: Innovation in Commercial Supersonic Aircraft with ...

‐27‐

Figure10:LockheedN+2concept

Thesedesignsprovideinsightontheselectionofgeometriesatsupersonicspeeds.

Basedonasetofdesigncriteria,toolssuchasTOPSISanalysisanddesignmatriceswereused

to select the aircraft which proved themost effective inmeeting the requirements. The

design matrix allowed a preliminary observation on each aircraft design. The TOPSIS

analysisshowsamoreobjectifiedanddetailedselectionseenintheappendix.Thedesign

matrixshownbelow,willdisplaythethoughtprocessonapreliminaryselection.

Table6:Thedesignmatrixusedtoidentifyapreliminaryselection

Page 30: Innovation in Commercial Supersonic Aircraft with ...

‐28‐

2.2‐EngineDesign

The enginedesignhas to be suited for efficient and fast travel. For these reasons

certain engines may qualify as a baseline even though their original mission can be

extraordinarily different from the one of this project. Starting with the fan, major

considerationsarethebladeairfoil,materialselection,geometry,andconnectionmethods

(dovetail).“Thinbladesareidealfromanaerodynamicperspective,whereasthickerblades

are important structurally with respect to impact and vibratory stress tolerance” [23].

Becauseofthisandnewtechnologiesthathollowoutthefanbladestodecreasetorsional

rigiditybyupto16%[23],thickbladesproveidealforhighspeedengines.Fanbladescan

spinatspeedsgreaterthan2000rotationsperminuteattake‐offspeed.Thiscomeswith

bothstressesandcentrifugal forces thatcouldcausedamageover timeanddecrease the

aircraft’s timebetweenoverhaul.Havinghollowedoutbladesalsohelpsdecreaseoverall

engineweightandfuelconsumption.Increasingthrusttoachievesupersonicspeedscanstill

bedonejustbyincreasingthefandiameteroracceleratingtheflowintotheengine.

Figure11:WideChordFanBlade

Forthecombustionchamber,itseemednecessarytogowitharich‐burn,quick‐mix,

lean‐burn (RQL) combustor concept. “Itwas introduced in 1980 as a strategy to reduce

oxidesofnitrogenemissionfromgasturbineengines”[25]. It is thedominantcombustor

Page 31: Innovation in Commercial Supersonic Aircraft with ...

‐29‐

technologyinenginedesigntodaywithleaderssuchasPratt&Whitneycreatingtheirown

modelsknownasTALON(TechnologyforAdvancedLowNOx).“Duetosafetyconsiderations

andoverallperformance(e.g.stability)throughoutthedutycycle,theRQLispreferredover

leanpremixedoptionsinaeroengineapplications”[25].ThelatestRQLcombustorfoundwas

theTAPSIIcombustorbeingdevelopedbyGeneralElectricfortheContinuousLowerEnergy,

EmissionsandNoise(CLEEN)Program.Because“TAPSIIhassignificantreductionforall4

regulatedpollutantsandtheTAPSIItechnologyNOxemissionsareat39.3%ofCAEP/6(or

60.7%margintoCAEP/6),whichmeetstheCLEENNOxgoalof60%margintoCAEP/6,”the

TAPSIIcombustionsystemwaschosentobeintheteam’scandidateenginetohelpreduce

emissions[26].

Figure12:Screenshotfrom[26]showingGE’sconceptTAPSIIcombustor

2.3‐NumericalMethods

NumericalPropulsionSystemSimulation(NPSS)isamulti‐physicsandengineering

designnumericalsoftwareprogramthatenablesanenvironmentofvariousaircraftengines.

This powerful software allows the user to generate engine cycle models with various

components of engines, such as: inlet, compressor, combustion chamber, turbines, ducts,

Page 32: Innovation in Commercial Supersonic Aircraft with ...

‐30‐

nozzle,etc.Forseveralproblems,theengineerhastheabilitytodefinespecificdependent

andindependentvariables.NPSSallowsexecutionwithsolverconstraintstieddirectlytothe

problem solution. By doing so, this reduces the number of interacting software, thus

reducingerror[3].

2.4‐ComputationalMethods

Advancedcomputationalfluiddynamiccodesareimplementedinvariousindustry

andresearchinstitutionsinordertoexploretheeffectsofsonicboomenergydispersion.In

theN+2study,aresomeguidelinestoexploreandtesttwosupersonicconceptmodels:both

‐072Band‐076E[1].Fromthisextensivestudy,the‐076Emodelhasalowerboomsignature

butdoesnotmeetthestandardsdisplayedbyFAA.LessonsfromNASA’sdesignlowboom

tradestudieswillserveasabaselineinordertofurtherfuturesupersonicresearch.

2.5‐EngineMaterial

Historically,engineshavebeenmadeofmetal.Theyincorporatealuminum,steel,and

titanium for different purposes such as availability, strength, heat resistance, and cost.

Selectingthematerialofdifferentpartsdependsonthestresses,loads,andpurposeofthe

differentsections.Usually,“materialsarecharacterizedbytheirdamagetolerance,ductility,

highcyclefatigue(HCF)strength,andyieldstrength”[22].Becausethefrontoftheengine,

includingthefanandcompressorarethesomeofthemostimportantparts,theyhadtobe

built to resist impactdamage,be light, andbeable todecreaseaircraftdowntime.These

requirementsmadetitaniumaprimecandidate,andithasbeenusedwidelyinindustryfor

decades.

Astimeandtechnologyprogressed,newdesignrequirementsbecameimportantsuch

asengineweight,strength, fuelconsumption,andstrength.Currently, leaders in industry

suchasCFMInternational(GE/Snecma jointventure)andPrattandWhitneyhavebegun

Page 33: Innovation in Commercial Supersonic Aircraft with ...

‐31‐

research and the use of composite material. Examples would include the Boeing B787

DreamlinerandAirbusA350XWB,inwhichalmosthalfoftheaircrafts’structurebyweight

iscomposedofreinforcedplastics[23].“Similarly,thecontainmentcase,theretocontainthe

resultsofanybladeseparationandpreventhigh‐speeddebrisfromimpactingtheairframe

oraircraftsystems,cannowbecompositeratherthanmetalorametal‐compositehybrid

(typicallyaluminumover‐wrappedwitharamid).Weightsavedinthefan/containmentcase

pairinghasaknock‐oneffect,enablingcomponentssuchasshaftsandbearings,thepylons

whichattachtheenginetothewingandtheassociatedwingstructuretobemadelighter

also.Inaggregate,halfatonormorecanbesavedperengine,aprizewellworthhavinggiven

the high price of aviation fuel today” [23]. Metal‐composite hybrid materials such as

aluminumover‐wrappedwitharamidhaveproveneffective.Theseusesofcompositesresult

inanastoundinglossinengineweightofmorethanathousandpounds.

Compositesarealsomoredurablethantheirmetalcounterparts,possessinggreater

tolerance to fatigue and the ability to be molded into approximately three dimensional

shapes ideal for aerodynamics. Composites also resist creep that arise from centrifugal

forcesgeneratedbythefan’shighspeedrevolution,“meaningthattheclearanceengineered

initiallybetweenthebladetipsandthesurroundingducthastobegreaterthanitshouldbe

for optimum engine performance” [23]. Composites also help make engines more fuel

efficientasseenfromCFM’sLEAPenginethatboastsa15%higherfuelefficiency.

Researchintonewandexcitingmaterialshasbeenverybeneficialtotheaerospace

industry.However,manymanufacturersstillfallbackontitaniumduringmaterialselection.

Titaniumisveryversatile,readilyavailable,easytofabricate,veryductile,andhasalowlife

cycle cost, great performance historically, excellent high cycle fatigue (HCF), tensile, and

yieldstrength,lowdensity,andanaturallyregenerativecorrosionresistantprotectivefilm.

Thehighermaterialcost isoffsetbysavings fromlonger lifeandreduction inequipment

maintenanceandaircraftdowntime.Moresignificantly,titaniumhasthehigheststrength‐

to‐weightratiooutofallotherstructuralmaterials.However,thousandsofoperatinghours

leadtodamagesuchashighstrainLCF,FOD(predominantly),wear,andfretting.

Page 34: Innovation in Commercial Supersonic Aircraft with ...

‐32‐

While titaniummay be a very reliable and provenmaterial choice,many are still

lookingtocompositesandothermaterial.Compositeshavehighstrength‐to‐densityratios,

stiffness‐to‐densityratiosthreetimeshigherthanaluminum,steel,andtitanium,andhave

yieldedengineweightsavingsofmorethanhalfaton.“Thehighstrengthandstiffnessof

compositematerialscombinedwiththeabilitytotailorthematerialtospecificaerodynamic

loads have led to their increased use in fan blades” [22]. Most composite blades are

reinforcedwithatitaniumleadingedge(LE)andmetalcladding.Thisgivesthemlightness,

improvedstrength,anddamageresistance.Thelowermassyieldslowercentrifugalloads

andstresseswhichcanleadtolongerlife.Thusthereislessdamageandreducednoisewhen

theengineturnsoffandthefanbladesarestillrevolvingatlowerspeeds.

Unfortunately,compositesalsohavelowaerodynamicefficiencywhichisstillbeing

researched.Thisresearchledtothetestingofmetalmatrixcomposites(MMC)whichhave

highstrength,stiffness,andversatilitybutalsoreallyhighcosts.Anothernewmaterialthat

has been researched is hybrid‐metallic material (HMM). “Unlike composite materials,

hybrid‐metallicmaterialsareeasiertotransferamongdesigns,meaningtheyarewell‐suited

to the fabrication of fan blades of any size or dimension” [22]. These structures exploit

certainpropertiesofvaryingmaterialstoimprovestructuralintegrityinspecificareas.They

arecurrentlybeingdevelopedbyPrattandWhitneytoprovidebothweightandstructural

benefits. Unlike composites, HMMs are more versatile and can be adapted to different

designsforfanbladesofanysizeordimension.Theyaremoreresistanttobirdimpactstrikes

andhaveareducedcost.“Researcheffortstopromotethegreaterapplicabilityofhybrid‐

metallicmaterialstofanbladestructuresarerecommended.Nonetheless,significantefforts

havebeenmadetoensurethedurabilityandlongservicelifeofthesematerials”[22].

