Independencia promedio de grafos y polinomio de Jones ...

79
PROYECTO FIN DE CARRERA Independencia promedio de grafos y polinomio de Jones. Aplicaciones en ingeniería Autora: Nadia Srour Calvo Departamento proponente: Matemática Aplicada Tutor: Pedro M. González Manchón Febrero 2007 Autora: VºBº del tutor: Nadia Srour Calvo Pedro M. González Manchón

Transcript of Independencia promedio de grafos y polinomio de Jones ...

Page 1: Independencia promedio de grafos y polinomio de Jones ...

PROYECTO FIN DE CARRERA

Independencia promedio de grafos y

polinomio de Jones. Aplicaciones en

ingeniería

Autora: Nadia Srour Calvo

Departamento proponente: Matemática Aplicada

Tutor: Pedro M. González Manchón

Febrero 2007

Autora: VºBº del tutor:

Nadia Srour Calvo Pedro M. González Manchón

Page 2: Independencia promedio de grafos y polinomio de Jones ...
Page 3: Independencia promedio de grafos y polinomio de Jones ...

En el nombre de Dios, el clemente, el misericordioso...

Me gustaría dar las gracias a todos aquellos que han permanecido

a mi lado durante la realización de este proyecto, apoyándome y

ayudándome de manera diferente, pero igualmente útil. Estos

agradecimientos van dirigidos a mi familia y amigos, muy en

particular a mis padres y a mis dos hermanos.

También quiero agradecer de manera muy especial a mi tutor,

Pedro María González Manchón, por brindarme la posibilidad de

realizar este proyecto e involucrarse en la elaboración del mismo

casi tanto como yo.

Page 4: Independencia promedio de grafos y polinomio de Jones ...
Page 5: Independencia promedio de grafos y polinomio de Jones ...

INTRODUCCIÓN ............................................................................................................ 1

1. ISOMERÍA TOPOLÓGICA ........................................................................................ 5

Grafos, nudos y enlaces ................................................................................................ 5

Grafo de una molécula .................................................................................................. 5

Grafos topológicamente complejos .............................................................................. 6

Simetría especular de las moléculas ............................................................................. 8

Reconocimiento de la simetría vía el polinomio de Jones ........................................... 9

Coeficiente extremo del polinomio de Jones y teoría de grafos ................................. 11

2. TEORÍA DE GRAFOS .............................................................................................. 15

Grafos convertibles ..................................................................................................... 16

Sobre grafos no planos y el teorema de Kuratowski .................................................. 18

3. INDEPENDENCIA PROMEDIO DE GRAFOS ....................................................... 21

Definición de I(G) ...................................................................................................... 21

Leyes para el cálculo de I(G) ...................................................................................... 22

4. GRAFOS CON INDEPENDENCIA PROMEDIO ARBITRARIA .......................... 25

Nuestra mejora de la solución ................................................................................... 27

Comparativa de las soluciones ................................................................................... 29

5. ANALIZANDO CUÁNDO UN GRAFO ES CONVERTIBLE ................................ 33

Ciclos puros ................................................................................................................ 33

Índices de conexión de dos ciclos............................................................................... 34

6. GRAFOS CON POCOS VÉRTICES. PROGRAMACIÓN ...................................... 41

Independencia promedio tres ...................................................................................... 42

Grafos con siete vértices ......................................................................................... 42

Grafos con ocho vértices ........................................................................................ 42

Grafos con nueve vértices....................................................................................... 44

Grafos con diez vértices ......................................................................................... 46

Grafos con once vértices......................................................................................... 56

Programación con MATLAB ..................................................................................... 66

Enumeración de matrices e independencia promedio ............................................ 68

7. CONCLUSIÓN .......................................................................................................... 71

BIBLIOGRAFÍA ............................................................................................................ 73

Page 6: Independencia promedio de grafos y polinomio de Jones ...
Page 7: Independencia promedio de grafos y polinomio de Jones ...

INTRODUCCIÓN

Observemos la molécula

o

o

o o o

o

o

o

o

oooo

o

N N

N N

N N

N N

Figura 1. Una molécula con forma de nudo trébol...

y su imagen especular

o o o

N N

N N

N N

N N

Figura 2. ... y su imagen especular

Estas moléculas, sintetizadas por Dietrich–Buchecker y Sauvage [DS] en 1989, son

los primeros ejemplos de moléculas con la forma de un nudo. Físicamente, un nudo se

obtiene “anudando” un cordón de zapatos y uniendo después sus extremos. Las

moléculas anteriores pueden ser representadas de modo sintético mediante los llamados

nudos trébol (de mano derecha y de mano izquierda):

Figura 3. Los nudos trébol de mano derecha y mano izquierda

Obsérvese que la imagen especular K*

de un nudo K se obtiene invirtiendo todos los

cruces del nudo K.

Page 8: Independencia promedio de grafos y polinomio de Jones ...

Independencia promedio de grafos y polinomio de Jones. Aplicaciones en ingeniería

2

Desde un punto de vista experimental, el determinar que estas moléculas son

distintas se basa en la observación de sus propiedades físico-químicas, como pueden ser

propiedades ópticas (experimento de Pasteur), el sabor (limonada o naranjada), etc.

La teoría de nudos, y en concreto el polinomio de Jones, provee una herramienta

matemática que puede probar de modo directo que ambas moléculas son distintas, es

decir, no podemos superponerlas sin romperlas, por muy flexibles que las imaginemos.

Para poder distinguir dos nudos entre si, Vaughan Jones descubrió, en la década de

los ochenta, una manera unívoca de asociar a cada nudo un polinomio, de manera que si

dos nudos son equivalentes, entonces los polinomios asociados coinciden. Así que este

polinomio, llamado desde entonces polinomio de Jones, es una herramienta para

distinguir nudos no equivalentes. La trascendencia matemática de este descubrimiento y

sus múltiples implicaciones en otras ramas de las matemáticas y la física le valieron a

Jones, en 1990, la medalla Field, equivalente a los premios Nobel en matemáticas.

Los polinomios de Jones VK(t) de un nudo K y VK*(t) de su imagen especular K*

son simétricos respecto al intercambio de la variable t con t–1

. Por ejemplo, VK(t) = t + t3

– t4 mientras que VK*(t) = t

–1 + t

–3 – t

–4 para los nudos de la figura 3. Como ambos

polinomios son distintos, se deduce que ambos nudos son no equivalentes, es decir, no

puede deformarse uno para obtener el otro.

En particular, para que hubiese simetría especular en el nudo, su polinomio de Jones

debería ser simétrico respecto al intercambio de t con t–1

. Supongamos entonces que

VK(t) =amtm

+...+ aMtM

es el polinomio de Jones de cierto nudo K. Si sus coeficientes

extremos son distintos, esto es, si am ≠ aM, entonces este polinomio no es simétrico

respecto al intercambio de t con t–1

, y por tanto K no experimenta simetría especular, es

decir, K ≠ K*.

Este proyecto se centra en el estudio de los coeficientes extremos am y aM, basado en

el concepto de independencia promedio de un grafo. Partiendo de un nudo K y mediante

un proceso mecánico, construiremos un grafo GK (un grafo es un conjunto de vértices y

aristas uniendo pares de vértices). Estos grafos GK serán llamados convertibles, por

obtenerse a partir de un nudo K mediante el proceso de suavización por A-cuerdas. Este

proceso se ilustra en la siguiente figura para un ejemplo concreto de enlace (colección

disjunta de nudos):

Figura 4. Obtención del grafo a partir de un enlace

El primer paso de este proceso consiste en cambiar cada cruce del nudo o enlace por

una A-cuerda (en azul) mediante un proceso llamado suavización. Los extremos de

estas A-cuerdas descansan en las llamadas circunferencias de referencia, pintadas en

negrita. El segundo paso convierte cada A-cuerda con extremos en una misma

circunferencia de referencia en un vértice del grafo. Si los extremos de dos cuerdas

alternan en la misma circunferencia de referencia, entonces uniremos por una arista los

vértices correspondientes, y al revés, si sus extremos no alternan, no habrá una arista

Page 9: Independencia promedio de grafos y polinomio de Jones ...

Introducción

3

que una dichos vértices. Al precisar después esta construcción, se deducirá que el

número de vértices del grafo obtenido es menor o igual al número de cruces en el nudo

o enlace original.

Un concepto asociado a GK es el de independencia promedio. Se trata de un número

entero I(GK) que se obtiene en términos de conjuntos independientes de vértices. Un

subconjunto de vértices de un grafo se dice independiente si no contiene dos vértices

adyacentes. A cada subconjunto de vértices independiente le asociamos el valor 1 si su

cardinal es par, –1 si su cardinal es impar. La independencia promedio I(G) del grafo G

se obtiene sumando todos estos valores ±1, al considerar toda la familia de subconjuntos

de vértices independientes del grafo G.

Un teorema de Bae y Morton [BM] asegura que el coeficiente extremo aM del

polinomio de Jones VK(t) del nudo K coincide, quizás salvo signo, con la independencia

promedio I(GK). Igualmente, am coincide, quizás salvo signo, con la independencia

promedio I(GK*). Así que, si los valores absolutos de estas dos independencias

promedio son distintos, podemos asegurar que el nudo K no experimenta simetría

especular, es decir, es distinto del nudo K*.

Como ya hemos dicho antes, a partir del nudo K la construcción del grafo

convertible asociado GK es mecánica. El cálculo de la independencia promedio I(GK)

también lo es. De esta manera se tiene un proceso algorítmico que podría descartar que

el nudo K tenga simetría especular.

La explicación detallada de estas ideas se expone con mayor profundidad y

detenimiento en el primer capítulo de este proyecto. El grueso del trabajo, capítulos dos

a siete, está dedicado a aspectos puramente matemáticos, relacionados con el concepto

de independencia promedio de grafos.

En el artículo [BM], Bae y Morton plantearon la cuestión de si, dado un número

natural arbitrario n, existe un grafo G convertible cuya independencia promedio sea n.

Esto fue respondido positivamente en el artículo [M]. En este proyecto se investigan los

posibles grafos soluciones con el menor número de vértices posible. A este respecto,

nuestra aportación puede resumirse en los siguientes puntos:

1. Hemos demostrado que para independencias promedio 2 y 3 la solución

aportada en [M] es la óptima, es decir, la de menor número de vértices.

2. Para cada entero mayor que tres, aportamos una solución que simplifica la

dada en [M], consiguiendo una disminución de vértices significativa. El

grafo construido utiliza como pieza básica el hexágono, al igual que en [M].

3. Hemos creado, utilizando MATLAB, programas que permiten el cálculo de

la independencia promedio de grafos y la búsqueda de grafos con

independencia promedio dada, operaciones irrealizables a mano. Estos

programas facilitaron la demostración del punto 1 citado más arriba.

Dado que el reconocer a simple vista si un grafo es o no convertible es una tarea

difícil, en el presente trabajo hemos abordado también la cuestión de la caracterización

de los grafos convertibles, aportando varias pautas que facilitan su reconocimiento.

Page 10: Independencia promedio de grafos y polinomio de Jones ...
Page 11: Independencia promedio de grafos y polinomio de Jones ...

1. ISOMERÍA TOPOLÓGICA El propósito de esta sección es detallar las implicaciones en isomería química de nuestro

trabajo. Algunos conceptos matemáticos de esta sección son sólo presentados de un

modo intuitivo.

Grafos, nudos y enlaces

Podemos hacernos una primera idea de lo que es un grafo definiéndolo como una

colección de vértices y aristas disjuntas que conectan pares de vértices. En este trabajo

no consideraremos grafos que tengan dos vértices unidos por más de una arista, ni

aristas cuyos extremos sean un mismo vértice (bucles).

Figura 5. Tipos de aristas no permitidas

Físicamente, un nudo puede imaginarse como el resultado de “anudar” un cordón de

zapatos y después unir los extremos de éste. Desde un punto de vista matemático, un

nudo es un círculo sumergido en el espacio que no se puede deformar de manera que

descanse en el plano. En la siguiente figura mostramos el nudo trébol, el más sencillo de

todos los nudos no triviales:

Figura 6. Un nudo trébol

Si en un nudo marcamos tres o más vértices, se obtiene un tipo sencillo de grafo,

llamado ciclo. Recíprocamente, si en un grafo de tipo ciclo eliminamos todos sus

vértices, obtendremos un nudo.

Por último, definimos un enlace como una colección finita y disjunta de nudos.

Grafo de una molécula

El grafo de una molécula (molecular bound graph en inglés) es un modelo de ésta, en

donde los vértices del grafo representan átomos o una colección de átomos y las aristas

representan enlaces químicos o cadenas de átomos.

En ocasiones los vértices o las aristas del grafo están etiquetados. Por ejemplo,

resulta interesante etiquetar los vértices si éstos se corresponden con átomos de

diferentes elementos químicos, o en el caso de las aristas para poder distinguir entre

enlaces simples y dobles, o incluso triples.

Page 12: Independencia promedio de grafos y polinomio de Jones ...

Independencia promedio de grafos y polinomio de Jones. Aplicaciones en ingeniería

6

Átomo

Vértice

Colección de átomos

Grafo

molecular

Enlace (simple, doble, triple)

Arista

Cadena de átomos

Grafos topológicamente complejos

La estereoquímica es el estudio de la estructura tridimensional de las moléculas y la

topología es el estudio de aquellas propiedades de los objetos geométricos que son

invariantes bajo transformaciones continuas.

La molécula típica no es plana, pero si pensamos que el grafo molecular que lo

representa es de goma, totalmente flexible, podemos deformarlo de manera que acabe

descansando en el plano. Cuando esto no es posible decimos que el grafo molecular es

topológicamente complejo. Fue necesario esperar hasta 1961 para conocer la primera

molécula topológicamente compleja.

Ya en el año 1910 los químicos intentaban sintetizar una molécula que estuviese

constituida por un par de anillos enlazados. Sin embargo, no fue hasta el año 1961

cuando Frisch y Wasserman lo lograron [FW], con una molécula formada por dos

anillos de hidrocarburos de 34 átomos cada uno. La forma de esta molécula se recoge en

la siguiente figura, en donde hemos suprimido los vértices que representan a los

distintos átomos:

Figura 7. El enlace de Hopf

En teoría de nudos este enlace se conoce con el nombre de enlace de Hopf. Es fácil

imaginar que dicho enlace no puede ser deformado en una figura plana por muy flexible

que sea, así que la molécula representada es topológicamente compleja.

Frisch y Wasserman trabajaron también, aunque sin éxito, en la síntesis de

moléculas con forma de nudo.

En el año 1981, los laboratorios de Simmons y Maggio [SM] y de Paquette y

Vazzeux [PV] sintetizaron, de manera independiente, otra molécula topológicamente

compleja, conocida con el nombre de molécula de Simmons–Paquette.

Si se observa su grafo molecular (ver siguiente figura), en la unión de aristas se

encontrarían los átomos de carbono, los átomos de oxígeno vienen representados

mediante la letra O y los átomos de hidrógeno se omiten con objeto de lograr una mayor

Page 13: Independencia promedio de grafos y polinomio de Jones ...

Isomería topológica

7

simplicidad, como se hará en lo sucesivo. Ya que este grafo contiene un grafo completo

K5 con una serie de vértices extras, por el teorema de Kuratowski sabemos que es

topológicamente complejo (ver la sección sobre grafos para más detalles).

