Induction Heat Treating4 7 Modeling Induction Heating Parameters: • Optimization •Design •...

26
1 Create, Design, Engineer! Induction Heat Treating xxx www.magsoft-flux.com www.cedrat.com October 2013 Philippe Wendling [email protected] 2 Our Problem A Load A Coil A Power Supply A Process An Environment All included in a power distribution system.

Transcript of Induction Heat Treating4 7 Modeling Induction Heating Parameters: • Optimization •Design •...

Page 1: Induction Heat Treating4 7 Modeling Induction Heating Parameters: • Optimization •Design • Characterization 8 0,0E+00 1,0E+06 2,0E+06 3,0E+06 4,0E+06 5,0E+06 0 500 1000 Température

1

Create, Design, Engineer!

Induction Heat Treating

xxx

www.magsoft-flux.comwww.cedrat.com

October 2013

Philippe [email protected]

2

Our Problem

A Load

A Coil

A Power Supply

A Process

An Environment

All included in a power distribution system.

Page 2: Induction Heat Treating4 7 Modeling Induction Heating Parameters: • Optimization •Design • Characterization 8 0,0E+00 1,0E+06 2,0E+06 3,0E+06 4,0E+06 5,0E+06 0 500 1000 Température

2

3

Our Problem

Electrical,

Magnetic,

Thermal,

Power Electronics,

Mechanical,

System,

4

Modeling Induction Heating

We need:

Precise Geometry

Power Supply

Process Description

Materials

Material Characteristics

Electro-Magnetic

Thermal

Cooling

Nonlinear

Curie Temperature

Page 3: Induction Heat Treating4 7 Modeling Induction Heating Parameters: • Optimization •Design • Characterization 8 0,0E+00 1,0E+06 2,0E+06 3,0E+06 4,0E+06 5,0E+06 0 500 1000 Température

3

5

Modeling Induction Heating

FEM Tool:

Geometry

6

Modeling Induction Heating

FEM Tool:

Mesh

Page 4: Induction Heat Treating4 7 Modeling Induction Heating Parameters: • Optimization •Design • Characterization 8 0,0E+00 1,0E+06 2,0E+06 3,0E+06 4,0E+06 5,0E+06 0 500 1000 Température

4

7

Modeling Induction Heating

Parameters:

• Optimization

• Design

• Characterization

8

0,0E+00

1,0E+06

2,0E+06

3,0E+06

4,0E+06

5,0E+06

0 500 1000

Température (°C)

Sig

ma

(S

.m-1

)

0

5

10

15

20

25

0 500 1000Température (°C)

mu

r

Material properties

Electrical Conductivity Relative permeability

Page 5: Induction Heat Treating4 7 Modeling Induction Heating Parameters: • Optimization •Design • Characterization 8 0,0E+00 1,0E+06 2,0E+06 3,0E+06 4,0E+06 5,0E+06 0 500 1000 Température

5

9

Magnetic Permeability

relative permeability of steel depends on:

– magnetic field (H)

– and the temperature (T).

10

Thermal conductivity decreases as temperature rises.

phase transition energy at Curie point.

Material Properties

Page 6: Induction Heat Treating4 7 Modeling Induction Heating Parameters: • Optimization •Design • Characterization 8 0,0E+00 1,0E+06 2,0E+06 3,0E+06 4,0E+06 5,0E+06 0 500 1000 Température

6

11

Modeling Induction Heating

Power Supply

12

Results: Power Density

Page 7: Induction Heat Treating4 7 Modeling Induction Heating Parameters: • Optimization •Design • Characterization 8 0,0E+00 1,0E+06 2,0E+06 3,0E+06 4,0E+06 5,0E+06 0 500 1000 Température

7

13

Results: Line Current

Current

Phase

14

Temperature Variation

Page 8: Induction Heat Treating4 7 Modeling Induction Heating Parameters: • Optimization •Design • Characterization 8 0,0E+00 1,0E+06 2,0E+06 3,0E+06 4,0E+06 5,0E+06 0 500 1000 Température

8

15

Thermal Effect on EM Properties

Resitivity

Permeability

16

Hardening of Flange (Steel)

Page 9: Induction Heat Treating4 7 Modeling Induction Heating Parameters: • Optimization •Design • Characterization 8 0,0E+00 1,0E+06 2,0E+06 3,0E+06 4,0E+06 5,0E+06 0 500 1000 Température

9

17

The Domain

Induction Heating Technology and Applications ‘2006

2 dimensional axi-symmetric model.