2.6‐InletDesign

NASAGlennResearchCenterconducteda“SupersonicsProject”undertheInletand

NozzleBranchinconjunctionwiththeSupersonicCruiseEfficiencyPropulsionsgroup.The

team designed a powerful computational tool to perform aerodynamic design and

Page 35: Innovation in Commercial Supersonic Aircraft with ...

‐33‐

computationalanalysisspecificallyforsupersonicinlets[7].Thiscodeservesasabaseline

todeterminesupersonic inletgeometryandperformancecharacteristics.Thiscodecould

serveasapowerfulapproachtoallowresearchersandengineerssolveaerodynamicand

propulsion challenges. The code, SUPIN (SUPersonic INlet) Design Code, is capable of

designing and analysis of external ‐ compression, for supersonic inlets of (Mach 1.6‐2.0)

alongwithitsmeasurementsofflowrates,totalpressurerecovery,andinletdrag[7]

2.7‐EngineSelection

Mostenginesonthemarketthatareusedforsupersonicflighttendtoservemilitary

purposes.AircraftsuchastheF‐22,Concorde,andtheF‐11arefewofthemanythatcanfly

atMach1 and faster. Theyutilize turbojet engines equippedwith afterburners for short

burstsofsupersonicthrustduringcombat.Mostsupersoniccraftrequiresuchenginesthat

aresmall indiameter,relatively,andcanreachsuchspeedsquickly.Aspowerfulasthese

enginesare,theyareequallyinefficientcomparedtoenginesusedforcivilandrecreational

aircraft.

Tocompensateforefficiency,aircraftstendtouseturbofanengines.However,most

turbofanscan’treachsonicorsupersonicspeedsunaided.Regardless,thefocusforthetype

of engine that will be selected for themissionwill be towardsmedium to large bypass

turbofans. These engines are efficient and powerful in their own right. They use the air

comingintothefanbypasstohelppropeltheaircraft.

Throughouttheyears,turbofanshaveseenmanyimprovementsfromthematerials

builtintothecomponentstotheshapesofthefan,compressor,andturbineblades.Allofthe

changesareattemptsatcreatingthemostdurableandefficientengines.Tohelptheaircraft

reachsupersonicspeedswillrequireaspeciallydesignedinletandnozzle.

Page 36: Innovation in Commercial Supersonic Aircraft with ...

‐34‐

2.8‐NozzleDesign

Preliminaryresearchhasguidedthenozzledesignchoiceinfavorofaconvergent‐

divergentdesign.Thiswillhelpturnsubsonicflowaftertheturbinestageintosupersonic

flowatthenozzleexit.Withsupersonicaircraft,thecustomerwillexperiencelevelsofnoise

thatfarsurpassthoseofmostcommercialaircraftthattravelatsub‐totransonicspeeds.“Jet

noise…seeksadvancedsolutions,especiallyinthecaseofhigh‐speedaircraft”[20].Because

the trend showsa shift toward supersonic travel in theupcomingdecades, technological

advancementsarerequiredtomakesuchtravelmethodsfeasibleanddesirable.Manythings

contributetothenoisesignaturegivenofffromsupersonicengines;however,“jetnoiseis

dominatedbyMachwaveemission,whichariseswhenturbulenteddiesinthejettravelwith

supersonicvelocityrelativetothesurroundingmedium”[20].85%ofthefar‐fieldjetnoise

thathumansaresensitivetocomesfromMachwaves.Otherphenomenacancontributeto

thehighnoiselevels.“Highlevelacousticemissionalsooccursinjetswithstrongshocks,i.e.

in under‐ or over‐expanded jets… [which] can be substantially removed by operating at

pressure‐matchedconditions”[20].

Figure13:SupersonicPlugSpikeNozzle Figure14:SupersonicPlugNozzle

Fortunately,many researchershavebegun to look intoways to correct this issue.

Methodstoreducenoiseemissionsuchasthosethat“enhancethemixingofthejetandthe

Page 37: Innovation in Commercial Supersonic Aircraft with ...

‐35‐

surroundingair”[20]comewith“appreciablethrustandweightpenalties.Othersolutions,

liketheInvertedVelocityProfile(IVP)supersonicplugnozzles,oraThermalAcousticShield

haveshownsomeencouragingresultsbuthavenotfoundwideimplementation”[20].Other

methods incorporate changing the properties of the jet streamby surrounding itwith a

secondarystreamoftherightcharacteristicswillinhibitMachwaveformation.Aboveand

belowareimagesofsupersonicplugnozzlesalongwithoneofchevronnozzlepanelsthat

disrupttheMachwavesattheendtoreducethenoiselevels.

Figure15:Nozzlewithchevrons

Page 38: Innovation in Commercial Supersonic Aircraft with ...

‐36‐

Chapter3:DesignApproach

3.1‐ProblemSolvingApproach

Torepresenthowtheteamwillapproachthemanydesignchallengeswillrequirethe

useofdifferentmodelingsoftware.TheuseofCFD(computationalfluiddynamics)software

suchasSolidWorks’flowpackage,willhelpmodeltheflowoftheairenteringthe“cold”parts

ofourengine(i.e.inlet,fan,compressoretc.)aswellastheflowalongthefuselage.These

modelswillgeneratekeyresultsthroughcalculationsusinggivenparameterstorepresenta

prediction forhowa full scale componentwill behave realistically.The figureswill yield

resultsthatwillbeusedwithinfurthercalculationsandchartstoshowifthechallengeswere

metwithin the desired 5%margins. Theywill also help aid in the design of the engine

componentsafterthecombustor(i.e.turbineandnozzle).

Another software to possibly be used for the completion of the project will be

NumericalPropulsionSystemSimulation(NPSS).NPSSisasimulationprogramthatis“block

oriented”andcanbeusedforengineeringdesignandtosimulateaerospacesystems.This

programworksbytakingthedifferentelementsspecifiedbytheengineerandtherespective

technicaldatathatdetailstheirindividualperformanceandsolvesthesystem.Theprogram

takestheinputtextfilesfilledwithcodetypedinC++languageandlaunchesthemviathe

systemcommandwindow.Forthisproject,NPSSwillbeusedasacomputationalmodelof

theengine’sparametriccycleanalysis.

Tomodelandanalyzethebehavioroftheturbomachineryinsidetheengineandfind

certaindataparameterssuchasthetemperatureandpressureatvariousstages,theteam

canpotentiallyusetheprogramAxSTREAM.AxSTREAMisasoftwarepackagethatisused

forarepresentativedesignofthecompressorandturbine,andalsotosolvethermodynamic

calculationsofindustryturbomachineryforbothonandoff‐designoperation.Givencertain

initialparametersfortheinletandtheoutlet,theprogramcanthenperform1D,1D/2D,and

3DcalculationsthatencompassCFDanalysestocreateamodelforthedifferentcomponents.

Thissoftwarewillhelpvalidatecertaindesignchoicesmaderegardingtheengineandits

Page 39: Innovation in Commercial Supersonic Aircraft with ...

‐37‐

components, and itwill also serve to revealparameters thatwouldhavebeenotherwise

unknowntothegroup.

Throughout majority of the project, Microsoft Excel was used for the numerical

calculations.Havingtoperformparametriccycleanalysis,besidesMatlab,Excelwouldbean

easierprogramtouse.UsingExcelalsohelpedtocorrelatedatafromdifferentsheetsand

workbooks to create plots for the necessary trade studies. Excel also helped highlight

different values and data points from the collection of historical data gathered on the

hundredsofenginesusedinindustry.TransposingthedatatoMatlabisstillaviableoption

andmaybedoneforfuturenumericalsimulationsandcalculations.

3.2‐GanttChart

Theflowofworkinthisprojectiscrucialgiventhestrictdeadline.Thus,toensure

tasksarecompletedontimeandprogresswasmade,aGanttchartiscreated.TheGanttchart

provedusefulforsettingmaintasksandgoalstocomplete.TheGanttchartalsoprovidesa

visualontheprogressmadeontheprojectthroughouttheentiresemesteritwasworkedon.

Within each respective task, a weekly progress report was made. Specific tasks were

delegatedtoensureprogresswithineachgoal.TheGanttchartwhichwasusedisprovided

below.

Page 40: Innovation in Commercial Supersonic Aircraft with ...

‐38‐

Figure16:ImplementedGanttChart

3.3‐Flowchart

Inordertocompletethisproject,asystematicflowchartwasgeneratedto

characterizethedesignprocess.Utilizingsimilardesignflowsofaircraftdesign,thesame

couldbeusedfortheengineandvariouscomponentsofthisproject.Theflowchartshown

belowdescribestheiterativeprocessusedthatallowedmultipleversions,optimizations

anddesignsfortheoverallproject.Byutilizingtradestudies,sizingconfigurationsand

designtrades,afinalizeddesignwasconcludedforthisproject.Although,future

refinementscanalwaysbemadetothisproject,deliverablesareimportantthusthisflow

chartaccountsforthat.

Page 41: Innovation in Commercial Supersonic Aircraft with ...