1

5

3

2

4

o

o

o

Figura 8. La molécula de Simmons–Paquette es topológicamente compleja

En 1982, Walba, Richards y Haltiwanger [WRH] sintetizaron una molécula con la

forma de una escalera de Möbius con tres peldaños. El grafo de esta molécula está

formado por una cadena de poliéter de 60 átomos, entre carbonos y oxígenos (los

átomos de hidrógeno se omiten), que representa el borde de la cinta, y por tres enlaces

dobles que vienen a ser los peldaños de la escalera de Möbius.

o

o

o

o

o

o

oo

o

o

oo

o

o

oo

o

a b

23

c

o1

Figura 9. Molécula con forma de escalera de Möbius con tres peldaños

La escalera de Möbius con tres peldaños es topológicamente compleja, lo que se

deduce del teorema de Kuratowski al contener un grafo bipartido K3,3 con una serie de

vértices extra (ver la sección sobre grafos).

Ya en 1975, Graf y Lehn [GL] sintetizaron una molécula cuyo grafo es una escalera

de Möbius con dos peldaños. En cambio, este grafo no es topológicamente complejo, tal

y como ilustra la siguiente figura:

Page 14: Independencia promedio de grafos y polinomio de Jones ...

Independencia promedio de grafos y polinomio de Jones. Aplicaciones en ingeniería

8

Figura 10. La escalera de Möbius con dos peldaños no es topológicamente compleja

Sin embargo, no fue hasta 1989 cuando se sintetizó la primera molécula con forma

de nudo. La síntesis de esta molécula fue lograda por Dietrich–Buchecker y Sauvage

[DS]. Compuesta por un total de 124 átomos, tiene la forma de un nudo trébol.

o

o

o o o

o

o

o

o

oooo

o

N N

N N

N N

N N

Figura 11. Una molécula con forma de nudo trébol

Más recientemente se han sintetizado muchas otras moléculas cuyos grafos

moleculares son topológicamente complejos, incluyendo nudos y enlaces. Por ejemplo,

en 1994 y 1995 Liang y Mislow ([LM]) descubrieron que muchas proteínas contienen

de modo natural grafos K3,3 y K5 , y nudos y enlaces.

Simetría especular de las moléculas

Nuestro trabajo se centra en el estudio de la simetría especular de nudos y enlaces

moleculares. Un tipo muy importante de estereoisomería química aparece cuando dos

moléculas topológicamente complejas tienen la misma fórmula química, pero su

estructura espacial es diferente, siendo una la imagen especular de la otra.

Cuando una molécula es diferente de su imagen especular decimos que es quiral

(chiral en inglés). El término procede del griego cheir, que significa mano. Nuestras

manos ofrecen el ejemplo por antonomasia de quiralidad: siendo la mano izquierda la

imagen especular de la derecha, no hay modo de superponerlas.

Page 15: Independencia promedio de grafos y polinomio de Jones ...

Isomería topológica

9

Figura 12. Las manos como ejemplo típico de quiralidad

Se llaman enantiómeros a un par de moléculas con la misma fórmula química pero

diferente fórmula desarrollada. Dos moléculas quirales que son una la imagen especular

de la otra son ejemplos de enantiómeros. El primero en observar la existencia de

enantiómeros fue Pasteur, en 1848. Al hacer atravesar un rayo de luz polarizada (aquel

en el que las ondas de la luz viajan todas en un mismo plano) a través de cristales de

ácido tartárico, observó como éste se desviaba en una u otra dirección. En general,

cuando la luz polarizada atraviesa una solución de alguna sustancia ópticamente activa,

es decir, que contiene un solo tipo de enantiómero de una molécula quiral, los rayos de

luz se desvían todos hacia la derecha, o todos hacia la izquierda. El enantiómero que

desvía la luz a la derecha recibe el nombre de dextro o D, y el que desvía la luz hacia la

izquierda es llamado levo o L.

Es importante resaltar que dos enantiómeros, además de por su actividad óptica,

pueden diferenciarse también por otras propiedades (por ejemplo, la limonada y la

naranjada son enantiómeros con sabores distintos). Un desgraciado ejemplo de esto fue

lo acontecido en los años 60 con la droga Talidomida, la cual se comercializó como una

mezcla racémica (de ambos enantiómeros) para tratar los mareos que suele sufrir la

mujer embarazada. Mientras que el enantiómero levo era el que curaba los mareos, el

enantiómero dextro causaba defectos en el feto. La razón por la que este tipo de

sustancias se comercializa como una mezcla racémica es puramente económica, ya que

resulta mucho más costoso producir una sustancia que contenga un solo tipo de

enantiómero. Debido al peligro potencial de estas mezclas, muchas compañías

farmacéuticas están empezando a producir sus medicamentos como sustancias puras.

Reconocimiento de la simetría vía el polinomio de Jones

Los matemáticos han desarrollado técnicas que ayudan a determinar cuando un nudo o

un enlace L es distinto de su imagen especular. La técnica utilizada en este proyecto es

el llamado polinomio de Jones VL(t), y más en concreto, el análisis de sus coeficientes

extremos. El polinomio de Jones, cuya variable denotamos con la letra t, se calcula

siguiendo las siguientes reglas:

VU (t) = 1 si U es el nudo trivial.

+ - 0

1 1/2 1/2

L L Lt V (t) t V (t) + (t t ) V (t) = 0

si L+, L– y L0 son tres enlaces idénticos salvo en el entorno de un punto, donde se

distinguen según la siguiente figura:

Page 16: Independencia promedio de grafos y polinomio de Jones ...

Independencia promedio de grafos y polinomio de Jones. Aplicaciones en ingeniería

10

L L L+ _ 0

Figura 13. Diferencia local entre los enlaces L+, L– y L0

Cada nudo o enlace tiene asociado su correspondiente polinomio de Jones. Si dos

enlaces son equivalentes, entonces sus polinomios de Jones coinciden. Pero el recíproco

no es necesariamente cierto. De hecho, aún se desconoce si existe algún nudo distinto

del nudo trivial cuyo polinomio de Jones sea 1.

Como ejemplo, desarrollaremos el cálculo del polinomio de Jones para el caso de

dos nudos triviales disjuntos. Para ello se escogen como enlaces L+, L– y L0 los

siguientes (obsérvese que tanto L+ como L– son el nudo trivial, y L0 corresponde al

enlace cuyo polinomio de Jones queremos obtener):

L+ L L0_

Figura 14. Cálculo del polinomio de Jones del enlace formado por dos nudos triviales disjuntos

Según las reglas para el cálculo del polinomio de Jones, se tiene

+ - 0

1 1/2 1/2

L L Lt V (t) t V (t) + (t t ) V (t) = 0 .

Como L+ = L– es el nudo trivial, cuyo polinomio de Jones es 1, se sigue que

0(t))Vt(ttt0L

1/21/21 ,

de donde

0

11/2 1/2

L 1/2 1/2

t tV (t) = = t t

t t

.

Basta cruzar nuestros brazos delante de un espejo para darse cuenta de que la

imagen especular K* de un nudo K se obtiene invirtiendo cada cruce del diagrama de K.

El polinomio de Jones de K* se obtiene del de K sustituyendo t por t–1

. En particular, si

el polinomio de Jones de un nudo K no es simétrico respecto al intercambio de t con t–1

,

el nudo es distinto de su imagen especular. Por ejemplo, el polinomio de Jones del nudo

trébol K que aparece a la izquierda de la siguiente figura es VK (t) = t + t3 – t

4, que no es

simétrico en la variable t. Deducimos entonces que su imagen especular (el nudo trébol

Page 17: Independencia promedio de grafos y polinomio de Jones ...

Isomería topológica

11

que aparece a la derecha de la figura, cuyo polinomio de Jones sería VK* (t) = t–1

+ t–3

t–4

) es un nudo diferente.

Figura 15. El nudo trébol K y su imagen especular K* son nudos diferentes

Coeficiente extremo del polinomio de Jones y teoría de grafos

A partir de un nudo o enlace K puede obtenerse un grafo GK (no confundir con el grafo

molecular) siguiendo un proceso de suavización de los cruces mediante A–cuerdas. Hay

tres pasos en este proceso:

Paso 1. Cada cruce del nudo se suaviza mediante una A–cuerda. Esto es, recorriendo el

nudo, cada vez que se pase por la parte vista de un cruce (“puente”) se gira hacia la

izquierda y se sigue por la parte que era la no vista del cruce (“túnel”), sustituyendo

dicho cruce por una cuerda (que pintamos en azul).

Figura 16. Paso 1, suavización por A–cuerdas

Lo descrito se muestra en el ejemplo de la siguiente figura, partiendo de un enlace

(de tres componentes) con seis cruces:

Figura 17. Ejemplo del Paso 1

Page 18: Independencia promedio de grafos y polinomio de Jones ...

Independencia promedio de grafos y polinomio de Jones. Aplicaciones en ingeniería

12

El dibujo final de las A–cuerdas se ha realizado “estirando” éstas con objeto de

exagerar la figura para que se visualice con mayor claridad.

Paso 2. Eliminamos las A–cuerdas cuyos extremos están en diferentes componentes (en

general estas componentes, a las que llamaremos circunferencias de referencia, las

pintaremos de color negro). En nuestro ejemplo no tenemos A–cuerdas que eliminar, al

haber sólo una circunferencia de referencia.

Paso 3. El grafo GK es ahora construido de acuerdo a las siguientes reglas:

1. Cada cuerda es representada por un vértice del grafo.

2. Si dos cuerdas alternan sus extremos en una circunferencia de referencia,

entonces los dos vértices correspondientes son adyacentes.

3. Si dos cuerdas no alternan sus extremos en una circunferencia de referencia,

entonces los dos vértices correspondientes no son adyacentes.

Obviamente, el número de vértices del grafo GK es siempre menor o igual que el

número de cruces del nudo o enlace K. En el ejemplo que venimos desarrollando el

grafo GK que se obtiene es el hexágono, como puede verse en la siguiente figura:

Figura 18. Paso 3, del diagrama de A–cuerdas al grafo GK

La importancia del grafo GK construido a partir del nudo K radica en el hecho de

que cierto número I(GK) asociado al grafo, y que llamaremos independencia promedio

de éste, coincide quizás salvo signo con uno de los coeficientes extremos aM del

polinomio de Jones VK(t) del nudo K. Si en el proceso anterior suavizamos mediante B–

cuerdas (ver siguiente figura), se obtiene (quizás salvo signo) el otro coeficiente del

polinomio de Jones.

Figura 19. Suavización por B–cuerdas

Page 19: Independencia promedio de grafos y polinomio de Jones ...

Isomería topológica

13

Supongamos pues que deseamos conocer la posible quiralidad de un nudo o enlace

molecular K. A partir de K construimos, según los pasos ya explicados, un grafo GK

mediante suavización por A–cuerdas, y calculamos su independencia promedio I(GK).

Usando B–cuerdas, obtenemos un nuevo grafo y podemos calcular así una segunda

independencia promedio (se obtendría lo mismo calculando la independencia promedio

del grafo obtenido por suavización mediante A–cuerdas a partir del enlace K*). Si el

valor absoluto de ambas independencias promedio es distinto, podemos concluir

entonces que la molécula original es quiral. En efecto, en tal caso el polinomio de Jones

VK(t) del enlace K no sería simétrico en la variable t, ya que sus coeficientes extremos

serían distintos, y en consecuencia el nudo no presentaría simetría especular.

El siguiente esquema resume la idea que acabamos de detallar:

MOLÉCULA NUDO O ENLACE

MOLECULAR

K

POLINOMIO

DE JONES

DEL NUDO K

VK(t) =amtm

+...+aMtM

GRAFO

GK

GRAFO

GK*

TEOREMA

aM = ± I(GK)

am = ± I(GK*)

CONSECUENCIA

Si | I(GK) | ≠ | I(GK*) |, entonces la

molécula no presenta simetría especular

I(GK) I(GK*)

INDEPENDENCIAS

PROMEDIO

En el resto de este trabajo desarrollamos el concepto de independencia promedio de

grafos y analizamos el problema abierto consistente en encontrar, para cada número

natural n, el grafo convertible (esto es, del tipo GK) con menor número de vértices

posible e independencia promedio n.

Page 20: Independencia promedio de grafos y polinomio de Jones ...
Page 21: Independencia promedio de grafos y polinomio de Jones ...

2. TEORÍA DE GRAFOS Un grafo G está formado por un conjunto V de vértices y un conjunto E de aristas

constituido por pares no ordenados de vértices distintos. Así que en esta definición no

son aceptados los llamados bucles.

Del par de vértices que define una arista se dice que son los extremos de dicha

arista. Dos vértices se dicen adyacentes si existe una arista que los tiene por extremos.

Se llama grado de un vértice al número de aristas que lo tienen por extremo.

En nuestros grafos no aceptaremos aristas paralelas, esto es, dos aristas con los

mismos extremos.

Un camino en un grafo G es una sucesión ordenada de aristas, de modo que dos

aristas consecutivas comparten un vértice. Se suele decir que un camino conecta a sus

vértices extremos; éstos son el vértice de la primera arista que no lo es de la segunda, y

el vértice de la última arista que no lo es de la penúltima.

Un grafo G se dice que es conexo cuando para cualesquiera dos vértices del grafo

existe siempre un camino que los conecta.

Sea G un grafo con m vértices y v1, v2, …, vm una ordenación de sus vértices. La

matriz de adyacencia A = (aij) de G es una matriz booleana cuadrada de orden m

definida por la siguiente condición:

1 si los vértices vi y vj son adyacentes

aij =

0 en otro caso

Un grafo G es bipartido si el conjunto de vértices V de G puede escribirse en la

forma V = V1 V2 siendo V1 V2 = , de manera que cada arista de G tiene un

extremo en V1 y otro extremo en V2. Si V1 tiene k vértices y V2 tiene n vértices,

decimos que V es bipartido de tipo (k,n).

Sea G un grafo bipartido de tipo (k,n). En la matriz de adyacencia de G,

seleccionamos las k columnas correspondientes a los k vértices de V1 y las n filas

correspondientes a los n vértices de V2. Las entradas de la matriz de adyacencia que

están al mismo tiempo en una fila y en una columna de las seleccionadas constituyen la

llamada submatriz de adyacencia para el grafo bipartido G. Consideremos, por

ejemplo, el grafo G de la siguiente figura, seleccionando como V1 el conjunto de los

vértices azules y como V2 el conjunto de los vértices rojos:

2

1 4

3

Figura 20. Un grafo bipartido

Page 22: Independencia promedio de grafos y polinomio de Jones ...

Independencia promedio de grafos y polinomio de Jones. Aplicaciones en ingeniería

16

En este caso la matriz de adyacencia es

R1 A1 R2 A2 R3 A3 R4

R1 0 1 0 0 0 0 0

A1 1 0 1 0 0 0 1

R2 0 1 0 1 0 0 0

A2 0 0 1 0 1 0 0

R3 0 0 0 1 0 1 0

A3 0 0 0 0 1 0 1

R4 0 1 0 0 0 1 0

y la submatriz de adyacencia es

Sean G1 y G2 dos grafos y V1 y V2 sus respectivos conjuntos de vértices. Se dice que

G1 y G2 son grafos isomorfos si existe una función f: V1 V2 biunívoca tal que v, w

∈ V1, se tiene que v y w son adyacentes en G1 si y sólo si f(v) y f(w) lo son en G2. Si

dos grafos G1 y G2 son isomorfos, intercambiando filas y/o columnas de la matriz de

adyacencia de G1 puede obtenerse la matriz de adyacencia de G2.

