Impedance Spectroscopy with Battery Cell Sensors · Control unit with 433 MHz TRX Antenna-Switch...

43
Impedance Spectroscopy with Battery Cell Sensors Nico Sassano, Valentin Roscher, Karl-Ragmar Riemschneider, G¨ unter M¨ uller Hochschule f¨ ur Angewandte Wissenschaften Hamburg Microtec Nord, Fraunhofer Institut f¨ ur Siliziumtechnologie ISIT, Itzehoe, 21.Sept. 2015 Universität Hamburg DER FORSCHUNG | DER LEHRE | DER BILDUNG

Transcript of Impedance Spectroscopy with Battery Cell Sensors · Control unit with 433 MHz TRX Antenna-Switch...

Page 1: Impedance Spectroscopy with Battery Cell Sensors · Control unit with 433 MHz TRX Antenna-Switch TRX MSP430 Detector 125 kHz Wakeup DC/DC 1) Commands with Data Protocol on 433 MHz

Impedance Spectroscopy withBattery Cell Sensors

Nico Sassano, Valentin Roscher,Karl-Ragmar Riemschneider, Gunter Muller

Hochschule fur Angewandte Wissenschaften Hamburg

Microtec Nord,Fraunhofer Institut fur Siliziumtechnologie ISIT,

Itzehoe, 21.Sept. 2015

Universität HamburgDER FORSCHUNG | DER LEHRE | DER BILDUNG

Page 2: Impedance Spectroscopy with Battery Cell Sensors · Control unit with 433 MHz TRX Antenna-Switch TRX MSP430 Detector 125 kHz Wakeup DC/DC 1) Commands with Data Protocol on 433 MHz

1 Battery Monitoring and Management

2 Sensor Measurements and Communication Methods

3 Precise Measurements for Highly Dynamic Events

4 Electrochemical Impedance Spectroscopy for StateDetermination

5 Application Projects and Future Work

HAW

2/46

Page 3: Impedance Spectroscopy with Battery Cell Sensors · Control unit with 433 MHz TRX Antenna-Switch TRX MSP430 Detector 125 kHz Wakeup DC/DC 1) Commands with Data Protocol on 433 MHz

1 Battery Monitoring and Management

2 Sensor Measurements and Communication Methods

3 Precise Measurements for Highly Dynamic Events

4 Electrochemical Impedance Spectroscopy for StateDetermination

5 Application Projects and Future Work

HAW

3/46

Page 4: Impedance Spectroscopy with Battery Cell Sensors · Control unit with 433 MHz TRX Antenna-Switch TRX MSP430 Detector 125 kHz Wakeup DC/DC 1) Commands with Data Protocol on 433 MHz

Challenges for Batteries

Requirements:

Save operation →fire risk, high voltage, environment issues ..

Performance → energy/mass , power/mass ratio

Life time → cycle numbers, calendar lifetime

Costs → invest cost, ’total costs of ownership’

Solution Approaches:

1) Battery-Technology → New Materials and Combinations

2) Optimisation of the Battery-Operation in the Application

3) Battery Management

HAW

4/46

Page 5: Impedance Spectroscopy with Battery Cell Sensors · Control unit with 433 MHz TRX Antenna-Switch TRX MSP430 Detector 125 kHz Wakeup DC/DC 1) Commands with Data Protocol on 433 MHz

Battery Management: Sensors, Models, Control

HAW

5/46

Page 6: Impedance Spectroscopy with Battery Cell Sensors · Control unit with 433 MHz TRX Antenna-Switch TRX MSP430 Detector 125 kHz Wakeup DC/DC 1) Commands with Data Protocol on 433 MHz

Multi Cell Batteries

V1 V2 V3 Vn

Vtotal

+

Itotal

Vtotal =n∑

i=1

Vi

Itotal = I1 = ... = In

Opel Ampera Batteries with 288Cells (3 parallel, 96 serial)

HAW

6/46

Page 7: Impedance Spectroscopy with Battery Cell Sensors · Control unit with 433 MHz TRX Antenna-Switch TRX MSP430 Detector 125 kHz Wakeup DC/DC 1) Commands with Data Protocol on 433 MHz