18

FEM Domain: Geometry

FLANGE

INDUCTOR 1

INDUCTOR 2

Page 10: Induction Heat Treating4 7 Modeling Induction Heating Parameters: • Optimization •Design • Characterization 8 0,0E+00 1,0E+06 2,0E+06 3,0E+06 4,0E+06 5,0E+06 0 500 1000 Température

10

19

FEM Domain: Mesh

20

Computation #1

Power Supply to Inductor:4 kHz

Page 11: Induction Heat Treating4 7 Modeling Induction Heating Parameters: • Optimization •Design • Characterization 8 0,0E+00 1,0E+06 2,0E+06 3,0E+06 4,0E+06 5,0E+06 0 500 1000 Température

11

21

4 kHz: Thermal Image at 9.75 s.

22

Computation #2

Power Supply to Inductor:13 kHz

Page 12: Induction Heat Treating4 7 Modeling Induction Heating Parameters: • Optimization •Design • Characterization 8 0,0E+00 1,0E+06 2,0E+06 3,0E+06 4,0E+06 5,0E+06 0 500 1000 Température

12

23

13 kHz: Thermal Image at 9.75 s.

24

Why Coupled Problems

Current density map at the beginning of the heating process.

Page 13: Induction Heat Treating4 7 Modeling Induction Heating Parameters: • Optimization •Design • Characterization 8 0,0E+00 1,0E+06 2,0E+06 3,0E+06 4,0E+06 5,0E+06 0 500 1000 Température

13

25

Why Coupled Problems

Current density map at the end of the heating process.

26

Why Coupled Problems

Relative permeability Mur distribution at end of the heating process.

Page 14: Induction Heat Treating4 7 Modeling Induction Heating Parameters: • Optimization •Design • Characterization 8 0,0E+00 1,0E+06 2,0E+06 3,0E+06 4,0E+06 5,0E+06 0 500 1000 Température

14

27

Computation #3: New Geometry

28

4 kHz: Thermal Image at 10.0 s.

Page 15: Induction Heat Treating4 7 Modeling Induction Heating Parameters: • Optimization •Design • Characterization 8 0,0E+00 1,0E+06 2,0E+06 3,0E+06 4,0E+06 5,0E+06 0 500 1000 Température

15

29

13 kHz: Thermal Image at 10.0 s.

13 kHz

30

Current Density vs. Time

Page 16: Induction Heat Treating4 7 Modeling Induction Heating Parameters: • Optimization •Design • Characterization 8 0,0E+00 1,0E+06 2,0E+06 3,0E+06 4,0E+06 5,0E+06 0 500 1000 Température

16

31

Hardness Profile

Induction Heating Technology and Applications ‘2006

32

Scanning– Translating Motion

Coupled Magneto-thermal

Power supply

Motion: inductor scans the component.

Page 17: Induction Heat Treating4 7 Modeling Induction Heating Parameters: • Optimization •Design • Characterization 8 0,0E+00 1,0E+06 2,0E+06 3,0E+06 4,0E+06 5,0E+06 0 500 1000 Température

17

33

Continuous Heating of Tubes

Steel Tube (ferromagnetic)Heated T0 1,100 °C.

Moving Inside an Inductor

34

Power Density Distribution

Page 18: Induction Heat Treating4 7 Modeling Induction Heating Parameters: • Optimization •Design • Characterization 8 0,0E+00 1,0E+06 2,0E+06 3,0E+06 4,0E+06 5,0E+06 0 500 1000 Température

18

35

Temperature Profile

36

Modified Inductor – Grouping Turns

Page 19: Induction Heat Treating4 7 Modeling Induction Heating Parameters: • Optimization •Design • Characterization 8 0,0E+00 1,0E+06 2,0E+06 3,0E+06 4,0E+06 5,0E+06 0 500 1000 Température

19

37

Complex Process – Heat, Hold

Start

Heat – Frequency #1

Heat – Frequency #2….n

EndQuench - Cool

Hold

Hold

38

Complex Process – Heat, Hold

Page 20: Induction Heat Treating4 7 Modeling Induction Heating Parameters: • Optimization •Design • Characterization 8 0,0E+00 1,0E+06 2,0E+06 3,0E+06 4,0E+06 5,0E+06 0 500 1000 Température