Grafos convertibles

En una representación de un grafo conexo mediante arcos, los vértices del grafo se

dibujan como arcos en el plano cuyos extremos descansan en una circunferencia (de

referencia) fijada en el mismo plano, de modo que los arcos son disjuntos entre si y

disjuntos con la circunferencia salvo por los extremos. Debe además verificarse la

siguiente propiedad: dos vértices del grafo son adyacentes si y sólo si los extremos de

sus correspondientes arcos alternan en la circunferencia.

Vértice = Arco

Adyacencia = Extremos alternantes

No adyacencia = Extremos no alternantes

Un grafo G se dice convertible si cada una de sus componentes conexas puede ser

representada mediante arcos. Con otras palabras, un grafo convertible G es siempre del

tipo G = GK para algún enlace K, aunque este enlace K no es necesariamente único. Por

ejemplo, el cuadrado o el hexágono H son grafos convertibles, pero el triángulo no lo

es:

A1 A2 A3

R1 1 0 0

R2 1 1 0

R3 0 1 1

R4 1 0 1

Page 23: Independencia promedio de grafos y polinomio de Jones ...

Teoría de grafos

17

x x?

Figura 21. El cuadrado y el hexágono son grafos convertibles; el triángulo no

Denotaremos por Cn el grafo cíclico de n vértices, y por Ln el grafo lineal con n

vértices (y n–1 aristas). Ambos son mostrados en la siguiente figura:

32

n-11 2 3 n-2 n

n-1

1

n

Figura 22. Los grafos cíclico Cn y lineal Ln

Todo grafo Ln es convertible. En general, un ciclo es convertible si y sólo si tiene un

número par de vértices. Es decir, Cn es convertible si y sólo si n es par. La siguiente

figura muestra la representación estándar mediante cuerdas de un ciclo Cn:

Page 24: Independencia promedio de grafos y polinomio de Jones ...

Independencia promedio de grafos y polinomio de Jones. Aplicaciones en ingeniería

18

n-1

n

1

2

3

Figura 23. Representación estándar del ciclo Cn

Los grafos convertibles son ejemplos de grafos bipartidos. Esto parece claro si nos

fijamos en su representación mediante arcos; un subconjunto de vértices es el que se

corresponde con los arcos que quedan en la zona interior de la circunferencia, y el otro

subconjunto es el que se corresponde con los que quedan en la parte exterior.

Como ya hemos notado antes, los grafos convertibles son los grafos bipartidos que

se obtienen a partir de un nudo o enlace mediante una suavización por A–cuerdas. Por

esto, a lo largo de este proyecto trabajaremos siempre con grafos bipartidos. Los

vértices serán coloreados en azul o rojo, y se denotarán con las letras A y R

respectivamente, seguidas del número correspondiente de vértice.

Sobre grafos no planos y el teorema de Kuratowski

En la sección primera se definió un grafo topológicamente complejo como aquel grafo

sumergido en el espacio que no puede deformarse a un plano, aun asumiendo completa

flexibilidad.

El teorema de Kuratowski asegura que un grafo abstracto es no plano (es decir, no

admite ninguna representación plana) si y sólo si contiene un grafo isomorfo a un K5 (el

grafo completo de 5 vértices, es decir, un grafo con 5 vértices en el que cada par de

vértices está conectado por una arista) o a un K3,3 (el grafo bipartido en 3 y 3 vértices

con todas las aristas posibles), con la posible adición de vértices extras.

Figura 24. Los grafos K5 y K3,3

Por ejemplo, el grafo sumergido en R3 mostrado a la izquierda de la siguiente figura

es topológicamente complejo, aunque como grafo abstracto coincide con el grafo de la

derecha de la misma figura, que es plano.

Page 25: Independencia promedio de grafos y polinomio de Jones ...

Teoría de grafos

19

Figura 25. Una inmersión topológicamente compleja de un grafo plano

En la sección anterior afirmamos que la molécula de Simmons–Paquette o la

escalera de Möbius con tres peldaños son grafos topológicamente complejos. De hecho,

como grafos abstractos, son no planos, como puede deducirse del teorema de

Kuratowski.

Page 26: Independencia promedio de grafos y polinomio de Jones ...
Page 27: Independencia promedio de grafos y polinomio de Jones ...

3. INDEPENDENCIA PROMEDIO DE GRAFOS En esta sección se define el concepto de independencia promedio de grafos y se repasa

una serie de herramientas conocidas para su cálculo.

Definición de I(G)

Se dice que un subconjunto de vértices C de un grafo G es independiente si no contiene

dos vértices adyacentes. Se llama independencia promedio de un grafo G, denotado

por I (G), al número entero |C|

C

I(G)= (-1)

donde C recorre la familia de subconjuntos independientes de vértices. En esta fórmula

|C| representa el cardinal de C, esto es, el número de vértices que hay en C.

Es decir, asociando a cada subconjunto de vértices independiente de G el valor 1 si

su cardinal es par, y –1 si es impar, la independencia promedio I(G) se obtiene sumando

todos estos valores.

Como ejemplos, en las siguientes tablas calculamos I(Ln) para los valores de n desde

1 hasta 6.

Para el vértice aislado L1:

|C| C Contribución |C|( 1) Contribución total

0 1 1

1 {1} 1 –1

0

Para L2:

|C| C Contribución |C|( 1) Contribución total

0 1 1

1 {1},{2} –1 –2

2 No hay 1 0

–1

Para L3:

|C| C Contribución |C|( 1) Contribución total

0 1 1

1 {1},{2},{3} –1 –3

2 {1,3} 1 1

3 No hay –1 0

–1

Page 28: Independencia promedio de grafos y polinomio de Jones ...

Independencia promedio de grafos y polinomio de Jones. Aplicaciones en ingeniería

22

Para L4:

|C| C Contribución |C|( 1) Contribución total

0 1 1

1 {1},{2},{3},{4} –1 –4

2 {1,3}, {1,4}, {2,4} 1 3

3 No hay –1 0

4 No hay 1 0

0

Para L5:

|C| C Contribución |C|( 1) Contribución total

0 1 1

1 {1}, {2}, {3}, {4}, {5} –1 –5

2 {1,3}, {1,4}, {1,5}, {2,4}, {2,5}, {3,5} 1 6

3 {1,3,5} –1 –1

4 No hay 1 0

5 No hay –1 0

1

Para L6:

|C| C Contribución |C|( 1) Contribución total

0 1 1

1 {1}, {2}, {3}, {4}, {5}, {6} –1 –6

2 {1,3}, {1,4}, {1,5}, {1,6}, {2,4}, {2,5},

{2,6}, {3,5}, {3,6}, {4,6} 1 10

3 {1,3,5}, {1,3,6}, {1,4,6}, {2,4,6} –1 –4

4 No hay 1 0

5 No hay –1 0

6 No hay 1 0

1

Así que I(L1) = I(L4) = 0, I(L2) = I(L3) = –1 e I(L5) = I(L6) = 1.

Leyes para el cálculo de I(G)

En la práctica el cálculo de la independencia promedio de un grafo se ve facilitado por

el uso de una serie de herramientas que se describen a continuación:

Ley de recursión

I (G) = I (G – v) – I (G – Nv).

En esta fórmula el grafo G – v se obtiene suprimiendo en G el vértice v y sus aristas

incidentes, y el grafo G – Nv se obtiene a partir de G suprimiendo el vértice v, sus

aristas incidentes, los vértices adyacentes a v y sus aristas incidentes.

Page 29: Independencia promedio de grafos y polinomio de Jones ...

Independencia promedio de grafos

23

v

G G - v G - Nv

Figura 26. Los grafos G, G – v y G – Nv

Ley de multiplicación

I(G1 G2) = I(G1) · I(G2).

En esta fórmula G1 G2 denota la unión disjunta de los grafos G1 y G2. La ley de

multiplicación dice que la independencia promedio de una unión disjunta de grafos es el

producto de sus respectivas independencias promedio.

Figura 27. Grafos G1, G2 y su unión disjunta G1 ∪ G2

Ley de duplicación

Si Nv ⊂ Nw entonces I (G) = I (G – w).

En esta fórmula Nv es el conjunto de vértices adyacentes a v y Nw es el conjunto de

vértices adyacentes a w. Si Nv está contenido en Nw, decimos que el vértice w duplica

al vértice v. Así que la ley de duplicación permite suprimir cualquier vértice que

duplique sin que se vea afectada la independencia promedio del grafo.

v w

Figura 28. El vértice w duplica al vértice v

Page 30: Independencia promedio de grafos y polinomio de Jones ...

Independencia promedio de grafos y polinomio de Jones. Aplicaciones en ingeniería

24

Ejemplo 1. En el grafo lineal Ln el vértice n – 2 duplica al vértice n, así que, por la ley

de duplicación

I(Ln) = I(Ln–3 L2),

y por la ley de multiplicación

I(Ln) = I(Ln–3) · I(L2) = –I(Ln–3).

Se sigue que I(Ln) = I(Ln–6). En consecuencia, la independencia promedio de un grafo

lineal es siempre –1, 0 ó 1, y la secuencia dada por las independencias promedio de L1

hasta L6 se repite hasta el infinito cada seis posiciones.

Ejemplo 2. Tomamos un vértice arbitrario v de Cn. La ley de recursión nos dice que

I(Cn) = I(Cn – v) – I(Cn – Nv) = I(Ln–1) – I(Ln–3).

En consecuencia I(Cn) sólo puede ser –2, –1, 1 ó 2, repitiéndose también cada seis

posiciones.

Page 31: Independencia promedio de grafos y polinomio de Jones ...

4. GRAFOS CON INDEPENDENCIA PROMEDIO ARBITRARIA El problema matemático objetivo de este proyecto es encontrar, para cualquier número

natural n, un grafo G convertible cuya independencia promedio I(G) sea n, teniendo G

el menor número de vértices posible.

En un artículo conjunto, Yongju Bae y Hugh R. Morton [BM] originalmente

propusieron el problema de encontrar, para cualquier número natural n, un grafo

convertible G cuya independencia promedio fuese n. Una solución a este problema

aparece en [M], donde para cada natural n se construye, usando como pieza básica el

hexágono, un grafo convertible Gn–1 con 6(n – 1) vértices e independencia promedio n.

En esta sección aportamos soluciones en donde el número de vértices del grafo es,

en general, considerablemente menor. Nuestras construcciones se basan en una forma

hábil de pegar las soluciones Gn dadas en [M], de modo que la pieza básica sigue siendo

el hexágono. Analizaremos en primer lugar los grafos Gn construidos en [M],

comenzando con algunas definiciones, construcciones básicas y resultados aportados en

dicho artículo.

La solución Gn–1 y otras construcciones conocidas

De ahora en adelante, escribiremos Gv para abreviar el par (G,v) donde G es un grafo y

v es un vértice particular elegido en G. Decimos que Gv es un ladrillo de tipo (n, k) si

I(G) = n e I(G – v) = k.

El hexágono H con la elección de cualquiera de sus vértices es un ejemplo de

ladrillo de tipo (2,1). En efecto, I(H) = I(L5) – I(L3) = 1– (–1) = 2 e I(H – v) = I(L5) =1.

Describimos ahora la construcción básica que utilizaremos en algunos ejemplos, a la

que llamaremos construcción estrella: sean G y F dos grafos y v y w dos vértices de G

y F respectivamente. Entonces Gv * F

w denotará al nuevo grafo obtenido de la unión

disjunta de G y F uniendo mediante una arista extra los vértices v y w (ver figura).

Nótese que si G y F son convertibles, entonces Gv * F

w también lo es.

G

vwv w

F

Figura 29. Gv, F

w y la construcción estrella G

v * F

w

El resultado clave es el siguiente: sea G un grafo y v un vértice de G. Si Gv es un

ladrillo de tipo (n, k), entonces 1v

1G es un ladrillo de tipo (n+k, k), donde G1 = Gv * H

w y

v1 es un vértice de H adyacente a w (ver figura).

Page 32: Independencia promedio de grafos y polinomio de Jones ...

Independencia promedio de grafos y polinomio de Jones. Aplicaciones en ingeniería

26

G

v w

H

v1

Figura 30. Si Gv es un ladrillo de tipo (n, k), entonces 1vv w(G * H ) lo es de tipo (n+k, k)

De este resultado puede deducirse (ver [M]) que el grafo Gr dibujado en la siguiente

figura tiene independencia promedio r+1. El grafo Gr se ha construido partiendo de un

hexágono y aplicando la construcción estrella r – 1 veces con nuevos hexágonos del

modo adecuado. De hecho v

rG es un ladrillo de tipo (r+1, 1).

v

Figura 31. El grafo Gr (r hexágonos) tiene independencia promedio r+1

Si consideramos, por ejemplo, el caso I (G) = 41, la solución G40 tendrá 6 x 40 =

240 vértices. A continuación recordamos una construcción dada en [M] que permite

encontrar soluciones con menor número de vértices para algunas independencias

promedio.

Sean 1v

1G , … , kv

kG una serie de grafos con un vértice escogido vi Gi para cada i

entre 1 y k. Denotaremos por S = S ( 1v

1G , … , kv

kG ) el grafo mostrado en la siguiente

figura, y lo llamaremos construcción simple. Podemos definir S de modo preciso

usando la construcción estrella: si w es el único vértice de L1, entonces

S = 1 2 kv v vw w w w

1 1 2 k(( ... ((L * G ) * G ) * ... ) ) * G .

G

wvi

i

Figura 32. Construcción simple

Page 33: Independencia promedio de grafos y polinomio de Jones ...

Grafos con independencia promedio arbitraria

27

Si cada pieza Gi es un grafo convertible, entonces la construcción simple S también

lo es. Además puede probarse que I(S) = ∏ni – ∏ki si iv

iG es un ladrillo de tipo (ni, ki).

El grafo Gv de la siguiente figura es un ladrillo de tipo (5, 3):

v

Figura 33. Un ladrillo de tipo (5, 3)

En consecuencia, la construcción simple S = S (Gv, G

v, H

w) (ver siguiente figura)

tiene independencia promedio (5 5 2) (3 3 1) 50 9 41 . Esto es, su

independencia promedio coincide con la de G40, pero mientras que G40 tiene 240

vértices, S sólo tiene 43 vértices.

Figura 34. Un grafo G con I (G) = 41. Tiene 43 vértices

Nuestra mejora de la solución

En esta sección se aporta una solución con menos vértices que la dada en [M].

Supongamos en primer lugar que m no es un número primo, y sea m = ∏ki su

descomposición en factores primos ki. Para cada número primo ki consideramos el grafo

ik -1G formado por ki – 1 hexágonos y cuya independencia promedio es ki. Denotaremos

por Nm la construcción simple realizada con los grafos ik -1G y dos grafos L2, sin

importar los vértices que se seleccionan para realizar dicha construcción. En la siguiente

figura se muestran los grafos N4, N6 y N8.

Page 34: Independencia promedio de grafos y polinomio de Jones ...

Independencia promedio de grafos y polinomio de Jones. Aplicaciones en ingeniería

28

w

w

w

Figura 35. Los grafos N4, N6, y N8

Teorema 1

La independencia promedio de Nm es m, es decir, I(Nm) = m.

En efecto, por la ley de recursión aplicada al vértice central w de la construcción

simple se tiene que I(Nm) = I(Nm – w) – I(Nm – Nw).

Por la ley de multiplicación I(Nm – w) = ∏ I(1ki

G ) (I(L2))

2 = ∏ki (–1)

2 = ∏ki = m.

Por último, I(Nm – Nw) = 0 ya que Nm – Nw contiene vértices aislados.