Undiscovered Cell Differences - a Lifetime Issue

11:14:00 11:29:45 11:45:30 12:01:15 12:17:000,9

1.04

1.18

1.31

1.45

1.59

1.73

1.86

2

Cell

Volt

age in V

olt

s

Time

2345678910111214

detection of low voltage in total

unnoticeabledeep dischargeof a weak cell

Cell voltages in a forklift battery discharge [6]

Root cause: production tolerances not avoidable andlifetime conditions differs slightly but over long time

Differences in the individual State of Charge (SoC)Weaker cells reach the discharge/charge limits earlierFaster ageing of weaker cells:

⇒ reducing weak cells State of Health (SoH)

HAW

7/46

Page 8: Impedance Spectroscopy with Battery Cell Sensors · Control unit with 433 MHz TRX Antenna-Switch TRX MSP430 Detector 125 kHz Wakeup DC/DC 1) Commands with Data Protocol on 433 MHz

Our Approach: Sensors inside every Cell

VT

ABattery Control

andManagement

Unit

Cell 1

SensorModule

Uplink

V T

others

Cell 2

V VT

Cell n

Downlink

Wireless Control Commands and Messages

SensorModule

SensorModule

SensorModule

Charge andDischarge Current

Ibat

V T

others

V T

others

V T

others

V T

others

Voltage and temperature sensors located in every cellWireless sensor data transmissionBattery Control Unit:central current measurement, data fusion, State of Charge andState of Health estimation, ...

HAW

8/46

Page 9: Impedance Spectroscopy with Battery Cell Sensors · Control unit with 433 MHz TRX Antenna-Switch TRX MSP430 Detector 125 kHz Wakeup DC/DC 1) Commands with Data Protocol on 433 MHz

1 Battery Monitoring and Management

2 Sensor Measurements and Communication Methods

3 Precise Measurements for Highly Dynamic Events

4 Electrochemical Impedance Spectroscopy for StateDetermination

5 Application Projects and Future Work

HAW

9/46

Page 10: Impedance Spectroscopy with Battery Cell Sensors · Control unit with 433 MHz TRX Antenna-Switch TRX MSP430 Detector 125 kHz Wakeup DC/DC 1) Commands with Data Protocol on 433 MHz

Cell Sensor ImplementationSensor Hardware:

Ultra-Low-Power Controller measures voltage and temperatureTransmitter/Transceiver-Chip ISM Band 433 MHz

Controller software:

Measurement and communication protocol

MCU TRXMCU TRXMCU TRX

Class 1 Class 2 Class 3

HAW

10/46

Page 11: Impedance Spectroscopy with Battery Cell Sensors · Control unit with 433 MHz TRX Antenna-Switch TRX MSP430 Detector 125 kHz Wakeup DC/DC 1) Commands with Data Protocol on 433 MHz

Sensor Class 3 - Target Application

Designed for large cylindric lithium cells > 40 AhTarget Application: Electric vehicle traction batteries andstationary storagesFuture: Encapsulation for placement inside of the battery cell

HAW

11/46

Page 12: Impedance Spectroscopy with Battery Cell Sensors · Control unit with 433 MHz TRX Antenna-Switch TRX MSP430 Detector 125 kHz Wakeup DC/DC 1) Commands with Data Protocol on 433 MHz

Sensor Class 3 - Components

DC-DC Converter

Micro-controller

ADC

Transceiver433 MHz

°C

+ -

Wakeup

Antennaswitch

Uplink and Downlink in the same radio frequency band 433 MHzLoop antenna on PCB is magnetic dominantMeasures cell voltage and temperatureand advanced modular functions

HAW

12/46

Page 13: Impedance Spectroscopy with Battery Cell Sensors · Control unit with 433 MHz TRX Antenna-Switch TRX MSP430 Detector 125 kHz Wakeup DC/DC 1) Commands with Data Protocol on 433 MHz