‐39‐

Figure17:DesignFlowChart

3.4‐Resources

KennesawStateUniversityoffersavastnumberofresourcestoensureacomplete

project.ThefacilitiesontheMariettacampusofKennesawStateUniversityoffersmultiple

avenuestoexploreandcreatemodelsandobservecharacteristicsofflight.Alistofthemis

providedbelow.Inadditiontoresourcesoncampus,alistofpossiblesponsorsisprovided

whencompletingfutureworkandpossiblepartnershipswiththeuniversitytoobtainaccess

tocertainlaboratorymaterialsorsupplies.Lastly,alistofhardwareandsoftwareavailable

incompletionofthisprojectisgeneratedwhereaccessisreadilyavailable.

Facilities:

FluidDynamicsLaboratory

ControlsandVibrationsLaboratory

3DPrintingLaboratory

FlightSimulatorLaboratory

ArchitectureWoodshop

PossibleSponsors:

Page 42: Innovation in Commercial Supersonic Aircraft with ...

‐40‐

1. KennesawStateUniversity

2. GeorgiaTechResearchInstitute

3. LockheedMartin

4. Spaceworks

5. NorthropGrumman

6. CATIA

7. ANSYS

AvailableSoftware:

1. Solidworks

2. ANSYS

3. MATLAB

4. SIMULINK

5. MicrosoftOffice

6. Latex

7. AxSTREAMbySoftInWayInc.

8. NumericalPropulsionSystemSimulation(NPSS)

9. GasTurb12

Hardware:

1. 3DPrinter(s)

2. COXparts(Commercialofftheshelf)‐McMasterCarretc.

3. WindTunnel

Page 43: Innovation in Commercial Supersonic Aircraft with ...

‐41‐

Chapter4:EngineeringAnalysis

4.1‐ParametricCycleAnalysis(PCA)

To determine if the baseline engine was a suitable engine, the team performed

parametric cycle analysis. Research was conducted to find the input values that were

required for the calculations. For the values that were not given through research,

assumptionsweremade from the trendstudiesof similarengines.After the inputswere

found, anExcel sheetwasdesigned that incorporated thePCAequations (1) ‐ (45) from

Elements of Propulsions [11]. After the program finished, the propulsive and thermal

efficiencies were calculated and found to be 98.53% and 51.46%, respectively. These

efficiencieswouldyieldanoverallefficiencyof50.7%.Thiswasdeemedacceptablebecause

itwasclosetotheefficienciesoftypicalhighbypassturbofanengines.Belowaretheinputs,

outputs, and equations used for the PCAprogram excluding any afterburner parameters

giventheirabsencefromallenginestested.

Page 44: Innovation in Commercial Supersonic Aircraft with ...

‐42‐

Page 45: Innovation in Commercial Supersonic Aircraft with ...

‐43‐

Page 46: Innovation in Commercial Supersonic Aircraft with ...

‐44‐

Page 47: Innovation in Commercial Supersonic Aircraft with ...

‐45‐

Page 48: Innovation in Commercial Supersonic Aircraft with ...

‐46‐

After the initial PCAprogramwas completed, the teamdecided to do one for the

candidate engine. By using the results from thewave drag calculations alongwith input

valuesfromindustry(e.g.GEGenXfanratioandbypassratio)dependingonwhatengine

parts were used for the team’s design. Because the new design was performing under

different conditions, the program yielded different results. The propulsive and thermal

efficiencieswere61.8%and30.9%respectivelytoyieldanoverallefficiencyof19.1%.The

latterprogram involvedengineperformanceunder theAIAAconditionsset in thedesign

characteristics,whilethefirstwasundertypicalmissionconditionsforcurrentturbofans.In

AppendixXarefiguresoftheExcelprogramcreatedforthePCA.

4.2‐SupersonicWaveDragCalculations

Modeling wave drag is conducted both numerically (analytically) and

computationally for initializing baseline supersonic wave drag calculations. In order to

determineabaselineinviscidwavedrag,variousprojectedareasoftheaircraftmainframe

body such as; fuselage, wings, and control surfaces are constructed in mathematically

relationships.EstimatedfromEulerdifferentialequation,eachcomponentissimplifiedto

achieveboundsonobtainingminimumdrag[21].Equation(1),SlenderBodyWaveDrag,

describes the fuselage main body frame in integrating along for slender bodies with

considerablyhighfinenessratios.

SlenderBodyWaveDrag

(46)

Theminimumwavedragestimation is crudeandsimplistic formula thatprovides

projected area of drag due to supersonic thin airfoil theory. Due to air density

compressibilityeffectsatsupersonicspeeds,theapproximationofdragamonganairfoilis

explored.Equation(46),Vrepresentsthesonicvelocityofairflow,lrepresentsthelengthof

theairfoil,ρisthedensityofair,andUdisplaysthedynamicpressure.

Page 49: Innovation in Commercial Supersonic Aircraft with ...

‐47‐

MinimumWaveDrag

(47)

Volume‐DependentWaveDragusestheestimatedwavedragofawing.Specifically

referencedinJ.H.BSmithtext,hederivestheexpressionforthevolumedependentwave

dragforanellipseshapeshowninEquation(47).Intheequationtismaximumthickness,b

isthesemi‐majoraxis,andaisthesemi‐minoraxis.

Volume‐DependentWaveDrag

(48)

UsingEulerprinciple,R.T.Jones’expressiondescribesthemathematicalrelationship

forlift‐dependentwavedrag[2].Itconsideredtheellipseofthesamearea,S,andlength,las

seeninEquation(49)

LiftDependentWaveDrag

(49)

Usingthegoverningequationsestimatingwavedragreferencingequations1through

4,anumericalbaselineestimationofwavedragcanbecalculated.Thedesignchallenged

aircraft will explore a trade study of total drag and the number of engines needed to

overcometheresistanceforce.DisplayedinFigure18aresamplecalculationsofestimated

supersonicwavedragatMachconditionsof1.3,1.6,and1.8.

Page 50: Innovation in Commercial Supersonic Aircraft with ...

‐48‐

Figure18:Numericalandanalyticalwavedragestimationforhighspeedsupersonic

compressibleflow

Page 51: Innovation in Commercial Supersonic Aircraft with ...

‐49‐

Figure18:Numericalandanalyticalwavedragestimationforhighspeedsupersonic

compressibleflow(continued)

Page 52: Innovation in Commercial Supersonic Aircraft with ...

‐50‐

4.3‐InletDesignCalculations

CFDonsupersonicinletpressurerecovery

Computational FluidDynamicAnalysis is conducted to validate and test two inlet

designconfigurations.Theseconfigurationsareanalyzedtoexplorethepressurerecovery

tomaximizeefficiency for the fanandengine.Asseen inFigure19, thespikedesignCFD

analysisshowsagreaterpressurerecoverythanthedoorpanelsinFigure20.

SubsonicMilSpecPressureRecoveryCalculation

Mil.Spec:M>1:pt2/pt0=ni*(1‐.075*[M‐1]^1.35)(50)

M>1:pt2/pt0=ni*(1‐.075*[M‐1]^1.35)

=3.994095965

Figure19:SupersonicspikeCFDanalysisforinletdesign

Page 53: Innovation in Commercial Supersonic Aircraft with ...

‐51‐

Figure20:SupersonicpanelchannelCFDanalysisforinletdesign

Mil.Spec:PressureRecovery

M>1:pt2/pt0=ni*(1‐.075*[M‐1]^1.35) (51)

=3.292803708

Duringtheoptimizationphase,adesigntradestudycanbeviewedinAppendixB

InletDesignAnalysisTradeStudies.ThefinalselectiondisplaystheCFDresultantanalysis

inFigure21a,b,andc.

 

(a) 

(b)

Page 54: Innovation in Commercial Supersonic Aircraft with ...

‐52‐

 

(c) 

Figure21:SupersonicextendedandoptimizedpanelchannelCFDanalysisforinletdesign

(a)Pressure(b)MachNumber(c)Velocity

4.4‐InitialWeightCalculations

Initialsizingcalculationsaredonetodeterminetheemptyweightaswellasthe

take‐offweightoftheaircraftdesign.Thesecalculationsforthisparticulardesignarebased

onempiricalequationsandhistoricaldatafoundinsimilaraircraftwithsimilarproperties.

MissionProfileoftheAircraft

Figure22:Themissionprofileoftheaircraft

Page 55: Innovation in Commercial Supersonic Aircraft with ...

‐53‐

EstimateofTake‐OffGrossWeight

Calculatingtake‐offweightusesthefollowingequationusingtheweightofthe

passengersandtheweightofthepayload.FromtheAircraftDesigntextbook[10],mission

segmentweightfractionswerefoundusingTable3.2.

Thefollowingequationisusedtocalculatedanapproximatedgrosstake‐offweight.

(52)

Thefuelweightfractioniscalculatedusingthefollowingequationinregardstothe

missionsegment.

. (53)

Theemptyweightfractioniscalculatedusingtheequationbelow.Sincethedesign

willbeinsupersonicconditions,themostapproximatevaluethatismostsimilarwouldbe

amilitaryjetfighter.Thus,valuesforamilitaryjetfighterwereusedintheemptyweight

fractioncalculation.

. . (54)

UsingtheBreguetrangeequation,thiswasusedtocalculatedtheweightfractionfor

climb.

(55)

Page 56: Innovation in Commercial Supersonic Aircraft with ...

‐54‐

Byusingtheseequations,anapproximatedweightwascalculatedusinganiterative

process.Thecalculatedemptyweightoftheaircraftwasfoundtobeapproximately

138,482.04poundsandthetake‐offweightwasfoundtobe317,432.72pounds.Adetailed

calculationcanfoundintheAppendixI.

Figure23:ComputerAidModeldemonstratingcruiseclimbpriortosupersoniccruise

mission.