Observar que las piezas extras L2 conducen a la existencia de vértices aislados (así

que a independencia promedio cero) al eliminar Nw. El utilizar dos de estas piezas ha

tenido por objeto la cancelación del signo al suprimir el vértice w.

En el caso en que m es un número primo distinto de dos, consideraremos la

descomposición m+1 = ∏pi en factores primos pi de m+1. Nótese que si m es primo

entonces m+1 no lo es, excepto para m = 2. Consideramos los grafos 1pi

G

correspondientes, y en cada uno de ellos seleccionamos un vértice vi, de manera que

cada i

i

v

1pG sea un ladrillo de tipo (pi, 1). Esto se consigue tomando como vi un vértice de

un hexágono extremo adyacente al vértice por el que el hexágono se engancha con el

resto del grafo 1pi

G . Denotaremos por Ñm la construcción simple realizada con los

grafos 1piG con la precaución de utilizar los vértices vi seleccionados. En la siguiente

figura se muestran Ñ3, Ñ5, Ñ7 y Ñ11:

Page 35: Independencia promedio de grafos y polinomio de Jones ...

Grafos con independencia promedio arbitraria

29

w

w

w

w

Figura 36. Los grafos Ñ3, Ñ5, Ñ7 y Ñ11

Teorema 2

La independencia promedio de Ñm es m, es decir, I(Ñm ) = m.

En efecto, I(Ñm – w) = ∏ I(1pi

G ) = ∏pi = m+1, y por otro lado I(Ñm – Nw) =

∏I(1pi

G – vi) = 1, ya que i

i

v

1pG es un ladrillo de tipo (pi, 1). En consecuencia I(Ñm ) =

m por la ley de recursión.

Comparativa de las soluciones

La siguiente tabla compara los números de vértices del grafo Gm-1 aportado en [M] con

los grafos Nm y Ñm construidos en este proyecto, para independencias promedio m hasta

30. En la última columna hemos aplicado la misma construcción para independencias

promedios que no son números primos, siempre y cuando dicho número más uno

tampoco sea primo (la cifra de vértices aparece entonces en azul):

Page 36: Independencia promedio de grafos y polinomio de Jones ...

Independencia promedio de grafos y polinomio de Jones. Aplicaciones en ingeniería

30

Número de vértices en…

Independencia m Gm-1 Nm Ñm

2 6

3 12 13

4 18 17

5 24 19

6 30 23

7 36 19

8 42 23 25

9 48 29 31

10 54 35

11 60 25

12 66 29

13 72 43

14 78 47 37

15 84 41 25

16 90 29

17 96 31

18 102 35

19 108 37

20 114 41 49

21 120 53 67

22 126 71

23 132 37

24 138 35 49

25 144 53 79

26 150 83

27 156 49

28 162 53

29 168 43

30 174 47

De forma general el número de vértices de las construcciones analizadas viene dado

por las siguientes fórmulas:

El número de vértices de Gm–1 es 6 (m – 1).

El número de vértices de Nm es 6 Σ (ki – 1) + 5, si m es no primo y m = ∏ki es su

descomposición en factores primos.

El número de vértices de Ñm es 6 Σ (pi – 1) + 1, si m es primo y m+1 = ∏pi es la

descomposición en factores primos de m+1.

En cualquier caso, el número de vértices de Nm ó Ñm es menor que el de Gm-1.

Observar por ejemplo que para m = 14, 15, que no son números primos, la solución

Ñm tiene menos vértices que Nm.

Más aún, ya que en la solución Nm no importa la elección de los vértices con los que

se realiza la construcción simple (no es necesario tener en cuenta el concepto de

Page 37: Independencia promedio de grafos y polinomio de Jones ...

Grafos con independencia promedio arbitraria

31

ladrillo), podrían utilizarse como “piezas” de esta construcción las soluciones dadas por

Ñm para números primos. Por ejemplo, para m = 14, podemos realizar la construcción

simple con los grafos G1 y Ñ7 sin olvidarnos del par de L2. El grafo obtenido tiene

independencia promedio 14 y sólo 30 vértices, menos que los 47 vértices de N14 o los

37 de Ñ14. Mostramos en la siguiente figura este grafo:

Figura 37. Una variación del grafo N14 con menos vértices que N14 y Ñ14

Page 38: Independencia promedio de grafos y polinomio de Jones ...
Page 39: Independencia promedio de grafos y polinomio de Jones ...

5. ANALIZANDO CUÁNDO UN GRAFO ES CONVERTIBLE Al investigar qué grafo convertible con menor número de vértices tiene por

independencia promedio un determinado número entero n, una dificultad importante

que se presenta es la de decidir cuando un grafo en cuestión es o no convertible.

Intentando salvar este escollo, hemos descubierto algunas propiedades que debe cumplir

todo grafo convertible, y cuya verificación se puede llevar a cabo de un modo mecánico

y razonablemente sencillo.

En esta sección analizamos estas propiedades, si bien es importante recalcar que la

caracterización completa de los grafos convertibles es todavía una cuestión abierta.

Comenzamos por introducir el concepto de ciclo puro, que jugará un papel básico en

todas las propiedades que estudiaremos.

Ciclos puros

Sea G un grafo y sea X = {v1, v2, … , vn} un subconjunto de vértices de G. Decimos que

X es un ciclo puro si X junto con todas las aristas que unen dos vértices cualesquiera de

X constituyen exactamente un ciclo.

Por ejemplo, en la siguiente figura los vértices coloreados de rojo forman un ciclo

puro en el grafo F; sin embargo en G no son un ciclo puro, ya que sus vértices y las

aristas que unen dos cualesquiera de los mismos no forman únicamente un ciclo.

F G

Figura 38. Los vértices rojos constituyen un ciclo puro en F; no así en G

La observación clave relacionada con el concepto de ciclo puro es el hecho de que,

si X es un ciclo puro en un grafo convertible G, entonces existe una representación de G

mediante cuerdas, de manera que el ciclo constituido por los vértices de X aparece

representado de la manera estándar (ver figura 23).

Esta idea puede ser usada para probar que un determinado grafo no es convertible.

Por ejemplo, el grafo G8,2 mostrado en la siguiente figura no es convertible:

Page 40: Independencia promedio de grafos y polinomio de Jones ...

Independencia promedio de grafos y polinomio de Jones. Aplicaciones en ingeniería

34

Figura 39. El grafo G8, 2

Para probarlo considérese el conjunto X de los seis vértices que forman un

hexágono regular. Claramente X es un ciclo puro, así que si G8,2 fuese convertible,

podríamos dibujarlo de modo que el ciclo X se representase de la manera estándar:

Figura 40. Los vértices de X, representados de modo estándar

Como puede observarse ahora, no existe la forma de añadir los dos vértices

restantes, uno rojo y otro azul, respetando las alternancias. Por ejemplo, no hay modo de

hacer alternar el vértice azul con los vértices rojos del hexágono.

La idea de este ejemplo es generalizada en el siguiente teorema:

Teorema del vértice triple

Sea X un ciclo puro dentro de un grafo G y sea v un vértice de G. Si hay al menos tres

vértices de X adyacentes a v, entonces G no es convertible.

Obsérvese que de las hipótesis se deduce que el vértice v no pertenece al ciclo X.

Índices de conexión de dos ciclos

Sean C1 y C2 dos ciclos incluidos en un grafo G, de modo que su intersección sea

exactamente un grafo Lk. Llamaremos índices de conexión de C1 y C2 a los números

naturales i, j, k definidos así:

i = (número de vértices de C1) – k + 2,

j = (número de vértices de C2) – k + 2,

k = número de vértices de Lk.

Page 41: Independencia promedio de grafos y polinomio de Jones ...

Analizando cuándo un grafo es convertible

35

En el ejemplo de la siguiente figura los ciclos C1 y C2 tienen en común exactamente

un subgrafo L6. Los índices de conexión de C1 y C2 son 12, 11 y 6. El mismo grafo

puede ser visualizado también como dos ciclos de 21 y 15 vértices e intersección un L11

o como dos ciclos de 21 y 16 vértices con intersección un L12.

21C C

Figura 41. Dos ciclos cuya intersección es un único grafo lineal Lk

Observar que si G es un grafo convertible, entonces la paridad de los índices de

conexión es la misma (todos pares o todos impares). En efecto, en tal caso los ciclos C1

y C2 tienen un número par de vértices y en consecuencia si k es par, i y j también lo son,

y si k es impar, así lo son i y j.

Teorema de los índices de conexión

Sean C1 y C2 dos ciclos puros incluidos en un grafo G cuya intersección es un único

grafo Lk, k ≥ 1. Supongamos también que C = C1 C2 – {vértices no extremos de Lk}

es un ciclo puro. Entonces, si G es convertible, se verifica que al menos un índice de

conexión es menor o igual que tres.

Figura 42. Los tres ciclos en rojo deben ser puros para poder aplicar el teorema de los índices de

conexión

Page 42: Independencia promedio de grafos y polinomio de Jones ...

Independencia promedio de grafos y polinomio de Jones. Aplicaciones en ingeniería

36

DEMOSTRACIÓN

Supongamos que a, b, c, … son los vértices ordenados de la intersección Lk = C1 ∩ C2,

tal y como muestra la siguiente figura:

1C

b

ca

z

2C

Figura 43. Demostración del teorema de los índices de conexión

Al ser C1 un ciclo puro, si G es convertible existe una representación de G mediante

cuerdas con C1 representado del modo estándar:

a

b

c

Figura 44. Única opción para la A-cuerda (salvo simetría)

La cuerda que representa al vértice (único vértice de C2 – Lk adyacente al vértice

a), no puede tener uno de sus extremos en el arco de circunferencia verde, ya que

alternaría con otro vértice de C1, contradiciendo el hecho de que C es un ciclo puro. Así

que las posibilidades para el vértice son dos, la de la figura y otra simétrica.

Ahora bien, si una cuerda que representa a un vértice de C2 – Lk abandona (o sea,

tiene un solo extremo en) el arco de circunferencia acotado por la cuerda que representa

al vértice b, alternaría con éste y daría lugar, dado que C2 es un ciclo puro, a un índice

de conexión igual a 2 (el grafo L2 formado por los vértices a y b).

Page 43: Independencia promedio de grafos y polinomio de Jones ...

Analizando cuándo un grafo es convertible

37

Finalmente, si ninguna cuerda abandona el arco de circunferencia acotado por b, a lo

sumo éstas llegan a alternar con c, dando lugar a un índice de conexión igual a 3 (el

grafo L3 formado por los vértices a, b y c), o como última posibilidad, alternan con el

vértice a, lo que generaría un índice de conexión igual a 1 (con un único vértice a). Esto

concluye la demostración.

A continuación se muestra un grafo cuya no convertibilidad es deducible del

teorema de los índices de conexión. El lector puede encontrar dos ciclos puros

satisfaciendo las hipótesis del teorema y cuyos índices de conexión son todos mayores

que tres.

Figura 45. El teorema de los índices de conexión muestra que este grafo no es convertible

El siguiente grafo no es convertible, pero esto no puede deducirse ni del teorema del

vértice triple ni del teorema de los índices de conexión. Los vértices rojos constituyen

un ciclo puro, así que si el grafo fuese convertible admitiría una representación

mediante cuerdas como se muestra a la derecha de la figura. Observar entonces que una

de las cuerdas correspondiente a los vértices x e y no es dibujable.

x

y

x

Figura 46. Aplicación del teorema de perpendicularidad: el grafo de la figura no es convertible

La idea del ejemplo anterior es generalizada en el siguiente resultado:

Teorema de perpendicularidad

Sea C un ciclo puro incluido en un grafo G. Sean v1, v2, v3 y v4 cuatro vértices de C no

consecutivos, encontrados en este orden al recorrer C en algún sentido. Sean x e y dos

vértices no adyacentes entre sí y no pertenecientes a C, siendo v1 y v3 vértices

adyacentes a x, v2 y v4 vértices adyacentes a y. Entonces G es un grafo no convertible.

Page 44: Independencia promedio de grafos y polinomio de Jones ...

Independencia promedio de grafos y polinomio de Jones. Aplicaciones en ingeniería

38

DEMOSTRACIÓN

Si G fuese convertible, existiría una representación de G mediante cuerdas con C

representado de la forma estándar, al ser C un ciclo puro incluido en G.

Más aún, el hecho de que G fuese convertible lo haría un grafo bipartido,

distinguiendo vértices rojos y azules, o equivalentemente a nivel de cuerdas, entre

cuerdas interiores y exteriores respecto a la circunferencia de referencia.

Como los vértices v1 y v3 son adyacentes a x, tienen necesariamente el mismo color.

Igualmente v2 y v4 comparten color. Se sigue que o los cuatro vértices tienen el mismo

color, o el color de v1 y v3 es distinto al de v2 y v4. Más aún, en la representación

mediante cuerdas encontraremos las cuerdas correspondientes a los vértices v1, v2, v3 y

v4 en este orden, digamos al recorrer la circunferencia de referencia en sentido contrario

al del movimiento de las agujas del reloj. En consecuencia se presentan dos

posibilidades, reflejadas en la siguiente figura:

v

v v

v

x

v

v v x v

v

v

x

v

v

Figura 47. Demostración del teorema de perpendicularidad

Es entonces sencillo observar que no podemos dibujar la cuerda correspondiente al

vértice y, una vez que hemos representado la correspondiente al vértice x. En efecto, en

el caso representado a la izquierda de la figura, la cuerda correspondiente al vértice y

cortaría a la correspondiente al vértice x; en el caso representado a la derecha de la

figura, dibujada por fuera la haría alternar con la cuerda correspondiente a x,

contradiciendo el hecho de que x e y son vértices no adyacentes.

Por último la hipótesis de que los vértices no sean consecutivos tiene por objeto

descartar la siguiente situación:

y

x

vv

v

1

32

4

Figura 48. Los cuatro vértices del teorema de perpendicularidad no pueden ser consecutivos

Page 45: Independencia promedio de grafos y polinomio de Jones ...

Analizando cuándo un grafo es convertible

39

La siguiente figura muestra un ejemplo concreto en que se ve la necesidad de la

hipótesis de que los vértices v1, v2, v3 y v4 no sean consecutivos en el ciclo puro C, en el

teorema de perpendicularidad. En este caso, C es el ciclo constituido por los vértices

azules:

Figura 49. Los vértices del ciclo puro deben ser no consecutivos en el teorema de perpendicularidad

Un grafo convertible es necesariamente bipartido. Además, si contiene un ciclo, éste

debe tener un número par de vértices. Más aún, si contiene dos ciclos cuya intersección

es exactamente un grafo lineal, la paridad de los índices de conexión correspondientes

debe ser la misma.

En esta sección hemos estudiado también una serie de resultados más específicos

que permiten deducir que ciertos grafos no son convertibles. A saber, el teorema del

vértice triple, el teorema de los índices de conexión y el teorema de perpendicularidad.

A continuación se muestra un ejemplo de grafo no convertible cuya no

convertibilidad no es deducible mediante ninguno de los criterios y resultados

anteriores:

A A

Figura 50. Un grafo no convertible, que no cumple las hipótesis de los teoremas estudiados

Para ver que este grafo es no convertible dibujamos primero el ciclo puro formado

por los vértices azules del modo estándar (si el grafo fuese convertible admitiría una tal

representación). El modo de pintar el vértice A es ahora único, siendo imposible

representar el vértice restante.

Por último en esta sección, presentamos sin demostración una generalización del

teorema de perpendicularidad:

Page 46: Independencia promedio de grafos y polinomio de Jones ...