Sensor Class 3 - Communication Structures

Electronic Battery Control unit with433 MHz TRX

Antenna-Switch

TRX

MSP430

Detector 125 kHzWakeup

DC/DC

1) Commands withData Protocol

on 433 MHz Carrier

BUFFER-RAM

ADC

2) Individual Messages with Data Protocol

on 433 MHz Carrier

up to a few hundred cells with sensors

125 kHzWakeup

3) Trigger Pulses on 433 MHz Carrier

4) Wake-Up Signal (125 kHz)

on 433 MHz Carrier

1 Broadcast and adressed control commands (downlink+ data protocol)

2 Individual messages (uplink + dataprotocol)

3 Broadcast Synchronization-pulses (downlink w./o.data protocol)

4 Broadcast of wake-wp-signals (downlink w./o. data protocol)

HAW

13/46

Page 14: Impedance Spectroscopy with Battery Cell Sensors · Control unit with 433 MHz TRX Antenna-Switch TRX MSP430 Detector 125 kHz Wakeup DC/DC 1) Commands with Data Protocol on 433 MHz

Advanced Sensor Function - Wake-Up

125 kHz Wakeup signalon 433 MHz carrier

433 MHz bidirectionalTransmission

MCU TRXAntenna-

SwitchTRX MSP430

Detector 125 kHzWakeup

DCDC

Uplink and downlink in the same radio frequency band

Optimal frequency band is to determine (433 MHz, 868 MHz,2,4 GHz)

HAW

14/46

Page 15: Impedance Spectroscopy with Battery Cell Sensors · Control unit with 433 MHz TRX Antenna-Switch TRX MSP430 Detector 125 kHz Wakeup DC/DC 1) Commands with Data Protocol on 433 MHz

Advanced Sensor Function - Cell-Balancing

MCU TRX

MCU

TRX

MCU

TRX

MCU

TRX

MCU

TRX

Charge [Ah]

Charge [Ah]

Charge [Ah]

Charge [Ah]

+ - + - + - + -

weak cell weak cell weak cell strong cell

Balancingcommando

Ibalance

Passive cell balancing in the sensor moduleMOSFET-switch for current path with time and voltage controlTemperature monitoring

HAW

15/46

Page 16: Impedance Spectroscopy with Battery Cell Sensors · Control unit with 433 MHz TRX Antenna-Switch TRX MSP430 Detector 125 kHz Wakeup DC/DC 1) Commands with Data Protocol on 433 MHz

1 Battery Monitoring and Management

2 Sensor Measurements and Communication Methods

3 Precise Measurements for Highly Dynamic Events

4 Electrochemical Impedance Spectroscopy for StateDetermination

5 Application Projects and Future Work

HAW

16/46

Page 17: Impedance Spectroscopy with Battery Cell Sensors · Control unit with 433 MHz TRX Antenna-Switch TRX MSP430 Detector 125 kHz Wakeup DC/DC 1) Commands with Data Protocol on 433 MHz

Dynamic Measurement Requires:Precise Synchronization of Sampling

Synchronization Sensor to Sensor

Synchronous voltage sampling of all sensors in high dynamicevents

Precise timed cell voltage comparison at high load

⇒ Significant indicator of cell differences

Synchronization Battery Control Unit and Sensors

Detecting time (resp. phase) difference between current (ControlUnit) and cell voltages (Sensors)

Can provides the complex impedance for each cell

⇒ Significant indicator of cell aging, and more state information...

HAW

17/46

Page 18: Impedance Spectroscopy with Battery Cell Sensors · Control unit with 433 MHz TRX Antenna-Switch TRX MSP430 Detector 125 kHz Wakeup DC/DC 1) Commands with Data Protocol on 433 MHz

Synchronized Burst Sampling

3.4

3.2

3

2.8

250200150100

500

-50101 2

MCU TRXMCUTRX

Current Volt.

time [s] time [s]

Cur. [A]

Volt. [V]

Burst-Start

Battery control unit (BCU) transmits a burst start command to sensor

HAW

18/46

Page 19: Impedance Spectroscopy with Battery Cell Sensors · Control unit with 433 MHz TRX Antenna-Switch TRX MSP430 Detector 125 kHz Wakeup DC/DC 1) Commands with Data Protocol on 433 MHz

Synchronized Burst Sampling

3.4

3.2

3

2.8

250200150100

500

-50101 2

MCU TRXMCUTRX

Current Volt.

time [s] time [s]

Cur. [A]

Volt. [V]

TriggerSignals

Battery control unit (BCU) transmits a burst start command to sensor

BCU triggers fast series of voltage measurements

BCU performs synchronous current measurements

HAW

19/46

Page 20: Impedance Spectroscopy with Battery Cell Sensors · Control unit with 433 MHz TRX Antenna-Switch TRX MSP430 Detector 125 kHz Wakeup DC/DC 1) Commands with Data Protocol on 433 MHz