4.5‐ComputationalFluidDynamics

SolidWorksisusedtoperformtheCFDanalysesforvaryingpartsoftheaircraftand

engine. Itwas selectedas the team’s sole sourceofCFDanalysesdue to easeofuse and

commonfamiliarity.Dependingonthepartsexamined,certainkeyparametersweresolved

for.Forexample,whenstudying the flowthrough thenozzle, thevelocity,Machnumber,

pressure,andtemperaturewerethekeyaspects.Thesetestswouldenlightentheteamabout

howhardthenozzlewouldexpeltheflow,ifthejetcouldreachMach1.6‐1.8at55kft,and

howmuchnoisetheenginewouldproduceviatheexitvelocity.SeeninAppendixA,B,and

CarevariousCFDanalysesperformedonsomeofthecomponentsoftheaircraft.

4.6‐ComputationalMethods‐PARA

PARAisasupplementalpieceofsoftwareprovidedbyAIAAthroughtheElementsof

Propulsion text by Jack D.Mattingly. PARA is a useful software package for this project

because it is capable of conducting simultaneous equations involved in parametric cycle

analysis.Withthisability,varioustradestudieswereconductedonthebaselineengine.For

this program, input data is required to solve for the iteration variables desired. In this

program,asetofinputdatawasprovidedbyAIAA.PARAallowsforathroughcomparison

Page 57: Innovation in Commercial Supersonic Aircraft with ...

‐55‐

ofvariedinputvalueswhichnotonlytabulatesthedatabutalsographsit.Theinputvalues

aswellastheoutputdeliverablesareseenbelow.

Figure24:Inputparametersintotheprogram

TheparametersplacedinsidethePARAprogramareplacedshowninFigure24.The

designvaluesareshownonthebottomleftcorneroftheinputwindow.Thesevaluesare

designatedfortradestudiesandareusedtodeterminethecombinationofparametersthat

willmeettheneedsofthedesireddesign.

Page 58: Innovation in Commercial Supersonic Aircraft with ...

‐56‐

Figure25:OutputvaluesfromtheprogrambasedoniteratedLPCPressureRatio

Figure25isanexampleoftheoutputresultsthatcomefromthePARAprogram.The

results show the iterations on the LPC pressure ratio. For each iteration, values for the

thermalefficiency,propulsiveefficiency,fueltoairratio,andmanyotherenginevaluesare

calculated.ThePARAprogramispowerfulinconductingmultipletradestudiesonmultiple

parameters.AnexampleofonetradestudyisshownwithFigure26.

Page 59: Innovation in Commercial Supersonic Aircraft with ...

‐57‐

Figure26:OutputvaluesfromtheprogrambasedoniteratedLPCPressureRatio

InFigure26,theoutputvaluesfromtheLPCcompressoriterationsallowedforplots

ofvaryingresults.ForFigure26,theoverallefficiencyoftheenginecanbeobservedwith

regardstotheLPCpressureratio.AmoredetailedanalysisofplotsareseeninAppendixD.

InAppendixD,carpetplotsweregeneratedtoplotmultiplesetsofdatainonegraph.The

carpetplotswillaidinrefiningtheoverallenginedesign.

4.7‐ComputationalMethods‐TURBN

TURBN is another supplemental software provided through the Elements of

Propulsion text by Mattingly. It is valuable because with it, one can solve simultaneous

equations concerning turbine performance. However, the software has some constraints

withcertainparameterssuchaslimitationsforthemeanradiusandthetemperature.But

withit,simulationswereabletobedoneonasimilarengine.Toinitiatetheprogram,input

Page 60: Innovation in Commercial Supersonic Aircraft with ...

‐58‐

variablesmustbesubmittedforthesoftwaretosolveforthespecifiedvariables.Theinput

dataisprovidedbyAIAAwithassumptionsalsobeingmadeforcertainvaluesbasedonthe

software’ssuggestionandthetext.Belowaresamplecalculationsdonefromtheprogramfor

thefirststageoftheturbinealongwithachartgeneratedshowingthetrendsofdifferent

variablesinrelationtoothersandthevelocitytrianglefortherotorandstatorblades.

Figure27:TURBNStage1calculations

Page 61: Innovation in Commercial Supersonic Aircraft with ...

‐59‐

Figure28:TurbineBladeProfile

Figure29:TableofTurbineConstraints(AngularVel.vs.MeanRadius)

Page 62: Innovation in Commercial Supersonic Aircraft with ...

‐60‐

Chapter5:ResultsandDiscussion

5.1‐HistoricalData

Theensure feasibility in thedesigndecisions forcandidateengines forsupersonic

transport,considerationsneededtobemadeinrelationtoexistingengines.Researchwas

done on existing engines to determine their respective technical specifications. Through

varioussources,acompiledtabulated listofvaluesoftechnicalspecificationsforexisting

engineswas created. Specifications tabulated include:Thrust, SpecificFuelConsumption,

Overall Pressure Ratio Fuel Pressure Ratio, Bypass Ratio, Thrust at Cruise, Specific Fuel

ConsumptionatCruise,CruiseSpeed,CruiseAltitude,andotherparametersweretabulated.

Amoredetailedviewofthesevaluescanbeseenintheappendix.

Given that the information for each engine is provided, plots were generated to

determinehistoricaltrendsbasedonenginetype.Multipleplotsweregeneratedusingvalues

found specific to each engine. Parameters for each of these engineswere compared and

plottedtoobtaintrendsthatwouldallowdesigndecisionsforcandidateengines.Toobserve

thedifferencesbetweeneachengine,theseplotscanbefoundintheAppendixH.Usingthe

tabulated data, reasonable values can be determined for each engine. Based on the

requirementsprovidedbyAIAAandNASA,sounddecisionscanbemadeforeachparameter.

The process for selecting design parameters will point to the generated plots from the

historicaldatatoaligndesignselectionswithinareasonablerange.

5.2‐TradeStudyEngineDesign

Togeneratetradestudiesfromthetabulatedhistoricaldata,acomparisonwasmade

between two varying specifications. Using these respective parameters, trends can be

observed.Forthethrustplots,thepointswereextractedfromthehistoricaldataandplotted

againstothervaluestodeterminethetrendsforbothmilitaryandcommercialaircraft.For

Page 63: Innovation in Commercial Supersonic Aircraft with ...

‐61‐

efficiency plots, baseline valueswere selected and kept consistent. To observe changing

effects,asingleparameterwaschangedtoobservetheefficiencies.Thermalandpropulsive

efficienciesweredeterminedforeachengine.Giventhevaryinggeometriesofeachengine,

valuesthatwerekeptconstantwere:

Cruiseconstantparameters:

‐ Altitude

‐ Airspeed

‐ Temperature

‐ Nozzleandcoreexitvelocities

‐ Speedofsound

‐ Fueltoairratio

These listedparametersarethenusedinthecorrespondingefficiencycalculations

locatedintheAppendixI.Thedatafromourgraphsarewithrespecttovaryingbypassratio,

thus,thereisaconstantincreaseinrelationtooverallefficiencyseenintheappendix.

5.3‐DiscussionofHistoricalData

Tradestudieswereconducted forbothmilitaryandcommercialaircraftand their

respectiveengines.BycomparingthrusttoseveralotherparameterssuchasOPR,TSFC,and

BPR,differenttrendscanbefound.AsseeninAppendixI,thrustisdirectlyrelatedtothe

OPR, displaying a linearly increasing trendline. Thismakes sense since the difference in

pressureisacontributingfactortohowfastanaircraftcantravel.

Avarietyoftrendscanbeobservedfromthegeneratedplots.Thesetrendsareuseful

whendetermining theparameters for selecting values for the final design of the engine.

Basedonthetrendsobservedfromtheplotsgenerated,avaluewithintheplottedrangecan

beselected.Foraspecificdesignparameter,anassociatedplotandvaluecomesasaresult.

Giventhedatathroughmultipleaircraftengines,itprovidesperspectiveontheoverallstate

Page 64: Innovation in Commercial Supersonic Aircraft with ...

‐62‐

ofjetenginetechnology.Notonlycanadecisiononparametersfortheenginecanbemade,

butifacertainparameteristargeted,anassociatedsetofdatawillcomeasaresult.Thus,

throughbackloggingofallpreviouslyplottedengines,adeeperinvestigationcanbedone.

For thatselectedparameter,anengine isassociatedandanalysiscanbemadeonengine

geometries,numberofcompressorstages,andotherparameterscrucialtoenginedesigncan

beextracted.Thedepthofthehistoricalplotswillaidinfurtherresearchandinvestigation

foroptimizationofthefinalenginedesign.

Asaresultofgeneratinghistoricalplotsforthegivenengines,abaselineparametric

cycleanalysisprogramwasalsogenerated.Duringthedurationofprogressmadeforthis

project,theparametersusedtocalculateandgenerateefficiencyplotsalsostreamlinedthe

processfordesigninganengine.Throughthecompileddata,furtheranalysiscanbemade

forvariousdesignchangeslater.Duetotheiterativenatureofparametriccycleanalysis,by

generating the extensive and involved program for calculating overall efficiency, the

processesneededforfurtherinvestigationandoptimizationofthedesignedengine.Asthe

challengeofdesigninganenginebecomesmore involved, throughthedesignedprogram,

valuescanbechangedontheflyforrefineddecisionmakingandcomparisonofparameters

chosen experimentally to compare results such as efficiency, TSFC, and turbine inlet

temperature.

Chapter6:Prototype

6.1‐ComponentDesign

Forthefandesign,onemodelingthefanfortheGEGenx‐1Benginesisused.Thefan

hasabypassratioof9andafanpressureratioof2.25.Thediameterofthefanis70.3inches.

Itismadefromcompositematerialandforthesakeofthedesignshouldbehollowedoutto

reduceweight.The leadingedgewillbemadefromtitaniumforreasonsdiscussed inthe

literaturereviewsection.Belowarepicturesofthefanbladeandthefanhubassembly.