Independencia promedio de grafos y polinomio de Jones. Aplicaciones en ingeniería

40

Teorema general de perpendicularidad

Sea C un ciclo puro incluido en un grafo G. Sean v1, v2, v3 y v4 cuatro vértices de C de

grado tres no consecutivos, encontrados en este orden al recorrer C en algún sentido.

Supongamos que v1 y v3 son los extremos de un camino Lr (r 3) de modo que sus

vértices interiores tienen grado dos y ninguno es vértice de C. Igualmente, supongamos

que v2 y v4 son los extremos de un camino Ls (s 3) de modo que sus vértices interiores

tienen grado dos y ninguno es vértice de C. Entonces G no es convertible.

Usando este teorema también podemos deducir que el grafo de la figura anterior no

es convertible, considerando el ciclo puro formado por los vértices que aparecen en

azul, el vértice interior de Lr = L3 viene en rojo, los vértices interiores de Ls = L7 vienen

en verde:

v

v v1v2

3

4

Figura 51. Un grafo no convertible deducible del teorema general de perpendicularidad

Page 47: Independencia promedio de grafos y polinomio de Jones ...

6. GRAFOS CON POCOS VÉRTICES. PROGRAMACIÓN En esta sección probaremos que las soluciones G1 y G2 con independencia promedio

dos y tres respectivamente, son las óptimas. Con precisión, probaremos que el hexágono

es el grafo convertible con menor número de vértices cuya independencia promedio es

igual a dos, y que no existe ningún grafo convertible con once o menos vértices e

independencia promedio tres, siendo así el grafo formado por dos hexágonos unidos

mediante la construcción estrella el representante más sencillo con independencia

promedio tres.

Recordar que todo grafo convertible es bipartido. Si la bipartición es del tipo (k,n),

siendo k el número de vértices azules y n el número de vértices rojos, ningún vértice

azul puede tener grado n, ya que duplicaría a cualquier otro vértice azul. Igualmente,

ningún vértice rojo puede tener grado k.

En nuestro estudio podemos prescindir también de cualquier grafo que contenga un

vértice con grado cero. En efecto, en tal caso el grafo tiene un vértice aislado, y por la

ley de multiplicación su independencia promedio es cero.

Así mismo, podemos prescindir de los grafos que tienen un vértice de grado uno, ya

que entonces dicho vértice está duplicado y por tanto existe un grafo con igual

independencia promedio y un vértice menos. La excepción a esta regla son los grafos

que tienen a L2 como una de sus componentes conexas. Por la ley de multiplicación, la

eliminación de un tal L2 conlleva un cambio de signo en la independencia.

En particular, no es necesario considerar las biparticiones de tipo (0,n), (1,n) ó (2,n).

En el caso de una bipartición (2,n), cualquiera de los n vértices rojos duplica, asumiendo

que los vértices azules no tienen grado cero o uno.

Estas observaciones muestran que no hay un grafo con independencia promedio dos

que tenga menos de seis vértices, y entre los grafos convertibles con seis vértices, sólo

la bipartición (3,3) puede dar lugar a independencia promedio dos. Más aún, cada

vértice ha de tener grado dos. En consecuencia, salvo isomorfismo, la única submatriz

de adyacencia posible es

A1 A2 A3

R1 1 1 0

R2 1 0 1

R3 0 1 1

Hemos rellenado los unos en la matriz de manera ordenada por columnas, de modo

que al colocar un 1 en una columna, lo hacemos siempre en la primera fila que se pueda

(en general, en el proceso de construcción de estas matrices se irán descartando aquellas

que, por intercambios de filas y/o columnas, resulten isomorfas).

El grafo que corresponde a dicha matriz es el hexágono, de independencia promedio

dos. Así pues, hemos demostrado el siguiente resultado:

Teorema

El hexágono es el único grafo convertible con seis o menos vértices que tiene

independencia promedio dos.

Page 48: Independencia promedio de grafos y polinomio de Jones ...

Independencia promedio de grafos y polinomio de Jones. Aplicaciones en ingeniería

42

Figura 52. El hexágono H = G1

Independencia promedio tres

El estudio de la independencia promedio de grafos de más de seis vértices da lugar,

sobre todo a partir de los diez y once vértices, a un elevado número de casos, para los

que se antoja tedioso el cálculo a mano de su independencia promedio. Por esta razón,

para el análisis sistemático de estos casos nos hemos valido de dos programas

desarrollados con MATLAB. Estos programas aparecen escritos y comentados al final

de esta sección.

El análisis realizado hasta ahora nos permite también asegurar que no existen grafos

convertibles con seis o menos vértices, que tengan independencia promedio tres o

menos tres. De hecho, |I(G)| es menor o igual que dos para todo grafo convertible G con

seis o menos vértices. Analizamos ahora los grafos con siete o más vértices.

Grafos con siete vértices

Bipartición (4,3) El hecho de que todo vértice azul deba tener grado dos produce

duplicación:

A1 A2 A3 A4

R1 1 1 0 *

R2 1 0 1 *

R3 0 1 1 *

Grafos con ocho vértices

La bipartición (5,3) lleva a duplicación con más motivo que la bipartición (4,3) del

apartado anterior. Nos queda pues analizar la bipartición (4,4).

Bipartición (4,4) En este caso todo vértice tiene grado 2 ó 3. Sea T el número de

vértices de color azul con grado 3.

Caso T = 0. Se verifica que en cada columna y en cada fila hay exactamente dos unos.

Lo segundo es debido a que, si hubiese una fila con tres unos, tendríamos al menos una

fila con un uno como mucho (en total hay ocho unos en la matriz), y por tanto un vértice

rojo con grado uno o cero.

En primer lugar, observar que las operaciones de intercambio entre filas y entre

columnas no modifican el hecho de que cada fila y cada columna contengan

exactamente dos unos.

Por intercambio de columnas podemos colocar un 1 en la entrada (1,1), escogiendo

como primera columna una que tenga un 1 en la parte superior (hay dos tales columnas).

A continuación intercambiamos la fila dos con la única fila posterior que tiene un 1 a la

izquierda, para colocar un 1 en la entrada (2,1). Un nuevo intercambio de columnas, que

no involucre a la columna uno, coloca un 1 en la entrada (2,2). El otro 1 de la columna

dos debe estar en la tercera fila o posteriores; de lo contrario habría duplicación.

Page 49: Independencia promedio de grafos y polinomio de Jones ...

Grafos con pocos vértices. Programación

43

Continuando este proceso alternando intercambios de filas y columnas, y asumiendo

que no hay duplicación, obtenemos la submatriz de adyacencia siguiente, que se

corresponde con el ciclo octógono C8, con independencia promedio –1:

A1 A2 A3 A4

R1 1 0 0 1

R2 1 1 0 0

R3 0 1 1 0

R4 0 0 1 1

El siguiente ejemplo ilustra lo explicado, usando primero intercambio de columnas

(primera y segunda) y después intercambio de filas (segunda y tercera):

A1 A2 A3 A4 A1 A2 A3 A4 A1 A2 A3 A4

R1 0 1 0 1 R1 1 0 0 1 R1 1 0 0 1

R2 1 0 1 0 R2 0 1 1 0 R2 1 1 0 0

R3 1 1 0 0 R3 1 1 0 0 R3 0 1 1 0

R4 0 0 1 1 R4 0 0 1 1 R4 0 0 1 1

Caso T = 1.

A1 A2 A3 A4

R1 1 1 0 0

R2 1 0 1 0

R3 1 0 0 1

R4 0 1 1 1

es la única submatriz de adyacencia posible. El grafo asociado G8,1, con independencia

promedio 0, es el siguiente:

1 2

1

3

2 3 4

Figura 53. El grafo G8,1 tiene independencia promedio cero

Caso T = 2. No es posible construir la submatriz de adyacencia sin duplicaciones:

A1 A2 A3 A4

R1 1 1 0 *

R2 1 1 0 *

R3 1 0 1 *

R4 0 1 1 *

Page 50: Independencia promedio de grafos y polinomio de Jones ...

Independencia promedio de grafos y polinomio de Jones. Aplicaciones en ingeniería

44

Caso T = 3. Se produce igualmente duplicación:

A1 A2 A3 A4

R1 1 1 1 *

R2 1 1 0 *

R3 1 0 1 *

R4 0 1 1 *

Caso T = 4. Ya que hay

3

4= 4 formas de colocar tres unos en cada una de las cuatro

columnas, la única matriz posible salvo isomorfismo es

A1 A2 A3 A4

R1 1 1 1 0

R2 1 1 0 1

R3 1 0 1 1

R4 0 1 1 1

El grafo asociado G8,2 tiene independencia promedio I(G8,2) = 3, pero ya hemos

visto anteriormente que este grafo no es convertible:

Figura 54. El grafo G8,2 tiene independencia promedio tres, pero no es convertible

Grafos con nueve vértices

La bipartición (6,3) conduce a duplicación, con más motivo que las biparticiones (5,3) ó

(4,3) de los apartados anteriores.

Bipartición (5,4) Como ya se ha visto anteriormente, podemos asumir que ningún

vértice azul tiene grado 0, 1 ó 4. Sea T el número de vértices de color azul con grado 3.

Caso T = 0. Como todo vértice azul tiene grado 2 y hay 4 vértices rojos, tenemos

2

4

= 6 maneras de rellenar cada columna. A saber:

1 1 1 0 0 0

1 0 0 1 1 0

0 1 0 1 0 1

0 0 1 0 1 1

Page 51: Independencia promedio de grafos y polinomio de Jones ...

Grafos con pocos vértices. Programación

45

Al haber cinco vértices azules, el número de matrices diferentes es

5

6 = 6, cada

una de las cuales se obtiene al descartar una de las seis posibles columnas (la repetición

de una columna conlleva duplicación y el intercambio de columnas produce matrices

asociadas a grafos isomorfos). Las seis matrices se muestran a continuación; la quinta

tiene independencia promedio –1 y las otras cinco –2:

A1 A2 A3 A4 A5 A1 A2 A3 A4 A5

R1 1 1 1 0 0 R1 1 1 1 0 0

R2 1 0 0 1 1 R2 1 0 0 1 0

R3 0 1 0 1 0 R3 0 1 0 1 1

R4 0 0 1 0 1 R4 0 0 1 0 1

A1 A2 A3 A4 A5 A1 A2 A3 A4 A5

R1 1 1 1 0 0 R1 1 1 0 0 0

R2 1 0 0 1 0 R2 1 0 1 1 0

R3 0 1 0 0 1 R3 0 1 1 0 1

R4 0 0 1 1 1 R4 0 0 0 1 1

A1 A2 A3 A4 A5 A1 A2 A3 A4 A5

R1 1 1 0 0 0 R1 1 1 0 0 0

R2 1 0 1 1 0 R2 0 0 1 1 0

R3 0 0 1 0 1 R3 1 0 1 0 1

R4 0 1 0 1 1 R4 0 1 0 1 1

Caso T = 1. En este caso hay necesariamente duplicación:

A1 A2 A3 A4 A5

R1 1 1 0 0 *

R2 1 0 1 0 *

R3 1 0 0 1 *

R4 0 1 1 1 *

Caso T = 2. Al igual que en el caso anterior no es posible la construcción de ningún

grafo sin que haya duplicación. En efecto, si A1 y A2 son adyacentes ambos a dos

vértices rojos (pongamos R1 y R2) y cada uno de ellos a otro distinto, entonces A3 sólo

tiene la posibilidad de ser adyacente a los vértices R3 y R4, agotando las posibilidades

para los vértices azules A4 y A5:

A1 A2 A3 A4 A5

R1 1 1 0 * *

R2 1 1 0 * *

R3 1 0 1 * *

R4 0 1 1 * *

Page 52: Independencia promedio de grafos y polinomio de Jones ...

Independencia promedio de grafos y polinomio de Jones. Aplicaciones en ingeniería

46

Caso T = 3. La situación es análoga a los dos casos anteriores:

A1 A2 A3 A4 A5

R1 1 1 1 * *

R2 1 1 0 * *

R3 1 0 1 * *

R4 0 1 1 * *

Caso T = 4. El vértice A5 no puede ser adyacente a dos vértices rojos sin ser

duplicado por alguno de los otros vértices azules:

A1 A2 A3 A4 A5

R1 1 1 1 0 *

R2 1 1 0 1 *

R3 1 0 1 1 *

R4 0 1 1 1 *

Caso T = 5. Como hay

3

4 = 4 maneras diferentes de colocar tres unos en cada

columna y hay cinco columnas a rellenar, no es posible construir una matriz sin que se

repitan columnas, lo que da lugar a duplicación.

Grafos con diez vértices

En la bipartición (7,3) se repite la situación que vimos en las biparticiones (4,3), (5,3) ó

(6,3) de los apartados anteriores.

Bipartición (6,4) Como ya se ha visto, ningún vértice azul puede tener grado 0, 1 ó 4.

Sea T el número de vértices azules con grado 3.

Caso T = 0. Entonces todo vértice azul tiene grado dos. Al haber cuatro vértices rojos

tenemos

2

4 = 6 maneras de rellenar cada columna. Como hay seis vértices azules la

única submatriz de adyacencia posible es

A1 A2 A3 A4 A5 A6

R1 1 1 1 0 0 0

R2 1 0 0 1 1 0

R3 0 1 0 1 0 1

R4 0 0 1 0 1 1

El grafo G10, 1 que responde a esta representación matricial es

Page 53: Independencia promedio de grafos y polinomio de Jones ...

Grafos con pocos vértices. Programación

47

3

2

1

44

2

5

3

6

Figura 55. El grafo G10,1 tiene independencia promedio –3

Su independencia promedio es I (G10,1) = –3. Pero este grafo no es convertible, lo

que ya hemos visto como aplicación del teorema de perpendicularidad.

Los casos T = 1, 2, 3, 4, 5 y 6 conducen claramente a duplicación, según se muestra

esquemáticamente:

Caso T = 1.

A1 A2 A3 A4 A5 A6

R1 1 1 0 0 * *

R2 1 0 1 0 * *

R3 1 0 0 1 * *

R4 0 1 1 1 * *

Caso T = 2.

A1 A2 A3 A4 A5 A6

R1 1 1 0 * * *

R2 1 1 0 * * *

R3 1 0 1 * * *

R4 0 1 1 * * *

Caso T = 3.

A1 A2 A3 A4 A5 A6

R1 1 1 1 * * *

R2 1 1 0 * * *

R3 1 0 1 * * *

R4 0 1 1 * * *

Casos T = 4, 5 y 6.

A1 A2 A3 A4 A5 A6

R1 1 1 1 0 * *

R2 1 1 0 1 * *

R3 1 0 1 1 * *

R4 0 1 1 1 * *

Page 54: Independencia promedio de grafos y polinomio de Jones ...

Independencia promedio de grafos y polinomio de Jones. Aplicaciones en ingeniería

48

Bipartición (5,5) Los vértices pueden tener grado 2, 3 ó 4. Sean T y C los números de

vértices azules con grado tres y cuatro respectivamente.

Caso C = 0, T = 0. Existen

2

5 = 10 formas diferentes de posicionar dos unos en cada

columna. Como hay 5 columnas, el número total de matrices sería

5

10 = 252. Una de

estas matrices es

A1 A2 A3 A4 A5

R1 1 0 0 0 1

R2 1 1 0 0 0

R3 0 1 1 0 0

R4 0 0 1 1 0

R5 0 0 0 1 1

El grafo que corresponde a esta representación matricial es el decágono, cuya

independencia promedio es I (C10) = –1. Ahora bien, por un argumento análogo al analizado en el apartado de grafos con

ocho vértices, bipartición (4,4), caso T = 0, podemos deducir que el resto de matrices

son isomorfas a ésta o hay duplicación.