Synchronized Burst Sampling

3.4

3.2

3

2.8

250200150100

500

-50101 2

MCU TRXMCUTRX

Current Volt.

time [s] time [s]

Cur. [A]

Volt. [V]

MeasurementData

Battery control unit (BCU) transmits a burst start command to sensor

BCU triggers fast series of voltage measurements

BCU performs synchronous current measurements

Stored / preprocessed measurements are transmitted to the BCUHAW

20/46

Page 21: Impedance Spectroscopy with Battery Cell Sensors · Control unit with 433 MHz TRX Antenna-Switch TRX MSP430 Detector 125 kHz Wakeup DC/DC 1) Commands with Data Protocol on 433 MHz

Tests: Synchronized Burst Measurements on aExperimental LiFePO4 Starter Battery

Four LiFePO4 cells with BMS and safetycircuits as a car starter battery

Engine start tests on a car

HAW

21/46

Page 22: Impedance Spectroscopy with Battery Cell Sensors · Control unit with 433 MHz TRX Antenna-Switch TRX MSP430 Detector 125 kHz Wakeup DC/DC 1) Commands with Data Protocol on 433 MHz

Functional Tests:High-Current & Highly Dynamic Event

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

2.8

2.9

3

3.1

3.2

3.3

3.4

Cell voltage recorded by oscilloscopeCell voltage recorded by wirelesstriggered sensor

time [s]

Volt. [V]

Sampling of 2500 data points during the engine start phase of the LiFePO4 cell of

the experimental starter batteryHAW

22/46

Page 23: Impedance Spectroscopy with Battery Cell Sensors · Control unit with 433 MHz TRX Antenna-Switch TRX MSP430 Detector 125 kHz Wakeup DC/DC 1) Commands with Data Protocol on 433 MHz

1 Battery Monitoring and Management

2 Sensor Measurements and Communication Methods

3 Precise Measurements for Highly Dynamic Events

4 Electrochemical Impedance Spectroscopy for StateDetermination

5 Application Projects and Future Work

HAW

23/46

Page 24: Impedance Spectroscopy with Battery Cell Sensors · Control unit with 433 MHz TRX Antenna-Switch TRX MSP430 Detector 125 kHz Wakeup DC/DC 1) Commands with Data Protocol on 433 MHz

Electrochemical Impedance Spectroscopy (EIS)

EIS is a powerful method for battery state determination:State of Charge, State of Health, Temperature, ...

EIS can measure the complex impedance and capacitance ofindividual cell components, such as electrode surfaces and bulkelectrolyte.

EIS needs expensive laboratory instruments - up to now !

HAW

24/46

Page 25: Impedance Spectroscopy with Battery Cell Sensors · Control unit with 433 MHz TRX Antenna-Switch TRX MSP430 Detector 125 kHz Wakeup DC/DC 1) Commands with Data Protocol on 433 MHz

Electrochemical Impedance Spectroscopy (EIS)

RE

ZWRct

Cdl

ω ∞

ω

lower

-Im

Re

1Hz

100Hz

1kHz

Charge transfer process

Mass transfer process

RE RE+Rct

imagin

ary

part

real part

EIS determines the parameters for a complex battery model withresistors, capacitor(s) and ”virtual” electric components(Warburg Impedance w. calculated behavior)The model (with parameters) characterizes the electrochemicaldynamics which have a nonlinear system response

HAW

25/46

Page 26: Impedance Spectroscopy with Battery Cell Sensors · Control unit with 433 MHz TRX Antenna-Switch TRX MSP430 Detector 125 kHz Wakeup DC/DC 1) Commands with Data Protocol on 433 MHz

Basics for Impedance Spectrum Calculation

Impedance = complex resistance: Z = |Z | · ejϕ = R + jX 1

Calculation: Z (ω) = v(t)i(t)

Practically implemented in 5 steps:

1: excitation stimulus i(t): AC with ωex = 2π · fex and DC offset2: sampling i(t) and sampling v(t) synchronous

3: transform i(t) to frequency domain: i(t) c sF(i(t))

4: transform v(t) to frequency domain: v(t) c sF(v(t))