Page 65: Innovation in Commercial Supersonic Aircraft with ...

‐63‐

Figure30:EngineFanBlade Figure31:EngineFanHub

Thenextpartoftheenginethatwasdevelopedusingmethodsotherthannumerical

analysiswasthenozzle.Usingthebelowequationsandthedesignrequirements,theteam

wasabletodeterminewhatexittothroatarearatiowasneededforMach1.6flight.

Figure32:NASACalculationsforNozzleBehavior

Calculationssuggestanarearatioof2.16andanozzlepressureratioaround9.25.

Thesecalculationsalongwithresultsfromsimulationsforthethermodynamicsinvolvedin

theturbomachinerywillhelpcompleteanozzlesuitableforthemission.AfterCalculations

werefinisheddifferentdesignsforthenozzleweretestedtoconfirmthecalculationsusing

SolidWorksandCFDanalyses.SeeAppendixCfortheCFDanalysisresults.TheCFDshowed

thatboththeconvergent‐divergentnozzleandtheplugnozzledesignwereabletoachieve

Page 66: Innovation in Commercial Supersonic Aircraft with ...

‐64‐

Mach1.6.Because theplugdesignwasmorereliable (consistent flowbehavior) than the

convergent‐divergentnozzlealsodepictedinAppendixC,itwaschosenforthefinaldesign.

TheaircraftmustalsoreachspeedsofMach1.8.Tocompensateforthis,theteamchoseto

gowithavarying‐areanozzledesigntoincreaseanddecreasetheexitareaaccordinglyto

achievewhatever speed the aircraftwill require throughout themission.BelowareCAD

modelsofthefinaldesignoftheVaryingPlugNozzle.

(a) (b)

(c)

(d)

Figure33:Modelsof:nozzle(a),plugdesign(b),fullyopenednozzleexit(c),fullyclosed

nozzleexit(d)

The model was created using some parts and methods found online in order to

demonstratehowthenozzlepanelscanchangearea.Thepanelswillideallybetestedtosee

ifaddingchevronscanhelpdecreasethevelocityoftheexhaustjet.Preliminarytestsshowed

exitvelocitiesupto4,000ft/s incertainareasasseenintheCFDanalysisinAppendixC.

However,thiswasnotconsistentwiththemaximumMachnumbercalculatedwhichinsists

thatanerroroccurredduringtheanalysis.Otherideasconsideredweretoaddathermal

Page 67: Innovation in Commercial Supersonic Aircraft with ...

‐65‐

acoustic shield and chevrons at the end of the panels to see how thatwould change the

velocityresults.

6.2‐AircraftModel

Thedesignofthefuselagewellundergoesvariousdesignconfiguration.Insupersonic

flow,everyaspectofthevehiclemustbeutilizedtomaximizethrust,aswellasreducingdrag

andspecificfuelconsumption.Airfoilhavestronghistoricaldatabaseandarchivestoaccess

airfoil characteristics. Fuselage have a small selection of general shapes that base of the

cylindricalgeometry.Inthenextvehicledesignchallenge,amathematicaloval‐conicalshape

will be modeled to integrate the high factors of aerodynamics and maintain feasibility

spacing for passengers. The design selection combines various combinations of sized

fuselage sections. This desired design will to maximize passengers in specific business

economysections.

Figure34:Isometricandprofileviewofsupersonicprototypeaircraft

Page 68: Innovation in Commercial Supersonic Aircraft with ...

‐66‐

Duetosupersonicshockwaves,thefuselagewillhouseallitspassengersandcrew

nearthefrontofthevehicle.Thisallowstheenvironmentalcontrolsystemstobestoredin

therearoffuselage.Thispromotessaferconnectionsfortheenergysupplytothemixedflow

turbofanengines.Also,astheaircraftappliesanenormousamountofthrusttotheengines,

loudvibrationsaremorepronetoresonatethroughthefuselage.Havingtheplacementof

engines further back reduces the amount of vibrations the passengers will experience.

ShowninFigure35,theprofileloftviewsofthedevelopmentalsupersonicprototypemodel.

Figure35:ComputerAidModelbodyloftingprocessofsupersonicaircraftvehicle

Forthedesignedtargetedgoal,aseriesofconfigurationsofaircraftmodelsareexplored.The

first design focusedon a simplistic, yet effectivedelta trianglewing shown inFigure36.

Design1hasalargeverticalstabilizerinordertocounteractaggressiveunwantedmoments.

Figure36:Design1conceptwithdoubledeltastraightwinggeometry(isometricandrightsiderespectivelyprofiles)

Withfurtheranalysisandnumericalcalculation,anoptimizationphaseisapproached

inordertomeetweightrequirements.TheweightfromDesign1exceededthemaximum

Page 69: Innovation in Commercial Supersonic Aircraft with ...

‐67‐

requirements. Thus, Design 2 aims to reduce weight by trimming area from the wing

geometry.AsseeninFigure36,thewinggeometryisnowinspiredandintegratingadouble

deltawingconfiguration.

 

Figure37:Design2conceptwithdoubledeltastraightwinggeometry(isometricandright

siderespectivelyprofiles)

ThethirditerationisanintegrateddesignusingcuesfromDesign1and2byreducing

bothweightanddrag.Anextensivecomputational fluiddynamicanalysis isconductedto

understandthecompressibleeffectsofthevehicle.AppendixAdisplayscomputationalfluid

resultsforDesign3.

Page 70: Innovation in Commercial Supersonic Aircraft with ...

‐68‐

Figure38:Design3conceptwitharceddeltastraightwinggeometry(isometric,front,

rightsiderespectivelyprofiles)

Duringthephysicsflowsimulations,theobjectiveistounderstandtheflowfieldasit

interactswiththemailbody.ThelessonsfromDesign3,itimprovesandreducesthedrag

coefficient as well asmaintains stability in flight shown from the computational model.

Figures39showstheresultantMachnumber,pressureandtemperaturecomparison.

(a)

Page 71: Innovation in Commercial Supersonic Aircraft with ...

‐69‐

(b)

(c)

Figure39:Design3conceptwithcomputationalfluiddynamicmodelmeasuring(a)Mach

number,(b)pressure,and(c)temperaturerespectively

Afterextensivesimulationbothnumericallyandcomputationally,thedesignofthe

vehiclebecomesmorematuredovertime.Fromengineinletandengineanalysis,the

geometryofthedesignrequirestheinletlengthandwidthtobeincreasesapproximately

by15%foroptimalefficiency.Fortheresizingoftheinlet,configurationofengine

placementisconsideredintwolocations.ThefirstorientationdepictedinFigure40,shows

ductslocatedbothaboveandbelowthevehicle.Incomparison,Figure41demonstrates

bothductsandenginesunderneaththefuselage.Thiseasesmaintenancecapabilitiesand

allowscleanstreamlineairflow.Inretrospect,theaircraft'scenterofgravityshifts

backwardrequiringmorestructuralsupportandlongerlandinggears.

Page 72: Innovation in Commercial Supersonic Aircraft with ...

‐70‐

Figure40:DesignconceptwithenginelocationconfigurationforOrientation1(oneengine

above,withonebelow).

Figure41:DesignconceptwithenginelocationconfigurationforOrientation2(two

enginesbelowfuselage)

6.3‐EngineModel

Acomprehensiveassemblyofeachmaindrivingcomponentofthesupersonicpower

plantismodeledtotherequiredsizeshowninFigure42aandb.Thepropulsionsystemisa

highbypassturbofanenginewithbaselinecomponentsinfluencedfrombothmilitaryand

commercialvehicles.Theengineiscomposedofcompositesweptfanbladeswithadiameter

of70.3inches.Thecompressorhas11stageswith10stagesofstatorblades.Theburner,or

alsoknownascombustionchamberismodeledfromtheTAPSIICombustorCleanProject

(CLEEN).

Page 73: Innovation in Commercial Supersonic Aircraft with ...

‐71‐

(a)

(b)

Figure42:Designconceptforsupersonicenginepowerplant(a)sideprofile(b)front

profile

6.4‐InteriorDesignConfiguration

A design study was conducted to identify possible seating configurations for the

interiorof theaircraft.Considering thisaircraft isdesignatedasabusinessclassaircraft,

accommodationsmustbemadetoensureasenseof luxuryinthecabin.Twoapproaches

weremade in terms of identifying the seating desired. One approachwas to implement

standardseating found ineconomyplusseating found inthecurrentstateofcommercial

aircraft. The other approach was to utilize a more modern and private class seating

configuration. In addition, the various seating configurations can be utilized with each

seatingarrangement.Usingthetwostylesyieldaslightlyvaryingseatingarrangementinside

thecabin.Thedifferentconfigurationsareshowninthissection.

Page 74: Innovation in Commercial Supersonic Aircraft with ...

‐72‐

StandardConfiguration

Figure43:Standardconfigurationlayout

Figure44:Sideviewofstandardseating

Page 75: Innovation in Commercial Supersonic Aircraft with ...

‐73‐

Figure45:Overheadviewofstandardconfiguration(Left),

Figure46:IsometricView(Right)

Page 76: Innovation in Commercial Supersonic Aircraft with ...

‐74‐

Figure47:Detailedviewofseating[28]

Figure48:Detailedviewofseating[28]

Page 77: Innovation in Commercial Supersonic Aircraft with ...

‐75‐

LuxuryClassConfiguration

Figure49:Luxury/PremiumEconomySeating

Figure50:Sideviewofseating

Page 78: Innovation in Commercial Supersonic Aircraft with ...

‐76‐

Figure51:Overheadviewofconfiguration

Figure52:IsometricView(BottomRight)

Page 79: Innovation in Commercial Supersonic Aircraft with ...