Caso C = 0, T = 1. Tras rellenar las dos primeras columnas se observan dos

posibilidades diferentes:

a) A1 A2 A3 A4 A5 b) A1 A2 A3 A4 A5

R1 1 0 R1 1 1

R2 1 0 R2 1 0

R3 1 0 R3 1 0

R4 0 1 R4 0 1

R5 0 1 R5 0 0

En la posibilidad a, al elegir las adyacencias del vértice A3, éstas deberán ser

forzosamente un vértice rojo adyacente a A1 y otro que no lo sea, de manera que el

estudio se reduce al análisis del caso b por intercambio de columnas.

Las formas diferentes de rellenar cada columna son

2

5 = 10 y las posibilidades

que vetan los dos primeros vértices azules son 4, por lo que el número de matrices

posibles es

3

6 = 20.

La independencia promedio de los grafos asociados a estas matrices oscila entre –2

y 1. Los cálculos se han realizado con el programa enumerartres.m.

Caso C = 0, T = 2. Tras rellenar las dos primeras columnas se obtienen dos

posibilidades diferentes:

Page 55: Independencia promedio de grafos y polinomio de Jones ...

Grafos con pocos vértices. Programación

49

a) A1 A2 A3 A4 A5 b) A1 A2 A3 A4 A5

R1 1 1 R1 1 1

R2 1 1 R2 1 0

R3 1 0 R3 1 0

R4 0 1 R4 0 1

R5 0 0 R5 0 1

Caso b). En principio hay

2

5 = 10 formas de rellenar cada una de las tres

columnas que quedan, debiendo restar las seis posiciones vetadas por los dos

primeros vértices azules para evitar duplicación. Al quedar tres vértices azules por

rellenar, el número de matrices posibles es

3

4 = 4. Dichas matrices se muestran a

continuación; en los cuatro casos la independencia promedio de los grafos

correspondientes es –2:

A1 A2 A3 A4 A5 A1 A2 A3 A4 A5

R1 1 1 0 0 0 R1 1 1 0 0 0

R2 1 0 1 1 0 R2 1 0 1 1 0

R3 1 0 0 0 1 R3 1 0 0 0 1

R4 0 1 1 0 1 R4 0 1 1 0 0

R5 0 1 0 1 0 R5 0 1 0 1 1

A1 A2 A3 A4 A5 A1 A2 A3 A4 A5

R1 1 1 0 0 0 R1 1 1 0 0 0

R2 1 0 1 0 0 R2 1 0 1 0 0

R3 1 0 0 1 1 R3 1 0 0 1 1

R4 0 1 1 1 0 R4 0 1 0 1 0

R5 0 1 0 0 1 R5 0 1 1 0 1

Caso a). En principio hay

2

5 = 10 formas de rellenar cada una de las tres columnas

que quedan, debiendo restar las cinco posiciones vetadas por los dos primeros

vértices azules para evitar duplicación. Al quedar tres vértices azules por rellenar, el

número de matrices posibles es

3

5=10. Los grafos asociados a estas matrices

tienen independencia promedio comprendida entre –2 y 1, salvo en el caso de la

matriz

A1 A2 A3 A4 A5

R1 1 1 1 0 0

R2 1 1 0 1 0

R3 1 0 0 0 1

R4 0 1 0 0 1

R5 0 0 1 1 0

El grafo correspondiente G10, 2 tiene independencia promedio I (G10,2) = –3. Más

interesante aún, G10,2 es convertible, como puede verse en la siguiente figura:

Page 56: Independencia promedio de grafos y polinomio de Jones ...

Independencia promedio de grafos y polinomio de Jones. Aplicaciones en ingeniería

50

3

1

4

5

2

5

1

2

5

4

3

1

1

3

2

4

5

23

4

Figura 56. Un grafo convertible con diez vértices e independencia promedio –3

A continuación construimos un diagrama de un enlace a partir del cual se obtiene el

grafo G10,2 por el proceso de suavización de los cruces mediante A-cuerdas:

Figura 57. Construcción de un enlace asociado al grafo G10, 2

El diagrama obtenido es equivalente a un diagrama aparentemente más sencillo,

como se muestra en la siguiente figura:

Figura 58. Dos diagramas equivalentes

Page 57: Independencia promedio de grafos y polinomio de Jones ...

Grafos con pocos vértices. Programación

51

A continuación se muestra el grafo correspondiente a este enlace de ocho cruces; su

independencia promedio es 0 por tener vértices aislados:

Figura 59. El grafo obtenido a partir del diagrama “sencillo” tiene independencia promedio 0

En resumidas cuentas, tenemos dos diagramas de enlaces equivalentes que al ser

suavizados por A-cuerdas producen dos grafos distintos, uno con independencia

promedio –3 y otro 0. Aparentemente esto contradice el hecho de que los polinomios de

Jones de ambos enlaces coinciden, dado que la independencia promedios es, quizás

salvo signo, el coeficiente extremo aM de dicho polinomio.

Lo que ocurre es que, en general, aM = ±I(GK) con M = c + 2r – 2, siendo c el

número de cruces en el diagrama del enlace y r el número de circunferencias de

referencia en el diagrama de A-cuerdas. Y este es el coeficiente extremo de VK(t)

siempre y cuando no sea cero.

Para el primer diagrama tenemos c = 10, r = 1 así que M = 10, siendo I(GK) = –3.

Para el segundo diagrama tenemos c = 8, r = 4 así que M = 14, siendo I(GK) = 0. En

conclusión VK(t) = ... ± 3 t10

. Aunque el segundo diagrama es aparentemente más simple

(de hecho, tiene menos cruces), es el primer diagrama el que permite encontrar el

coeficiente extremo del polinomio de Jones del enlace.

Caso C = 0, T = 3. Obligatoriamente hay dos vértices azules que tienen en común dos

vértices rojos. Por intercambio de columnas y filas podemos entonces asumir que las

dos primeras columnas de la matriz son

A1 A2 A3 A4 A5

R1 1 1

R2 1 1

R3 1 0

R4 0 1

R5 0 0

Para rellenar la tercera columna tenemos un total de 5

3

– 2 = 8 posibilidades:

1 1 1 1 0 0 0 0

1 0 0 0 1 1 1 0

0 1 1 0 1 1 0 1

0 1 0 1 1 0 1 1

1 0 1 1 0 1 1 1

Por intercambio de filas, usar la quinta columna equivale a usar la segunda, y usar la

cuarta, sexta o séptima equivale a usar la tercera. Quedan pues cuatro casos a analizar:

Page 58: Independencia promedio de grafos y polinomio de Jones ...

Independencia promedio de grafos y polinomio de Jones. Aplicaciones en ingeniería

52

a) A1 A2 A3 A4 A5 b) A1 A2 A3 A4 A5

R1 1 1 1 R1 1 1 1

R2 1 1 1 R2 1 1 0

R3 1 0 0 R3 1 0 1

R4 0 1 0 R4 0 1 1

R5 0 0 1 R5 0 0 0

c) A1 A2 A3 A4 A5 d) A1 A2 A3 A4 A5

R1 1 1 1 R1 1 1 0

R2 1 1 0 R2 1 1 0

R3 1 0 1 R3 1 0 1

R4 0 1 0 R4 0 1 1

R5 0 0 1 R5 0 0 1

En los casos a y c, las posibilidades para las dos columnas restantes son

2

5 – 7 =

3 (hay siete columnas vetadas por las tres primeras), de manera que el número de

matrices posibles es

2

3 = 3. En el caso b hay seis columnas vetadas, y por tanto un

total de

2

4 = 6 matrices. Finalmente, en el caso d las columnas vetadas son ocho; sólo

existe una matriz.

De las trece matrices que pueden generarse en total, sólo encontramos una de

interés, que proviene del caso c:

A1 A2 A3 A4 A5

R1 1 1 1 0 0

R2 1 1 0 1 0

R3 1 0 1 0 1

R4 0 1 0 0 1

R5 0 0 1 1 0

La independencia promedio del grafo asociado G10,3 es I (G10,3) = –3. Y, como puede

observarse en la figura, este grafo es convertible:

1

4 1

2 2

5 3 3

4

4

5

5

3 1

5

2

2

3 4

Figura 60. El grafo convertible G10,3 tiene diez vértices e independencia promedio – 3

Page 59: Independencia promedio de grafos y polinomio de Jones ...

Grafos con pocos vértices. Programación

53

Figura 61. Construcción de un nudo asociado al grafo G10, 3 (el nudo morado es un nudo trébol)

Caso C = 0, T = 4. Son casos derivados del apartado C = 0, T = 3. Con el programa

enumerartres.m, tomando como X las tres primeras columnas de los casos a, b, c y d,

comprobamos que las independencias promedio que se obtienen oscilan entre –2 y 2.

Caso C = 0, T = 5. Para cada uno de los casos a, b, c y d del apartado C = 0, T = 3,

hay 5

3

– 3 = 7 formas de rellenar cada una de las dos últimas columnas, y por tanto

7

2

= 21 posibles matrices. Con el programa enumerartres.m hemos comprobado que

la independencia promedio de los grafos correspondientes a las 84 (4 por 21) matrices

están comprendidas entre –2 y 1.

Caso C = 1, T = 0. La única matriz posible es la siguiente (el grafo asociado tiene

independencia promedio 2):

A1 A2 A3 A4 A5

R1 1 1 0 0 0

R2 1 0 1 0 0

R3 1 0 0 1 0

R4 1 0 0 0 1

R5 0 1 1 1 1

Page 60: Independencia promedio de grafos y polinomio de Jones ...

Independencia promedio de grafos y polinomio de Jones. Aplicaciones en ingeniería

54

Caso C = 1, T = 1. Este caso conduce a duplicación:

A1 A2 A3 A4 A5

R1 1 1 0 0 *

R2 1 1 0 0 *

R3 1 0 1 0 *

R4 1 0 0 1 *

R5 0 1 1 1 *

Caso C = 1, T = 2. Las dos posibilidades iniciales llevan a duplicación:

A1 A2 A3 A4 A5 A1 A2 A3 A4 A5

R1 1 1 1 0 * R1 1 1 0 * *

R2 1 1 0 0 * R2 1 1 0 * *

R3 1 0 1 0 * R3 1 0 1 * *

R4 1 0 0 1 * R4 1 0 1 * *

R5 0 1 1 1 * R5 0 1 1 * *

Caso C = 1, T = 3. Inicialmente tenemos las dos posibilidades anteriores:

a) A1 A2 A3 A4 A5 b) A1 A2 A3 A4 A5

R1 1 1 1 R1 1 1 0

R2 1 1 0 R2 1 1 0

R3 1 0 1 R3 1 0 1

R4 1 0 0 R4 1 0 1

R5 0 1 1 R5 0 1 1

En el caso b, el vértice A5, con grado dos, está necesariamente duplicado. En el caso

a, el vértice A5 con grado dos debe ser adyacente a R4 y R5 para evitar ser duplicado, lo

que determina la siguiente matriz (el grafo correspondiente tiene independencia

promedio –1):

A1 A2 A3 A4 A5

R1 1 1 1 0 0

R2 1 1 0 1 0

R3 1 0 1 1 0

R4 1 0 0 0 1

R5 0 1 1 1 1

Caso C = 1, T = 4. Al ser C = 1, el aspecto de la matriz es

A1 A2 A3 A4 A5

R1 1

R2 1

R3 1

R4 1

R5 0 1 1 1 1

Page 61: Independencia promedio de grafos y polinomio de Jones ...

Grafos con pocos vértices. Programación

55

En cada columna que queda por rellenar deben colocarse dos unos más, por lo que

hay

2

4 = 6 columnas posibles y por tanto

4

6 = 15 posibles matrices. Las

independencias promedio de los grafos asociados a todas estas matrices oscilan entre –1

y 1, según hemos comprobado con enumerartres.m.

Caso C = 2. La matriz es obligadamente de la forma

A1 A2 A3 A4 A5

R1 1 1

R2 1 1

R3 1 1

R4 1 0 1 1 1

R5 0 1 1 1 1

Si T no es tres, al menos uno de los vértices A3, A4 ó A5 está duplicado. Y si T = 3,

la duplicación se evita sólo si la matriz es de la forma

A1 A2 A3 A4 A5

R1 1 1 1 0 0

R2 1 1 0 1 0

R3 1 1 0 0 1

R4 1 0 1 1 1

R5 0 1 1 1 1

El grafo asociado a dicha matriz tiene independencia promedio 1.

Caso C = 3. Hay necesariamente duplicación. Siendo la matriz obligadamente de la

forma que sigue, se veta cualquier vértice azul de grado dos, y sólo es posible uno de

grado tres, con columna 0,0,1,1,1:

A1 A2 A3 A4 A5

R1 1 1 1

R2 1 1 1

R3 1 1 0

R4 1 0 1

R5 0 1 1

Caso C = 4. No se puede completar la columna correspondiente al vértice A5 sin que

haya duplicación:

A1 A2 A3 A4 A5

R1 1 1 1 1 *

R2 1 1 1 0 *

R3 1 1 0 1 *

R4 1 0 1 1 *

R5 0 1 1 1 *

Page 62: Independencia promedio de grafos y polinomio de Jones ...

Independencia promedio de grafos y polinomio de Jones. Aplicaciones en ingeniería

56

Caso C = 5. La matriz es obligadamente de la forma

A1 A2 A3 A4 A5

R1 1 1 1 1 0

R2 1 1 1 0 1

R3 1 1 0 1 1

R4 1 0 1 1 1

R5 0 1 1 1 1

El grafo asociado a esta matriz tiene independencia promedio 4, aunque no es

convertible (se trata de un cono del grafo G8,2 en las hipótesis del teorema del vértice

triple).

Grafos con once vértices

La bipartición (8,3) conduce a duplicación, como las biparticiones (7,3), (6,3), (5,3) y

(4,3). En el análisis de las siguientes biparticiones, T y C denotan el número de vértices

azules de grado tres y cuatro respectivamente.

Bipartición (7,4) Siempre habrá duplicación. Por supuesto podemos asumir que todo

vértice azul tiene grado dos o tres. Por otro lado tenemos siete columnas a rellenar y

4

2

= 6 formas de rellenar una columna con dos unos. Si T = 1, tres de estas seis

posibilidades están vetadas por la columna correspondiente al vértice azul de grado tres,

y ninguna matriz es posible sin duplicación. Si T = 2 ó 3, el mismo argumento se aplica.

Si T 4, la duplicación es también obvia.

Bipartición (6,5)

Caso C ≥ 3. Este caso siempre da lugar a duplicaciones. En efecto, fijadas las tres

primeras columnas, ninguno de los tres vértices azules restantes puede tener grado dos.

Un cuarto vértice azul con grado cuatro veta la posibilidad de que haya un vértice de

grado tres, y los tres vértices azules restantes no pueden tener todos grado cuatro pues

con cuatro unos sólo podemos rellenar

4

5 = 5 columnas. Por último, tampoco pueden

tener grado tres pues A5 ya estaría duplicado.

A1 A2 A3 A4 A5 A6

R1 1 1 1

R2 1 1 1

R3 1 1 0

R4 1 0 1

R5 0 1 1

Caso C = 2. Tampoco existe la forma de construir un grafo sin duplicaciones. En

efecto, fijadas las dos primeras columnas, los vértices restantes deben ser todos

adyacentes a R4 y R5. En consecuencia cualquier vértice de grado dos estaría

duplicado. Ahora bien, sólo pueden colocarse tres vértices azules con grado tres; tras el

cuarto habría duplicación:

Page 63: Independencia promedio de grafos y polinomio de Jones ...