5: calculate complex Z (ω) for ω = ωex : 2 Z (ωex) = F(v(t),ωex )F(i(t),ωex )

Use a series of different excitation frequencies fexi and repeatstep 1-5 =⇒ impedance spectrum

1valid for a single frequency ω = 2π · f

2appoximation with linearity assumption for small excitation

HAW

29/46

Page 27: Impedance Spectroscopy with Battery Cell Sensors · Control unit with 433 MHz TRX Antenna-Switch TRX MSP430 Detector 125 kHz Wakeup DC/DC 1) Commands with Data Protocol on 433 MHz

Electrochemical Impedance Spectroscopy:Phase Differences of Current and Cell Voltages

volta

ge c

ell 1

ba

ttery

cur

rent

time

...

radio synchronized sampling

ac stimulus current

dc current offset

ac response voltage cell i

dc offset voltage cell i

...

volta

ge c

ell i

dc offset voltage cell 1

ac response voltage cell 1

...

...

...

...

φ

φ1

i

Excitation

Response 1

Response i

. . .

HAW

30/46

Page 28: Impedance Spectroscopy with Battery Cell Sensors · Control unit with 433 MHz TRX Antenna-Switch TRX MSP430 Detector 125 kHz Wakeup DC/DC 1) Commands with Data Protocol on 433 MHz

Laboratory Test:Single Cell Impedance Spectroscopy

Excitation current source: AC with arbitrary frequency pluspreselected DC offsetCurrent sampling: in the central battery control unitVoltage sampling: in the cell sensor (synchronous to the currentsampling)Impedance calculation: in the central battery control unit

HAW

31/46

Page 29: Impedance Spectroscopy with Battery Cell Sensors · Control unit with 433 MHz TRX Antenna-Switch TRX MSP430 Detector 125 kHz Wakeup DC/DC 1) Commands with Data Protocol on 433 MHz

Concept: EIS & Excitation in Electrical Vehicles

zentrales Batterie-steuergerät

Lade-station

opt. mit Anrege-schaltung

Anrege-schaltung

z.B. imHeizsteuer-gerät

3~ohm

sche L

ast

weitereSteuer-geräteund Lasten

Drahtlose Zellensensoren

mag. Strom-sensor (Hall)

Ladung Entladung

......

Zellspannung V1

Zellspannung V2

Zell-spannung Vn

Batteriestrom ibat

µC

µCdrahtloseKommunikationund Synchronisation(Broadcast + P2P)

Synchronisierte Steuerung der Messungen und der Frequenz-Anregungensowie verteilte Signalverarbeitung zur Impedanzspektroskopie

µCµC

Antriebssteuergerätund DC/ACUmrichter

ff

EIS-excitation using charger components and/or in-vehicle load components

HAW

32/46

Page 30: Impedance Spectroscopy with Battery Cell Sensors · Control unit with 433 MHz TRX Antenna-Switch TRX MSP430 Detector 125 kHz Wakeup DC/DC 1) Commands with Data Protocol on 433 MHz

Frequency Transformations Algorithms for EISAlternatives:

Discrete Fourier Transformation (DFT)

Fast Fourier Transformation (FFT)

Recursive Goerzel Filter X

Number of Number of Computational ”On-the-fly”-samples (N) spectral lines (S) costs calculation

DFT arbitrary arbitrary typ. O(N2) possible

FFT power of 2 power of 2S = N/2

O(N * log2(N)) no, sample blocksize limited fromsensor memory

Goerzel arbitrary X 1 per filter X typ. linear O(N)X possible X

The Goerzel Filter was chosen as efficient method for analysingthe single and known frequency of the AC-excitation.

HAW

33/46

Page 31: Impedance Spectroscopy with Battery Cell Sensors · Control unit with 433 MHz TRX Antenna-Switch TRX MSP430 Detector 125 kHz Wakeup DC/DC 1) Commands with Data Protocol on 433 MHz

Distribution of Signal Processing

Zellensensoren

Broadcast-Downlink:- Kommandierung- Synchronisationstrigger

Sequentieller Uplink (P2P):- Spektrallinie(n) vom Sensor 1- Spektrallinie(n) vom Sensor 2...- Spektrallinie(n) vom Sensor n

Spektrale Analyse ibat

Synchr.Sampling ibat

+ Speichern

Impedanzspektrum

Synchr.Sampling Vn

+ Speichern

Synchr.Sampling V2

- - - - - - - - -Spektrale Analyse "On the fly"

Synchr.Sampling V1

- - - - - - - - -Spektrale Analyse "On the fly"

Synchr.Sampling Vn

- - - - - - - - -Spektrale Analyse "On the fly"

Spektrale Analyse ibat

Spektrale Analyse V1

Synchr.Sampling ibat

+ Speichern

Spektrale Analyse Vn-1

Spektrale Analyse Vn

...