‐77‐

Figure53:Detailedviewsofmodernandupdatedluxuryclassseating

Page 80: Innovation in Commercial Supersonic Aircraft with ...

‐78‐

The standard seating configuration of this aircraft will seat over 100 passengers

comfortably.Theonlydownsidetothisconfigurationisthatitonlyoffersverybasicseating

withminimal features for a business class seat. One aspectwith themore basic seating

configuration is that, depending on the target, if more passengers are desired then the

commercialstandardconfigurationcanbeutilized.Although,anegativesideeffectsofthis

configuration is that it does not offer luxury or first class amenities for passengers. If

additional seats were added to the existing configuration it would seat 132 passengers

comfortably.

Luxury/PremiumEconomyseatingallowsfor themaximumamountofpassengers

onboardtheD3aircraft.Usingatwobytwoseatingconfiguration,multiplepassengerscan

beaccommodatedontheaircraft.Abusinessclasssuiteseatingoptionisalsoavailablefor

implementationintheaircraft.Eachpremiumeconomyseatfeaturescontrolsonthearm

rest.Thepremiumeconomyconfigurationseats132passengersusingthetwobytwoseating

arrangement.Theseatscanalsoactasabedplatformbyextending theseatout.Further

studiescanbemadeontheinteriorseatingconfiguration,althoughthesemodelswillassist

indescribingtheoveralldesignofthisaircraft.

Page 81: Innovation in Commercial Supersonic Aircraft with ...

‐79‐

Chapter7:Conclusion

Theinitialdesignoftheaircraftandenginehavebeencreated.Usingnumericaland

computationalmethods,thedesignshavegonethroughverificationoffeasibilityandvalidity

indesignchoices.Fromthetradestudyitemsfortheengine,performancecalculationsand

simulationswerecreated todetermineaprototypephase for theenginedesign.Through

simulations,variousconditionswereselectedtoobservethecharacteristicsoftheaircraft

throughSolidWorks.

Afterliteraturereview,aircraftdesignswerealsoselectedbasedonadesignmatrix

andanobjectiveTOPSISanalysis.Enginedesignparametersandgeometrieswerestudied

andimplementedintheiterativedesign.Advancedcalculationsfornumericalmethodswere

foundthroughvariouspublicationsandtextbooks.Toensurevalidcalculations,supersonic

equationsandstudieswerereviewed.Athoroughstudyofinletdesignswasalsoreviewed

andsimulatedusingSolidWorks.Then,throughexistingenginesandnozzledesigns,further

reviewsallowedfurtherinvestigationsonotheralternativesalongwithsimilarselectionsto

implementintheworkingdesign.

Throughtheengineeringanalysis,ParametricCycleAnalysiswasconductedonthe

baselineengineandatradestudywascompletedusingcomputationalmethodsusingthe

PARA and TURBN programs provided by AIAA. Supersonicwave drag calculationswere

foundafterextensiveresearchonpreviouspublicationsandpapersinthesamefield.Forthe

aircraftandengine,supersonicwavedragguidedmanyofthecomponentselectionsforthis

project.Inletdesigncalculationswerealsofoundandcreatedtodetermineasuitableinletto

slowdownthefreestreamairenteringthecoreandbypassoftheengine.Byconductingthis,

itwillreducethestressesonenginecomponentsandensureasmoothtransitionofairfor

the overall engine. CFD was conducted on the various designs for varying supersonic

conditions.Ofthesesimulations,theinlet,aircraft,andenginecomponentsunderwentaCFD

simulationtoobserveeffectsonpressure,Machnumber,temperature,andvelocity.

Page 82: Innovation in Commercial Supersonic Aircraft with ...

‐80‐

The prototypes for this project include component design, engine models, and

interior design configurations for the finalized aircraft. The component design involves

generateddetailedmodelsofthefan,inlet,compressor,turbineandnozzle.Fortheaircraft,

variousconfigurationsusingvaryingaircraftpropertiesandgeometriesaregenerated. In

addition, detailed CFD was conducted on the overall aircraft design. The interior

configurationof theaircraftwascreatedusing twovaryingstyles,oneapproach involves

usingasimilarformatandseatofstandardcommercialairlinersandthesecondapproach

involves using a moremodern design. Each configuration seats at least 100 passengers

althoughthefirstapproachseats100passengersexactlywiththetrade‐offoflackingany

luxuryfeatures.Bygeneratingseatingconfigurations,itallowsavisualonthefuselagedesign

aswellasconsiderationsforspaceofpassengersinside.

This project involves various trade studies and designs. A finalized model of the

aircraftwithvariousengineplacementconfigurationsaremadetoaccommodatetheengine

sizeaswellastoobservetheeffectsofcleananddisturbedairontheaircraft.Totakethis

projectfurther,3Dprintsofthecomponents,aircraft,andenginecanbemadetoobserve

manufacturingprocessesthecomplexityofmanufacturing.Also,3Dprintscanalsobeused

inawindtunneltoobservetheeffectsofdragontheaircraft.Weightreductioninvarious

componentscanbemadeaswellasacousticlevelsofthisdesigncanalsobegeneratedto

furtherrefinethedesign.Newtechnologiesarealwaysadvancingandtheimplementationof

theseinthefinalizeddesignshouldbetakenintoconsideration.

Page 83: Innovation in Commercial Supersonic Aircraft with ...

‐81‐

Chapter8:FutureWork

Givenmore time to develop the design, further exploration of different fan blade

airfoilsandtechnologiescanbedone.Givenhowfarresearchershavecomenowandwhere

theyareprojectedtogo,thepossibilitiesareendless.Moreexplorationofceramicandmetal

matrixmaterialalongwithconductingmoreteststoseewhichmaterialswouldbestfiteach

component could be done. Another area to expand uponwould be the hub assembly. A

common concern found during initial research was finding better ways to connect the

varyingcomponentstoachievemaximumweightsavingsandefficiency.

TryingtodevelopneworenhancecurrentstudiesontheTAPSIIleanburncombustor

could also be initiated. The technology seems very promising and will propel the low‐

emissionschallengeforwardtoboundsyetforeseen.Beingfairlynewtechnologynotmuch

publicknowledgewasfoundonitinawaytoseehowitwouldperformwithvariousengines

andengineconfiguration.

Concerningtheturbineandcompressor,unfortunately,timewasspentstudyingthe

effectsduetolimitedtimeandresources.However,thatdidnotstoptheteamfromwanting

tocarefullydevelopananalysisplan todeterminewhatwouldbe thebestgeometryand

configuration to create an efficient flow through the core of the engine. With our low

efficiencyofabout19%, thereseems tobe reason tobelieve thatmorecouldbedone to

improvethepropulsiveefficiencythroughthesetwocomponents.

Withthenozzle,therearenumerousapproachestonoisereduction.Furtherresearch

canbemadetodeterminethenoiseeffectsonhumansbyexitvelocitycouldbedeveloped

and studied upon. Each method would require different geometries and could result in

weightgains,soimprovinguponcurrentnoisereducingmethodscouldbeverybeneficialto

theindustry.

Concerning emissions, the engine can be designed to lower nitrogen oxide (NOx)

emissions.Emissionlevelswillbeintermsofthetotalmassoftheemissioncreatedduring

acertainlanding‐takeoff(LTO)operationalcycleperkilonewtonofratedtakeoffthrustat

Page 84: Innovation in Commercial Supersonic Aircraft with ...

‐82‐

sea level (std). For next generation supersonic aircraft, NOx emissions contribute to the

deterioration of the stratospheric ozone because they cruise at higher altitudes. A NOx

emissionsindexof5g/kgfuelduringcruiseisthedesignrequirementforoursupersonic

engineforfurtherdevelopmenttofulfiltheAIAArequirements.

Afterallofthestudiesandanalyseswouldbedone,theteamwouldliketoexplore3‐

Dprintingandsupersonicwindtunneltestingoftheaircraftfuselage,inlet,nozzle,andany

appropriatecomponentthatcouldbedonetogatherreal‐lifetestresults.Thisalongwitha

systemanalysis of the entire engine could beperformed to showhow the enginewould

functionrealistically.Afterthetestsaredone,allofthematerialdataandweightscouldbe

gathered togiveareal‐timerenderingofwhatanaircraft suchas theonecreatedwould

require to be used in industry. This would include pricings, maintenance requirements,

suggestedmissions,etc.

Page 85: Innovation in Commercial Supersonic Aircraft with ...

‐83‐

Acknowledgements

KennesawStateUniversityo DepartmentofIndustrialandSystemEngineeringo AdeelKhalid,Ph.D.o ChristinaTurner

AmericanInstituteofAeronauticsandAstronautics

NationalAeronauticsandSpaceAdministration

Page 86: Innovation in Commercial Supersonic Aircraft with ...

‐84‐

References

[1]Welge, Harry R, et al.N+2 SupersonicConceptDevelopmentand Systems Integration .

NASA,5Aug.2010.

[2] Coen, Peter. ARMD Strategic Thrust 2: Innovation in Commercial Supersonic Aircraft.

NASA,24May2016.

[3]WhatIsNumericalPropulsionSystemSimulation(NPSS®)?SouthwestResearchInstitute,

MechanicalEngineeringDivisionFluids&MachineryEngineeringDepartment,3June2016.

[4] GOLINVAL, J C. “Mechanical Design of Turbojet Engines .” Mechanical Design of

Turbomachinery Mechanical Design of Turbojet Engines . Mechanical Design of

TurbomachineryMechanicalDesignofTurbojetEngines.

[5] Mason, F. Supersonic Aerodynamics. 2016, Supersonic Aerodynamics,

www.dept.aoe.vt.edu/~mason/Mason_f/ConfigAeroSupersonicNotes.pdf.