Grafos con pocos vértices. Programación

57

A1 A2 A3 A4 A5 A6

R1 1 1 1 0 0 *

R2 1 1 0 1 0 *

R3 1 1 0 0 1 *

R4 1 0 1 1 1 1

R5 0 1 1 1 1 1

Caso C = 1, T = 0. Da lugar a duplicación:

A1 A2 A3 A4 A5 A6

R1 1 1 0 0 0 *

R2 1 0 1 0 0 *

R3 1 0 0 1 0 *

R4 1 0 0 0 1 *

R5 0 1 1 1 1 1

Caso C =1, T = 1. Da lugar a duplicación:

A1 A2 A3 A4 A5 A6

R1 1 1 0 0 * *

R2 1 1 0 0 * *

R3 1 0 1 0 * *

R4 1 0 0 1 * *

R5 0 1 1 1 1 1

Caso C = 1, T = 2. En principio hay dos posibilidades diferentes, pero ambas

conducen obviamente a duplicación:

A1 A2 A3 A4 A5 A6

A1 A2 A3 A4 A5 A6

R1 1 1 1 0 * * R1 1 1 0 * * *

R2 1 1 0 0 * * R2 1 1 0 * * *

R3 1 0 1 0 * * R3 1 0 1 * * *

R4 1 0 0 1 * * R4 1 0 1 * * *

R5 0 1 1 1 1 1 R5 0 1 1 1 1 1

Caso C = 1, T = 3. Asumiendo que A1 tiene grado cuatro y A5 y A6 grado dos, salvo

isomorfismo la matriz debe tener la forma que sigue, si se desea evitar la duplicación.

Entonces alguno de los vértices de grado tres (A2, A3 ó A4) duplica a A5 ó A6, o bien

los tres tienen exactamente los mismos vértices adyacentes:

A1 A2 A3 A4 A5 A6

R1 1 * * * 1 0

R2 1 * * * 0 1

R3 1 * * * 0 0

R4 1 * * * 0 0

R5 0 1 1 1 1 1

Page 64: Independencia promedio de grafos y polinomio de Jones ...

Independencia promedio de grafos y polinomio de Jones. Aplicaciones en ingeniería

58

Caso C = 1, T = 4. Podemos asumir que la matriz tiene la forma que sigue, siendo

imposible colocar dos unos más en las columnas segunda a quinta sin que se produzca

duplicación:

A1 A2 A3 A4 A5 A6

R1 1 0 0 0 0 1

R2 1 * * * * 0

R3 1 * * * * 0

R4 1 * * * * 0

R5 0 1 1 1 1 1

Caso C = 1, T = 5. Por ser el vértice A1 de grado 4, se tiene la siguiente situación:

A1 A2 A3 A4 A5 A6

R1 1

R2 1

R3 1

R4 1

R5 0 1 1 1 1 1

Hay

2

4 = 6 formas de rellenar cada una de las restantes columnas. Como quedan

cinco columnas por rellenar, tenemos entonces seis posibles matrices (salvo

isomorfismo y evitando duplicación obvia). La independencia promedio de los grafos

correspondientes es en los seis casos –1.

Caso C = 0, T = 0. Toda columna tiene entonces dos unos. En un principio pueden

pensarse dos situaciones diferentes:

A1 A2 A3 A4 A5 A6

A1 A2 A3 A4 A5 A6

R1 1 0 R1 1 0

R2 1 0 R2 1 1

R3 0 1 R3 0 1

R4 0 1 R4 0 0

R5 0 0 R5 0 0

Ahora bien, el primer caso se reduce al segundo una vez rellenada la tercera

columna, por intercambio de filas y columnas. La independencia promedio de los grafos

asociados oscila entre –2 y 2 según hemos comprobado con el programa enumerartres.m

(debemos considerar 8

4

= 70 matrices).

Caso C = 0, T = 1. Suponiendo que A1 es adyacente a R1, R2 y R3, debe haber un

vértice azul que tenga un vértice adyacente entre R1, R2 y R3 y el otro entre R4 y R5 (si

no es A2, lo será A3):

A1 A2 A3 A4 A5 A6

R1 1 1

R2 1 0

R3 1 0

R4 0 1

R5 0 0

Page 65: Independencia promedio de grafos y polinomio de Jones ...

Grafos con pocos vértices. Programación

59

Hay

2

5 = 10 formas de rellenar cada una de las cuatro columnas restantes. Como

las posiciones vetadas por A1 y A2 son cuatro, tenemos 6

4

= 15 matrices. Se ha

comprobado con el programa enumerartres.m que las independencias promedio de los

grafos correspondientes oscilan entre –2 y 2.

Caso C = 0, T = 2. Fijando las dos primeras columnas obtenemos dos posibilidades

diferentes:

a) A1 A2 A3 A4 A5 A6

b) A1 A2 A3 A4 A5 A6

R1 1 1 R1 1 1

R2 1 0 R2 1 1

R3 1 0 R3 1 0

R4 0 1 R4 0 1

R5 0 1 R5 0 0

En el caso a hay seis posiciones vetadas por las dos primeras columnas, y por tanto

2

5 – 6 = 4 formas de rellenar cada una de las cuatro columnas restantes. En

consecuencia sólo hay una matriz posible (el grafo asociado tiene independencia

promedio – 2):

A1 A2 A3 A4 A5 A6

R1 1 1 0 0 0 0

R2 1 0 1 1 0 0

R3 1 0 0 0 1 1

R4 0 1 1 0 1 0

R5 0 1 0 1 0 1

En el caso b hay cinco posiciones vetadas por las dos primeras columnas, y por

tanto

2

5 – 5 = 5 formas de rellenar cada una de las cuatro columnas restantes. En

consecuencia hay cinco matrices posibles de interés: cuatro de los grafos

correspondientes tienen independencia promedio –2 y uno tiene 0.

Caso C = 0, T = 3. Al rellenar las dos primeras columnas nos encontramos con las

dos posibilidades del caso anterior:

a) A1 A2 A3 A4 A5 A6

b) A1 A2 A3 A4 A5 A6

R1 1 1 R1 1 1

R2 1 0 R2 1 1

R3 1 0 R3 1 0

R4 0 1 R4 0 1

R5 0 1 R5 0 0

Page 66: Independencia promedio de grafos y polinomio de Jones ...

Independencia promedio de grafos y polinomio de Jones. Aplicaciones en ingeniería

60

En el caso a, según el vértice A3 sea o no adyacente a R1, podemos distinguir

(gracias al intercambio de filas y columnas) dos posibilidades:

a1) A1 A2 A3 A4 A5 A6

a2) A1 A2 A3 A4 A5 A6

R1 1 1 1 R1 1 1 0

R2 1 0 1 R2 1 0 1

R3 1 0 0 R3 1 0 1

R4 0 1 1 R4 0 1 1

R5 0 1 0 R5 0 1 0

En el caso a1, de las

2

5 = 10 formas de rellenar cada columna restante, siete están

vetadas por las tres primeras columnas. En consecuencia la matriz es única:

A1 A2 A3 A4 A5 A6

R1 1 1 1 0 0 0

R2 1 0 1 1 0 0

R3 1 0 0 0 1 1

R4 0 1 1 0 1 0

R5 0 1 0 1 0 1

El grafo asociado (ver siguiente figura) tiene independencia promedio –3, pero no es

convertible. Esto puede deducirse del teorema de los índices de conexión; los ciclos C1

y C2 (en rosa y verde respectivamente), y el ciclo “exterior” R3-A1-R1-A2-R5-A6 son

puros, siendo los tres índices de conexión correspondientes iguales a 4:

A1

A2

R4

A3

R1

A6

R5A5

A4 R3

R2

Figura 62. Un grafo con independencia promedio –3 que no es convertible

Nótese que este grafo es no plano pues contiene, con algunos vértices extras, un

grafo K3,3 (A1, A2, A3 y R1, R2, R4 constituyen la bipartición necesaria).

En el caso a2 las posiciones vetadas son ocho, así que es imposible construir una

matriz sin duplicaciones.

En el caso b distinguimos 5

3

– 2 = 8 formas de rellenar la tercera columna sin

repetir ninguna de las dos primeras:

Page 67: Independencia promedio de grafos y polinomio de Jones ...

Grafos con pocos vértices. Programación

61

b1) A1 A2 A3 A4 A5 A6

b2) A1 A2 A3 A4 A5 A6

R1 1 1 1 R1 1 1 1

R2 1 1 1 R2 1 1 0

R3 1 0 0 R3 1 0 1

R4 0 1 0 R4 0 1 1

R5 0 0 1 R5 0 0 0

b3) A1 A2 A3 A4 A5 A6

b4) A1 A2 A3 A4 A5 A6

R1 1 1 1 R1 1 1 1

R2 1 1 0 R2 1 1 0

R3 1 0 1 R3 1 0 0

R4 0 1 0 R4 0 1 1

R5 0 0 1 R5 0 0 1

b5) A1 A2 A3 A4 A5 A6

b6) A1 A2 A3 A4 A5 A6

R1 1 1 0 R1 1 1 0

R2 1 1 1 R2 1 1 1

R3 1 0 1 R3 1 0 1

R4 0 1 1 R4 0 1 0

R5 0 0 0 R5 0 0 1

b7) A1 A2 A3 A4 A5 A6

b8) A1 A2 A3 A4 A5 A6

R1 1 1 0 R1 1 1 0

R2 1 1 1 R2 1 1 0

R3 1 0 0 R3 1 0 1

R4 0 1 1 R4 0 1 1

R5 0 0 1 R5 0 0 1

En cada caso hay

2

5 = 10 formas diferentes de rellenar las tres columnas restantes.

En el caso b1 las posiciones vetadas son siete y la matriz que se produce es única:

A1 A2 A3 A4 A5 A6

R1 1 1 1 0 0 0

R2 1 1 1 0 0 0

R3 1 0 0 1 1 0

R4 0 1 0 1 0 1

R5 0 0 1 0 1 1

En el caso b2 existen cuatro matrices diferentes, obtenibles seleccionando tres de las

siguientes cuatro columnas:

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1 1 1 1

Page 68: Independencia promedio de grafos y polinomio de Jones ...

Independencia promedio de grafos y polinomio de Jones. Aplicaciones en ingeniería

62

A1 A2 A3 A4 A5 A6

A1 A2 A3 A4 A5 A6

R1 1 1 1 1 0 0 R1 1 1 1 1 0 0

R2 1 1 0 0 1 0 R2 1 1 0 0 1 0

R3 1 0 1 0 0 1 R3 1 0 1 0 0 0

R4 0 1 1 0 0 0 R4 0 1 1 0 0 1

R5 0 0 0 1 1 1 R5 0 0 0 1 1 1

A1 A2 A3 A4 A5 A6

A1 A2 A3 A4 A5 A6

R1 1 1 1 1 0 0 R1 1 1 1 0 0 0

R2 1 1 0 0 0 0 R2 1 1 0 1 0 0

R3 1 0 1 0 1 0 R3 1 0 1 0 1 0

R4 0 1 1 0 0 1 R4 0 1 1 0 0 1

R5 0 0 0 1 1 1 R5 0 0 0 1 1 1

Para los casos b3 y b4 la posibilidad es única, obteniéndose respectivamente las

siguientes matrices:

A1 A2 A3 A4 A5 A6 A1 A2 A3 A4 A5 A6

R1 1 1 1 0 0 0 R1 1 1 1 0 0 0

R2 1 1 0 1 0 0 R2 1 1 0 1 0 0

R3 1 0 1 0 1 0 R3 1 0 0 0 1 1

R4 0 1 0 0 1 1 R4 0 1 1 0 1 0

R5 0 0 1 1 0 1 R5 0 0 1 1 0 1

El caso b5 coincide con b2 intercambiando las filas primera y segunda; igualmente,

el caso b6 coincide con b3 y el caso b7 coincide con b4. Finalmente, el caso b8 no

produce ninguna matriz pues las tres primeras columnas vetan ocho posibilidades.

Se verifica que los grafos asociados a las siete matrices presentadas arriba tienen

independencia promedio igual a 0.

Caso C = 0, T = 4. Como en el caso anterior, distinguimos las siguientes

posibilidades:

a) A1 A2 A3 A4 A5 A6

b) A1 A2 A3 A4 A5 A6

R1 1 1 R1 1 1

R2 1 0 R2 1 1

R3 1 0 R3 1 0

R4 0 1 R4 0 1

R5 0 1 R5 0 0

En el caso a podemos distinguir los siguientes subcasos:

a1) A1 A2 A3 A4 A5 A6

a2) A1 A2 A3 A4 A5 A6

R1 1 1 1 R1 1 1 0

R2 1 0 1 R2 1 0 1

R3 1 0 0 R3 1 0 1

R4 0 1 1 R4 0 1 1

R5 0 1 0 R5 0 1 0

Page 69: Independencia promedio de grafos y polinomio de Jones ...

Grafos con pocos vértices. Programación

63

Para el caso a1 hay

3

5 – 3 = 7 formas diferentes de rellenar la cuarta columna. Dos

de estas formas (las que corresponden a las columnas 0,1,1,0,1 y 0,0,1,1,1) vetan nueve

posibilidades de las

2

5 = 10 que hay para rellenar cada una de las dos columnas

últimas; las otras cinco formas vetan exactamente ocho posibilidades, así que producen

cada una de ellas una matriz:

A1 A2 A3 A4 A5 A6

A1 A2 A3 A4 A5 A6

R1 1 1 1 1 0 0 R1 1 1 1 1 0 0

R2 1 0 1 1 0 0 R2 1 0 1 0 1 0

R3 1 0 0 0 1 1 R3 1 0 0 1 0 1

R4 0 1 1 0 1 0 R4 0 1 1 1 0 0

R5 0 1 0 1 0 1 R5 0 1 0 0 1 1

A1 A2 A3 A4 A5 A6

A1 A2 A3 A4 A5 A6

R1 1 1 1 1 0 0 R1 1 1 1 0 0 0

R2 1 0 1 0 1 0 R2 1 0 1 1 1 0

R3 1 0 0 1 0 1 R3 1 0 0 1 0 1

R4 0 1 1 0 0 1 R4 0 1 1 1 0 0

R5 0 1 0 1 1 0 R5 0 1 0 0 1 1

A1 A2 A3 A4 A5 A6

R1 1 1 1 0 0 0

R2 1 0 1 1 0 0

R3 1 0 0 0 1 1

R4 0 1 1 1 1 0

R5 0 1 0 1 0 1

El grafo G11,1 que corresponde a la cuarta matriz (ver siguiente figura) tiene

independencia promedio –4, pero no es convertible. Esto puede deducirse del teorema

del vértice triple, aplicado al vértice R1 y al ciclo puro A1–R2–A3–R4–A2–R5–A4–R3.

Los grafos correspondientes a las otras matrices tienen todos independencia promedio –

3. Ninguno de estos grafos es convertible, por el teorema del vértice triple; en el grafo

que corresponde a la primera matriz el ciclo puro es A2-R4-A3-R2-A4-R5, en el

segundo caso existe un ciclo puro formado por los vértices A1-R2-A3-R4-A4-R3, para

la tercera matriz se distingue el ciclo puro R2-A1-R3-A4-R5-A2-R4-A3, y en el último

de los casos localizamos otro ciclo puro A1-R2-A3-R4-A2-R5-A6-R3; en todos ellos el

vértice triple es R1.