20

39

3D Thermo-electromagneticsApplication to heat treatments

Gear CrankshaftCylinder

40

3D Heat Treatment of Cylinder

Validation of 3D Applications

Page 21: Induction Heat Treating4 7 Modeling Induction Heating Parameters: • Optimization •Design • Characterization 8 0,0E+00 1,0E+06 2,0E+06 3,0E+06 4,0E+06 5,0E+06 0 500 1000 Température

21

41

2D/3D Domains

Support (stainless)

Coil (copper)

Cylinder (steel)

Cylinder (steel)

Symmetry axis

3D Geometry2D Geometry

42

Model – Temperature Map

Temperature distribution (heating 2 s)

1/8th of the device

Full Geometry

Heating time : 2 s

Cooling by shower

3D Geometry

Page 22: Induction Heat Treating4 7 Modeling Induction Heating Parameters: • Optimization •Design • Characterization 8 0,0E+00 1,0E+06 2,0E+06 3,0E+06 4,0E+06 5,0E+06 0 500 1000 Température

22

43

Results - Comparisons

0

200

400

600

800

1000

1200

0 1 2 3 4 5 6 7Temps (s)

Tem

péra

ture

(°C

)

MesuresMesuresSimu. Flux3D MTSimu. Flux3D MTSimu. Flux2D MTSimu. Flux2D MT

Comparison Flux3D / Flux2D (2D axi.) / measurements

Temperature vs. Time at 2 selected points during heating and cooling phases

1 mm depth

3 mm depth

Flux 3D:

Nodes: 6000 Elements: 32000 (T4+H8)

CPU time: 9 h

Flux 2D:

Nodes: 2000 Elements: 900 (Q8)

CPU time: 5 min

44

Heat Treatment of a Gear

Induction Heating Technology and Applications ‘2006

Page 23: Induction Heat Treating4 7 Modeling Induction Heating Parameters: • Optimization •Design • Characterization 8 0,0E+00 1,0E+06 2,0E+06 3,0E+06 4,0E+06 5,0E+06 0 500 1000 Température

23

45

Model - Domain

Support (stainless)

Coil (copper)

Gear (steel)

Heating time : 9 sCooling by shower

46

Temperature - Permeability

Temperature distribution (heating 9 s)

r (t=9 s)

Results at the end of the heating…

Page 24: Induction Heat Treating4 7 Modeling Induction Heating Parameters: • Optimization •Design • Characterization 8 0,0E+00 1,0E+06 2,0E+06 3,0E+06 4,0E+06 5,0E+06 0 500 1000 Température

24

47

Temperature vs. Time

0

100

200

300

400

500

600

700

800

900

1000

0 5 10 15 20 25 30

Sommet / entrée - Mesure

Sommet / entrée - Simu

0

100

200

300

400

500

600

700

800

900

1000

0 5 10 15 20 25 30

Sommet / milieu - Mesure

Sommet / milieu - Simu

0

100

200

300

400

500

600

700

800

900

1000

0 5 10 15 20 25 30

Pied (1mm) / milieu - Mesure

Pied (1mm) / milieu - Simu

0

100

200

300

400

500

600

700

800

900

1000

0 5 10 15 20 25 30

Pied (2mm) / milieu - Mesure

Pied (2mm) / milieu - Simu

Comparison Flux3D / measurements

Temperature vs. Time

Nodes : 8500

Elements : 28000 (T4+H8)

CPU time : 16 h

48

Heat treatment of a crankshaft

Page 25: Induction Heat Treating4 7 Modeling Induction Heating Parameters: • Optimization •Design • Characterization 8 0,0E+00 1,0E+06 2,0E+06 3,0E+06 4,0E+06 5,0E+06 0 500 1000 Température

25

49

Geometry

Nodes : 15000Elements : 80000

(T4)CPU time : ~ 50 h

t = 0 s t = 0.5 s

Modelisation of the rotation of the crankshaft

Crankshaft

Coil

50

Results

Temperature distribution at the end of the heating

Hardenesses distribution at the end of the heat treatment

Thermal and metallurgical (Flux – Metal7) results

Page 26: Induction Heat Treating4 7 Modeling Induction Heating Parameters: • Optimization •Design • Characterization 8 0,0E+00 1,0E+06 2,0E+06 3,0E+06 4,0E+06 5,0E+06 0 500 1000 Température

26

51

Thank you for your interest in our modelling solutions

www.magsoft-flux.com

[email protected]@[email protected]