[6]Cantwell,BJ.AircraftandRocketPropulsion.pp.1–21,AircraftandRocketPropulsion.

[7]Slater, JohnW. “External‐CompressionSupersonic InletDesignCode.”2011Technical

Conference.2011TechnicalConference,11Mar.2011,Ohio,Cleveland.

[8] “Inlet Performance.” NASA, NASA, 5 May 2015, www.grc.nasa.gov/www/k‐

12/airplane/inleth.html.

[9]“Gas Turbine Theory”, H.I.H Saravanamuttoo, G.F.C Rogers &.H. Cohen, Prentice Hall, 5th

Edition 2001.

[10] “Aircraft Engine Design”, J.D. Mattingly, W.H. Heiser, & D.H. Daley, AIAA Education

Series, 1987.

[11] “Elements of Propulsion – Gas Turbines and Rockets”, J.D. Mattingly, AIAA Education

Series, 2006.

Page 87: Innovation in Commercial Supersonic Aircraft with ...

‐85‐

[12] “Jet Propulsion”, N. Cumpsty, Cambridge University Press, 2000. 5. “Gas Turbine

Performance”, P. Walsh & P. Fletcher, Blackwell/ASME Press, 2nd Edition, 2004.

[13] “Fundamentals of Jet Propulsion with Applications”, Ronald D. Flack, Cambridge University

Press, 2005.

[14] “The Jet Engine”, Rolls-Royce plc. 2005.

[16] “Mechanics and Thermodynamics of Propulsion”, Hill, Philip G. and Peterson Carl R.,

Addison-Wesley Publishing Company, Reading, Massachusetts, 1965.

[17] Kareliusson, Joakim, and Melker Nordqvist. Conceptual Design of a Supersonic Jet Engine.

Sept. 2014.

[18] Heath, Christopher & Gray, Justin & Park, Michael & J. Nielsen, Eric & Carlson, Jan-Renee.

(2015). Aerodynamic Shape Optimization of a Dual-Stream Supersonic Plug Nozzle.

10.2514/6.2015-1047.

[19] Chutkey, Kiran & Vasudevan, B & Balakrishnan, N. (2014). Analysis of Annular Plug Nozzle

Flowfield. “Journal of Spacecraft and Rocket.” 51. 10.2514/1.A32617.

[20] Debiasi, Marco, and Dimitri Papamoschou. Cycle Analysis for Quieter Supersonic Turbofan

Engines. “37th Joint Propulsion Conference and Exhibit”. 2001, doi:10.2514/6.2001-3749.

[21] “Applied Aerodynamics: A Digital Textbook.” Supersonic Drag Estimation,

docs.desktop.aero/appliedaero/compress3d/ssdragest.html.

[22] Amoo, Leye M. On the Design and Structural Analysis of Jet Engine Fan Blade Structures.

“Progress in Aerospace Sciences.” Vol. 60. 01 July 2013, pp. 1-11. EBSCOhost,

doi:10.1016/j.paerosci.2012.08.002.

[23] Marsh, George. Feature: Aero Engines Lose Weight Thanks to Composites. “Reinforced

Plastics.” Vol. 56. 01 Nov. 2012, pp. 32-35. EBSCOhost, doi:10.1016/S0034-3617(12)70146-7.

[24] “GE Adaptive Cycle Engine.” GE Aviation, www.geaviation.com/military/engines/ge-

adaptive-cycle-engine.

Page 88: Innovation in Commercial Supersonic Aircraft with ...

‐86‐

[25] Samuelsen, Scott. Rich Burn, Quick-Mix, Lean Burn (RQL) Combustor. University of

California.

[26] Stickles, Rick, and Jack Barrett. TAPS II Technology Final Report - Technology Assessment

Open Report. “FAA Continuous Lower Energy, Emissions and Noise (CLEEN) Technologies

Development.” June, 2013.

[27] Peterson, Christopher O, et al. Performance of a Model Rich Burn-Quick Mix-Lean Burn

Combustor at Elevated Temperature and Pressure. NASA, 2002, pp. 1–81.

[28] “Cabin Seats” GRAB CAD, https://grabcad.com/library/cabin-seats-1

Page 89: Innovation in Commercial Supersonic Aircraft with ...

‐87‐

Appendices

AppendixA:ComputationalFluidDynamicAnalysis

Figure54:(a)ridesideprofileofsimulatedpressureandmachspeeds(b)Shearstressand

pressureformation(c)Acousticpowerlevelreadingatcruiseconditions

Page 90: Innovation in Commercial Supersonic Aircraft with ...

‐88‐

AppendixB:InletDesignAnalysisTradeStudies

Figure55:TradeStudyandBaseline

InletDesignChoiceSelection

Page 91: Innovation in Commercial Supersonic Aircraft with ...

‐89‐

ChanelExtendedControlInlet‐Design1

 

            (a)               

(b)

(c)

Figure56:Design1sidecutplotprofileviewfor:(a)Pressure(b)Velocity(c)Acoustic

PowerLevel

Page 92: Innovation in Commercial Supersonic Aircraft with ...

‐90‐

SupersonicSpikeExtendedControlInlet‐Design2

 

            (a) 

 

            (b) 

 

(c) 

Figure57:Design2sidecutplotprofileviewfor:(a)Pressure(b)Velocity(c)

Temperature

Page 93: Innovation in Commercial Supersonic Aircraft with ...

‐91‐

AppendixC:NozzleDesignAnalysis

(a) (b)

(c) (d)

Figure58:Design1sidecutplotprofileview:(a)Pressure,(b)MachNumber,(c)

Temperature,and(d)Velocity.

Page 94: Innovation in Commercial Supersonic Aircraft with ...

‐92‐

(a)( b)

(c) (d)

Figure59:Design2sidecutplotprofileview:(a)Pressure,(b)MachNumber,(c)

Temperature,and(d)Velocity.

Page 95: Innovation in Commercial Supersonic Aircraft with ...

‐93‐

AppendixD:CarpetPlots

TheplotsgeneratedinAppendixDprovideinformationontheperformanceofthe

baselineaswellasthedesignedengineatthedesignpoint.Inthiscase,thedesignpointof

theenginesisobservedatsupersoniccruise(Mach1.6).ThePARAprogramprovidedbythe

AIAAsoftwarepackagesuitefromtheElementsofPropulsionTextisused.Inputparameters

areplacedinsidetheprogramandtheoutputsforeachofthetradestudiesareprovidedin

the carpet plots. Each plot is with respect to Specific Thrust and TSFC. The carpet plot

features two varying inputs based on a maximum and input value for the number of

iterationsrequiredforthecalculation.

Toreadthecarpetplotstheformatisasfollows:

#Cycle‐VarM0/Tt4/Pic/BPR/Alt

Page 96: Innovation in Commercial Supersonic Aircraft with ...

‐94‐

TradeStudy1:T4vsFPR

TemperatureatT4 FanPressureRatio

Minimum:2600R Minimum:8

Maximum:3200R Maximum:16

Page 97: Innovation in Commercial Supersonic Aircraft with ...

‐95‐

TradeStudy2:FPRvsCPR

FanPressureRatio CompressorPressureRatio

Minimum:8 16

Maximum:16 32

Page 98: Innovation in Commercial Supersonic Aircraft with ...

‐96‐

TradeStudy3:T4vsCPR

TemperatureatTurbineInlet CompressorPressureRatio

Minimum:2600R 16

Maximum:3200R 32

Page 99: Innovation in Commercial Supersonic Aircraft with ...

‐97‐

AppendixE:AircraftDesignComputerAidModels

 

 

 

Figure60:Design1conceptwithstraightdeltawinggeometry(isometric,front,rightside

respectivelyprofiles)

Page 100: Innovation in Commercial Supersonic Aircraft with ...

‐98‐

 

 

Figure61:Design2conceptwithdoubledeltastraightwinggeometry(isometric,front,

rightsiderespectivelyprofiles) 

Page 101: Innovation in Commercial Supersonic Aircraft with ...

‐99‐

 

Figure62:Design3conceptwitharceddeltastraightwinggeometry(isometric,front,

rightsiderespectivelyprofiles)

Page 102: Innovation in Commercial Supersonic Aircraft with ...

‐100‐

Figure63:Frontalnoseaircraftdesignbaseline:(isometric,rightside,frontrespectively

profiles)

Figure64:Frontalnoseaircraftdesignextendednoseoptimization:(isometric,rightside,

frontrespectivelyprofiles)

Page 103: Innovation in Commercial Supersonic Aircraft with ...

‐101‐

AppendixF:EngineInitialConcepts

Figure65:EngineConcept

ShowninFigure65,theengineconceptdepictsadualspoolmixedflowturbofan.The

enginewillbetestedwithvaryingnumberofstagesforthecompressorandtheturbineto

Page 104: Innovation in Commercial Supersonic Aircraft with ...

‐102‐

determinethebestcombinationforoptimalperformance.Theenginewillbeoutfittedwith

acustominletandnozzletoexceeddesignrequirements.

Figure66:ConceptNozzleGeometries

Figures 66 depicts different convergent‐divergent nozzles to achieve supersonic

thrust.Thetwonozzlesexploredarethebellshapedandconeshapedones.Furtherteststo

seewhichnozzlefitstherequirementswillbeconductedafterthepressurevaluesarefound

attheendoftheengine’sturbinestage.Eachnozzlewillhaveadifferentrateofpressure

expansionwhichwillresultindifferentmaximumpressurevaluesatthenozzleexit.

Page 105: Innovation in Commercial Supersonic Aircraft with ...

‐103‐

AppendixG:FinalEngineDesignPowerplant

Figure67:Engineisometricandsideprofileofinternalviewingofsupersonicgeometry

Page 106: Innovation in Commercial Supersonic Aircraft with ...