Page 70: Independencia promedio de grafos y polinomio de Jones ...

Independencia promedio de grafos y polinomio de Jones. Aplicaciones en ingeniería

64

2

5

5

4

3

1

4 3

1

2

6

Figura 63. El grafo G11,1 tiene independencia promedio –4 pero no es convertible

En el caso a2 las tres primeras columnas vetan ocho de las diez formas posibles de

rellenar cada una de las dos últimas columnas. En consecuencia existen sólo dos

matrices posibles:

A1 A2 A3 A4 A5 A6

A1 A2 A3 A4 A5 A6

R1 1 1 0 1 0 0 R1 1 1 0 1 0 0

R2 1 0 1 1 1 0 R2 1 0 1 0 1 0

R3 1 0 1 0 0 1 R3 1 0 1 1 0 1

R4 0 1 1 1 0 0 R4 0 1 1 1 0 0

R5 0 1 0 0 1 1 R5 0 1 0 0 1 1

Los grafos correspondientes a ambas matrices tienen independencia promedio –3,

pero no son convertibles debido al teorema del vértice triple. En el primer caso el ciclo

puro es el formado por A1-R1-A4-R4-A3-R3 y el vértice triple es R2; en el segundo

caso el ciclo puro es A1-R1-A4-R4-A3-R2 y el vértice triple es R3.

Al estudiar el caso b observamos que hay

3

5 – 2 = 8 formas de rellenar la tercera

columna. Por intercambio de filas y columnas cinco de estas posibilidades se reducen a

los casos a1 y a2 ya tratados. Las tres formas restantes de rellenar la tercera columna,

1 1 0

1 0 1

0 1 1

0 1 1

1 0 0

dan también las que podemos usar para la cuarta columna, obteniendo las tres

posibilidades siguientes:

b1) A1 A2 A3 A4 A5 A6

b2) A1 A2 A3 A4 A5 A6

R1 1 1 1 1 R1 1 1 1 0

R2 1 1 1 0 R2 1 1 1 1

R3 1 0 0 1 R3 1 0 0 1

R4 0 1 0 1 R4 0 1 0 1

R5 0 0 1 0 R5 0 0 1 0

Page 71: Independencia promedio de grafos y polinomio de Jones ...

Grafos con pocos vértices. Programación

65

b3) A1 A2 A3 A4 A5 A6

R1 1 1 1 0

R2 1 1 0 1

R3 1 0 1 1

R4 0 1 1 1

R5 0 0 0 0

Notar que b1 y b2 son el mismo caso después de intercambiar la primera y segunda

fila. Las dos restantes columnas para b1 han de rellenarse con dos unos cada una, así

que hay

2

5 – 8 = 2 formas de rellenarlas. En consecuencia b1 (y b2) se completa de

una única manera posible:

A1 A2 A3 A4 A5 A6

R1 1 1 1 1 0 0

R2 1 1 1 0 0 0

R3 1 0 0 1 1 0

R4 0 1 0 1 0 1

R5 0 0 1 0 1 1

El grafo correspondiente tiene independencia promedio –3, pero no es convertible

por el teorema del vértice triple aplicado al ciclo puro A1-R1-A2-R4-A6-R5-A5-R3 y al

vértice A4.

En el caso b3 hay seis posibilidades vetadas, así que existen

2

5 – 6 = 4 formas de

rellenar la quinta columna, y por tanto

2

4 = 6 posibles matrices:

A1 A2 A3 A4 A5 A6

A1 A2 A3 A4 A5 A6

R1 1 1 1 0 1 0 R1 1 1 1 0 1 0

R2 1 1 0 1 0 1 R2 1 1 0 1 0 0

R3 1 0 1 1 0 0 R3 1 0 1 1 0 1

R4 0 1 1 1 0 0 R4 0 1 1 1 0 0

R5 0 0 0 0 1 1 R5 0 0 0 0 1 1

A1 A2 A3 A4 A5 A6

A1 A2 A3 A4 A5 A6

R1 1 1 1 0 1 0 R1 1 1 1 0 0 0

R2 1 1 0 1 0 0 R2 1 1 0 1 1 0

R3 1 0 1 1 0 0 R3 1 0 1 1 0 1

R4 0 1 1 1 0 1 R4 0 1 1 1 0 0

R5 0 0 0 0 1 0 R5 0 0 0 0 1 1

A1 A2 A3 A4 A5 A6

A1 A2 A3 A4 A5 A6

R1 1 1 1 0 0 0 R1 1 1 1 0 0 0

R2 1 1 0 1 1 0 R2 1 1 0 1 0 0

R3 1 0 1 1 0 0 R3 1 0 1 1 1 0

R4 0 1 1 1 0 1 R4 0 1 1 1 0 1

R5 0 0 0 0 1 1 R5 0 0 0 0 1 1

Page 72: Independencia promedio de grafos y polinomio de Jones ...

Independencia promedio de grafos y polinomio de Jones. Aplicaciones en ingeniería

66

Todos los grafos asociados a estas matrices tienen independencia promedio –3, pero

ninguno es convertible por el teorema del vértice triple aplicado (en todos los casos) al

ciclo puro A1-R3-A4-R4-A2-R1 y al vértice R2.

Caso C = 0, T = 5. Podemos asumir que la única columna que corresponde al vértice

de grado dos es 1, 1, 0, 0, 0, la cual veta tres columnas con tres unos de las

3

5 = 10

posibilidades. Así pues, hay 7

5

= 21 matrices que pueden generarse.

La independencias promedio de los grafos asociados, calculadas con el programa

ind.m, es en todos los casos –3.

Caso C = 0, T = 6. Sabemos que hay

3

5 = 10 formas diferentes de posicionar 3 unos

en columnas de cinco filas. Al haber 6 vértices azules, el número de matrices que

pueden generarse será

6

10 = 210. Las independencias promedio de los grafos

asociados están comprendidas entre –2 y 1 (cálculos realizados con enumerartres.m).

Programación con MATLAB

En esta sección se muestran los programas informáticos que se han creado para facilitar

el cálculo de las independencias promedio de grafos a través de su representación

matricial.

El programa que se muestra a continuación calcula la independencia promedio de un

grafo introduciendo la submatriz de adyacencia asociada a él.

Fichero ind.m

%ind devuelve la independencia promedio

function I=ind(A)

if final(A)==1

I=ind1(A);

else

B=matrizB(A);

C=matrizC(A);

I=ind(B)-ind(C);

end

%final asigna un 1 a las matrices "finales" (matrices sin

filas o sin columnas)

function V=final(A)

[f,c]=size(A);

if f==0|c==0 %grafo con solo vertices aislados

V=1;

else V=0;

end

%ind1 devuelve 1 para las matrices sin filas ni columnas

%Devuelve 0 para todas las demas

Page 73: Independencia promedio de grafos y polinomio de Jones ...

Grafos con pocos vértices. Programación

67

function I=ind1(A)

[f,c]=size(A);

if f==0&c==0 %grafo vacio

I=1;

else I=0;

end

%matrizB aplicado a una matriz A elimina su primera fila

function B=matrizB(A)

[f,c]=size(A);

B=A(2:f,:);

%matrizC aplicado a una matriz A elimina su primera fila

%y las columnas j con A(1,j)=1

function C=matrizC(A)

[f,c]=size(A);

X=find(A(1,:)==0);

C=A(2:f,X);

El programa ind se va deshaciendo en cada paso del primer vértice rojo v = R1

mediante la ley de recursión. La fórmula

I (G) = I (G – v) – I (G – Nv)

se traduce, a nivel de submatrices de adyacencia, en la fórmula

I (A) = I (B) – I (C)

donde B = matrizB(A), es decir, A sin su primera fila, y C = matrizC(A), es decir, A sin

su primera fila y sin las columnas j tales que A(1,j) = 1, lo que se corresponde con la

eliminación de los vértices azules que eran adyacentes a R1.

R1

R2

R3

R2

R3

R2

R3

A1

A2

A3

A1

A3

A3

A2

A1 A2 A3

R1 1 1 0

R2 0 1 1

R3 1 0 1

= A

R1

R2

R3

R2

R3

R2

R3

A1

A2

A3

A1

A3

A3

A2

A1 A2 A3

R2 0 1 1

R3 1 0 1

= B

R1

R2

R3

R2

R3

R2

R3

A1

A2

A3

A1

A3

A3

A2

A3

R2 1

R3 1

= C

Figura 64. Desarrollo del programa ind

Page 74: Independencia promedio de grafos y polinomio de Jones ...

Independencia promedio de grafos y polinomio de Jones. Aplicaciones en ingeniería

68

Las matrices “finales” del proceso, es decir, aquellas que no tienen filas o no tienen

columnas, son tratadas mediante la instrucción

if final(A)==1

I=ind1(A);

En consecuencia:

Si A es de orden 13, MATLAB considera la matriz B = matrizB(A) de

orden 03, aunque no tiene ninguna entrada. Por tanto final(B) = 1 e ind1(B) = 0, lo que

se corresponde con tener (tres) vértices aislados.

Si A = (1 0 0), MATLAB considera la matriz C = matrizC(A) de orden 02

así que final(C) = 1 e ind1(C) = 0, lo que se corresponde con tener (dos) vértices

aislados.

Finalmente, si A = (1 1 1) (en general una matriz fila con todos unos),

entonces MATLAB considera la matriz C = matrizC(A) de orden 00, así que final(C)

= 1 e ind1(C) = 1, lo que se corresponde con el grafo vacío.

Enumeración de matrices e independencia promedio

El siguiente programa enumera todas las matrices con número de independencia

promedio comprendida en un intervalo dado y presenta la posibilidad de fijar tantas

columnas como se desee. Además permite especificar el número de unos de aquellas

columnas que no se conozcan.

Fichero enumerartres.m

% enumerartres enumera las matrices que ademas de cumplir

ciertos requisitos

% tienen independencia promedio comprendida entre dos valores

dados

function E=enumerartres(X,n,A,i1,i2)

% Inputs:

% X una matriz booleana

% A una matriz fila con entradas naturales

% n es un natural que coincide con el numero de filas de X

% Es necesario incluir n para que MATLAB acepte X=[]

% i1 e i2 son dos enteros tales que i1<=i2

% Output:

% enumeracion de las matrices [X,P] con

% independencia promedio en el intervalo [i1,i2]

% siendo P una matriz booleana con las mismas filas que X

% y con A(j) unos en su columna j

listado=sand(n,A); %llama al programa sand.m

[ff,cf]=size(listado);

numeromatrices=ff/n;

for indice = 1:numeromatrices

A = [X,listado((n*(indice-1)+1):(n*indice),:)];

Page 75: Independencia promedio de grafos y polinomio de Jones ...

Grafos con pocos vértices. Programación

69

if ind(A)<=i2 & ind(A)>=i1 %Escribir aqui la

independencia de interes

(['la matriz ' num2str(indice) '-ésima es:'])

A = [X,listado((n*(indice-1)+1):(n*indice),:)],

disp('con independencia')

I=ind(A)

else

end

end

%sand

function listado=sand(n,A) %llama a los programas cus.m

repematriz.m

[f,c]=size(A);

if c==1

[f1,c1]=size(cus(n,A(1)));

listado=reshape(cus(n,A(1)),f1*c1,1);

else listadoprevio=sand(n,A(1:c-1));

[fprevio,cprevio]=size(listadoprevio);x=(fprevio)/n;

t=A(c);

r=(factorial(n))/(factorial(t)*factorial(n-t));

listadopreviorepetido=repematriz(listadoprevio,r);

extra=reshape(repematriz(cus(n,t),x),n*r*x,1);

listado=[listadopreviorepetido,extra];

end

% cus

function lista = cus(long,t)

% crea una lista "lista" de las sucesiones booleanas de

longitud "long" con t unos

if (t == 0)

lista =zeros(long,1);

elseif (long == t)

lista =ones(long,1);

elseif (long < t)

disp('el numero t de unos supera a la longitud')

else

sublista1 = cus(long - 1,t-1); %sucesiones a las que

añadir un uno

sublista2 = cus(long - 1,t); %sucesiones a las que añadir

un cero

%las concateno con un cero, y luego con un uno

[filas1, columnas1] = size(sublista1);

[filas2, columnas2] = size(sublista2);

for i = 1 : long -1

for j = 1 : columnas1

lista(i,j)=sublista1(i,j);

lista(long,j)=1; %añado uno al final a la secuencia

de la sublista1

end

end

Page 76: Independencia promedio de grafos y polinomio de Jones ...

Independencia promedio de grafos y polinomio de Jones. Aplicaciones en ingeniería

70

for i = 1 : long - 1

for j = 1 : columnas2

lista(i,columnas1 + j)=sublista2(i,j);

lista(long,columnas1 + j)=0; %añado cero al final a

la secuencia de la sublista2

end

end

end

% repematriz

function N=repematriz(M,r) %repite r veces M verticalmente

N=M;

for k=1:r-1

Q=[N;M];

N=Q;

end

Page 77: Independencia promedio de grafos y polinomio de Jones ...

7. CONCLUSIÓN El presente proyecto expone una de las múltiples conexiones existentes entre las

matemáticas y la química, más en concreto, entre la teoría de nudos y grafos y la noción

de isomería molecular.

Para mostrar esta conexión, hemos realizado un pequeño repaso de los momentos

históricos más relevantes al respecto y explicado la herramienta matemática (polinomio

de Jones) que hace posible la relación entre estas ideas en principio de naturalezas

distintas.

Con este punto de partida, en el grueso del trabajo hemos analizado un problema

matemático relacionado con la independencia promedio de grafos, obteniendo algunas

respuestas creativas.

Page 78: Independencia promedio de grafos y polinomio de Jones ...
Page 79: Independencia promedio de grafos y polinomio de Jones ...

BIBLIOGRAFÍA

[BM] Bae, Y., Morton, H. R.: The spread and extreme terms of Jones polynomials.

Journal of Knot Theory and its ramifications, Vol. 12, 359-373, (2003).

[DS] Dietrich-Buchecker, C., Sauvage, J.–P.: A synthetic molecular trefoil knot.

Angew. Chem. Int. Ed. Engl. (1989), 189-192.

[F] Flapan, E.: When topology meets chemistry: a topological look at molecular

chirality. Cambridge University Press, 2000.

[FW] Frisch, H., Wasserman, E.: Chemical topology. J. Am. Math. Soc. (1992), 223-

236.

[GL] Graf, E., Lehn, J.–M.: Synthesis and cryptate complexes of a spheroidal

macrotricyclic ligand with octahedrotetrahedral coordination. J. Am. Chem.

Soc. (1975), 5022-5024.

[LM] Liang, C., Mislow, K.: Topological chirality of proteins. J. Am. Chem. Soc.

(1994b), 3588-3592.

[M] Manchón, P. M. G.: Extreme coefficients of the Jones polynomial and graph

theory. Journal of Knot Theory and its ramifications, Vol. 13, No. 2, 277-295

(2004).

[PV] Paquette, L. A., Vazeux, M.: Threefold transannular epoxide cyclization

synthesis of a heterocyclic C17-hexaquinane. Tetrahedron Lett. (1981), 291-294.

[SM] Simmons, H. E., Maggio, J. E.: Synthesis of the first topologically non-planar

molecule. Tetrahedron Lett. (1981), 287-290.

[WRH]Walba, D., Richards, R., Haltiwanger, R. C.: Total synthesis of the first

molecular Möbious strip. J. Am. Chem. Soc. (1982), 3219-3221.