‐104‐

AppendixH:HistoricalDataPlots

Figure68:SpecificFuelConsumptionvsoverallefficiencyforcommercial/civilaircraft

Figure69:BypassRatiovsOverallEfficiencyforcommercial/civilaircraft

Page 107: Innovation in Commercial Supersonic Aircraft with ...

‐105‐

Figure70:OverallPressureRatiovsOverallEfficiencyforcommercial/civilaircraft

Figure71:Specificfuelconsumptionvsthrustforcommercial/civilaircraft

Page 108: Innovation in Commercial Supersonic Aircraft with ...

‐106‐

Figure72:Graphofoverallefficiencyversusbypassratioformilitaryaircraft.

Figure73:SpecificfuelconsumptionvsOverallefficiencyformilitaryvehicles.

Page 109: Innovation in Commercial Supersonic Aircraft with ...

‐107‐

Figure74:Overallpressureratiovsoverallefficiencyformilitary/civilaircraft

Figure75:Specificfuelconsumptionvsthrustformilitary/civilaircraft

Page 110: Innovation in Commercial Supersonic Aircraft with ...

‐108‐

Figure76:OverallPressureRatiovsThrustforMilitaryAircraft

Figure77:BypassRatiovsThrustforMilitaryAircraft.

Page 111: Innovation in Commercial Supersonic Aircraft with ...

‐109‐

Figure78:WeightvsThrustforMilitaryAircraft

Figure79:InletTemperaturevsThrustforMilitaryAircraft

Page 112: Innovation in Commercial Supersonic Aircraft with ...

‐110‐

Figure80:TSFCvsThrustforMilitaryAircraft

Figure81:BypassRatiovsTSFCandFanPressureRatioforMilitaryAircraft

Page 113: Innovation in Commercial Supersonic Aircraft with ...

‐111‐

Figure82:InletTemperaturevsOverallPressureRatioandTSFCforMilitaryAircraft

Figure83:InletTemperaturevsBypassRatioandTSFCforMilitaryAircraft

Page 114: Innovation in Commercial Supersonic Aircraft with ...

‐112‐

Figure84:InletTemperaturevsOverallPressureRatioandEngineWeightforMilitary

Aircraft

Figure85:InletTemperaturevsBypassRatioandEngineWeightforMilitaryAircraft

Page 115: Innovation in Commercial Supersonic Aircraft with ...

‐113‐

Figure86:OverallPressureRatiovsThrustforCommercialAircraft

Figure87:BypassRatiovsThrustforCommercialAircraft

Page 116: Innovation in Commercial Supersonic Aircraft with ...

‐114‐

Figure88:WeightvsThrustforCommercialAircraft

Figure89:TSFCvsThrustforCommercialAircraft

Page 117: Innovation in Commercial Supersonic Aircraft with ...

‐115‐

Figure90:FanPressureRatiovsBypassRatioforCommercialAircraft

Figure91:FanPressureRatiovsBPRvsSFCforSupersonicMilitaryAircrafts

Page 118: Innovation in Commercial Supersonic Aircraft with ...

‐116‐

Figure92:FanPressureRatiovsOPRvsSFCforSupersonicMilitaryAircrafts

Figure93:FanPressureRatiovsBPRvsEngineWeightforSupersonicMilitaryAircrafts

Page 119: Innovation in Commercial Supersonic Aircraft with ...

‐117‐

Figure94:FanPressureRatiovsOPRvsEngineWeightforSupersonicMilitaryAircrafts

Figure95:FanPressureRatiovsBPRvsEngineWeightforCommercialAircrafts

Page 120: Innovation in Commercial Supersonic Aircraft with ...

‐118‐

Figure96:FanPressureRatiovsOPRvsSFCforCommercialAircrafts

Figure97:FanPressureRatiovsBPRvsEngineWeightforCommercialAircrafts 

 

Page 121: Innovation in Commercial Supersonic Aircraft with ...

‐119‐

 Figure98:FanPressureRatiovsOPRvsEngineWeightforCommercialAircrafts

Page 122: Innovation in Commercial Supersonic Aircraft with ...

‐120‐

AppendixI:ParametricCycleAnalysis

Table7:ParametricCycleAnalysisExcelSheet

Page 123: Innovation in Commercial Supersonic Aircraft with ...

‐121‐

Table8:Tableofconstantvaluesforparametriccycleanalysis

Table9:Detailedcalculationsinvolvingpropulsiveandthermalefficiency

Page 124: Innovation in Commercial Supersonic Aircraft with ...

‐122‐

Figure99:ParametricCycleAnalysisProgramforCandidateEngine(Trial1)

Page 125: Innovation in Commercial Supersonic Aircraft with ...

‐123‐

AppendixJ:TOPSISAnalysisandDesignMatrix

Figure100:Designmatrixforpreliminaryselection

Figure101:PrioritizationMatrixforTOPSIS

Figure102:QualitativeScaleandFinalRankingforTOPSIS

Figure103:FinalizedTOPSISDataMatrix

Page 126: Innovation in Commercial Supersonic Aircraft with ...

‐124‐

Figure104:Normalized,criteria,weighteddata,idealsolution,distancefromthepositive,

andnegativematricesforTOPSIS

Page 127: Innovation in Commercial Supersonic Aircraft with ...

‐125‐

AppendixK:InitialWeightCalculations

Figure105:SizingCalculation

Figure106:InputsfortheBeguetRangeequation

Page 128: Innovation in Commercial Supersonic Aircraft with ...

‐126‐

Figure107:BreguetRangeEquationcalculation

AppendixL:TURBNTurbineAnalysisProgram

Figure108:TURBNStage2Analysis

Page 129: Innovation in Commercial Supersonic Aircraft with ...

‐127‐

Figure109:TURBNStage3Analysis

Figure110:TURBNStage4Analysis

Page 130: Innovation in Commercial Supersonic Aircraft with ...

‐128‐

Figure111:TURBNStage5Analysis

Figure112:TURBNStage6Analysis

Page 131: Innovation in Commercial Supersonic Aircraft with ...

‐129‐

AppendixM:Reflections

Challengeshavebeen faced from the beginning of the project. Initially, to gain an

understanding on what direction the group was to take, research was explored on any

currentsupersonictransportaircraft.Laterresearchwasconductedonthoseincorporating

the use of turbofan engines. Both situations were initially retarded by lack of public

information and a seemingly never‐ending encounter with proprietary information.

Eventually,throughpersistentandcollaborativeresearch,enoughdatawasfoundtocreate

astartingdesignpoint.Afteradesignpointandcorrelatingenginechoiceswerefound,the

focusshiftedtowardsgatheringhistoricaldata.Thisagainbecamechallengingduetolimited

informationandhaltsinretrievingoutsidesources(e.g.Jane’sAeroEngines).However,the

team was able to find a list of hundreds of engines to use for trade studies. This was

completedsimultaneouswithindividualresearchanddatacollectionfromvarioussources.

Once enough historical datawas found, the parametric cycle analysis began. This

processprovedmorechallengingthemoreitwasworkedon.Havingtoanalyzethemany

parameters, equations, and variables that go into PCA was challenging. After all of the

constants,assumptions,andstandardvalueswerecollectedanddocumentedonanExcel

sheet, the necessary thought process began to unravel. This was aided by the use of

aerospacetextbooksandwebsitestohelpbreakdownthemanyequationsandvariables.

Eventually, enough researchwasdone and the equationswere translatedonto theExcel

document;however,thevaluesthatthenumericalanalysisyieldeddidnotmakesensebased

onthereferencesused.Tocheckiftheproblemcamefromtheformulas,handcalculations

weredone.Theproblemwasnotwiththeequations,butitwaslaterfoundthattheunits

usedinsomeofthevariableshadtobeconvertedtomatchtherestofthedocument.After

severaliterations,theteamwasabletosuccessfullygenerateaPCAforthebaselineengine

with the intentions of running the program again with the values from the different

computationalmethods.

ProceedingthePCAwasthegenerationofachartthatdisplayedthethrustandTSFC

(thrust specific fuel consumption) design margins. To do this, the total drag had to be

Page 132: Innovation in Commercial Supersonic Aircraft with ...

‐130‐

calculated.Thishadtobestrategicallytackledbyseparatingthecalculationsforthewave

dragfromtheotherdragforcestheaircraftandenginewillface.Usingdesignparameters

fromNASA/CR‐2010‐216842,theExceldocumentscreatedfortheproject,andthebaseline

model describedbyAIAA, the totalwavedragwas calculated onExcel and thenused to

determinewhichpowerplanttheteamwouldchoose.Thisthrustvaluewillhelpshowwhere

thedesignfallsinrespecttoathrustversusTSFCgraphandifthedesigncriteriaweremet.

Creating the design curve has been halted due to insufficient information on the actual

design.Thiswillbelatercorrectedafterenoughsimulationsandcalculationsareperformed.

Anotherchallengecomesthroughattemptingtocreatebudgetfortheproject.Most

oftheprojectwillbedonethroughcomputersoftwarethatisfreeorhasaminimalcost.The

team did set up a prescribed budget to complete the project covering any fees deemed

necessaryforcompletion.Concerningatheoreticalbudgetformanufacturingthedesign,this

hasproveddifficultsinceamarketforsupersonictransportvehiclesdonotexistoutsideof

themilitary(whomdonottendtohavebudgets).Furtherresearchintothiswillbedonein

futurework.

Page 133: Innovation in Commercial Supersonic Aircraft with ...

‐131‐

AppendixO:Contributions

A‐Alain J‐Jordan C‐Chris

Page 134: Innovation in Commercial Supersonic Aircraft with ...

‐132‐

A‐Alain,J‐Jordan,C‐Chris