Sequentieller Uplink (P2P):- Rohdatenblock vom Sensor 1- Rohdatenblock vom Sensor 2...- Rohdatenblock vom Sensor n

Spektrale Analyse ibat

Spektrale Analyse V1

Synchr.Sampling ibat

+ Speichern

Spektrale Analyse Vn-1

Spektrale Analyse Vn

...

Batteriesteuergerät

Batteriestrom ibat = iDC + iAC

Spektrale Analyse ibat

Spektrale Analyse V1

Synchr.Sampling ibat

+ Speichern

Spektrale Analyse V2

Spektrale Analyse Vn

...

Impedanzspektrum

Synchr.Sampling Vn

+ Speichern

Synchr. Sampling Vn

Speichern

Synchr. Sampling Vn

Speichern

Synchr.Sampling Vn

+ Speichern

Synchr. Sampling Vn

Speichern

Broadcast-Downlink:- Kommandierung- Synchronisationstrigger

zentrale Signalverarbeitung:dezentrale Signalverarbeitung:

ImpedanzspektrumImpedanzspektrumImpedanzspektrum

An-regung

ff

Batteriestrom ibat = iDC + iAC An-regung

ff

Zellensensoren Batteriesteuergerät

Left: Central signal processing the battery control unitRight: Decentralized signal processing in battery control unit and the cell sensors

HAW

34/46

Page 32: Impedance Spectroscopy with Battery Cell Sensors · Control unit with 433 MHz TRX Antenna-Switch TRX MSP430 Detector 125 kHz Wakeup DC/DC 1) Commands with Data Protocol on 433 MHz

Comparision Examples of Central andDistributed Signal Processing

HAW

35/46

Page 33: Impedance Spectroscopy with Battery Cell Sensors · Control unit with 433 MHz TRX Antenna-Switch TRX MSP430 Detector 125 kHz Wakeup DC/DC 1) Commands with Data Protocol on 433 MHz

Solved Technical Problems1: Cell impedance in range of mΩ (typ. 0.1...10mΩ)

- AC-Excitation in the range of Ampere for

- AC-Voltage-Response in the range of mV

plus DC-Voltage of a Cell in range of 2...5 V

- Problem: ADC with very high resolution needed

⇒ Solution: separation of DC- and AC-voltage sampling

with controlled analog offset subtraction and amplification forAC-Sampling

2: Effective time delay of current and voltage sampling

- caused by trigger transmission, different ADC-timings, phaseshift of current sensor and analog amplification

- Problem: synchronisation up to submillisecond precision needed

⇒ Solution: calibration procedure and compensation of time delaysin the controller software

HAW

36/46

Page 34: Impedance Spectroscopy with Battery Cell Sensors · Control unit with 433 MHz TRX Antenna-Switch TRX MSP430 Detector 125 kHz Wakeup DC/DC 1) Commands with Data Protocol on 433 MHz

Functional Tests: EIS with Cell Sensors

4 5 6 7 8 9 10-1

0

1

2

3

4

5

100Hz 1Hz

ωlo

wer

ω ∞1kHz

real part in mΩ

imagin

ary

part

in

-mΩ

Red: EIS-measurements from a commercial EIS meterBlue: EIS-measurements with cell sensor prototypes

HAW

37/46

Page 35: Impedance Spectroscopy with Battery Cell Sensors · Control unit with 433 MHz TRX Antenna-Switch TRX MSP430 Detector 125 kHz Wakeup DC/DC 1) Commands with Data Protocol on 433 MHz

Tests: Cell State Determination with EIS

Left: EIS-measurement of impedance spectrum depending on temperature

Right: EIS-Measurement of State of Charge

HAW

38/46

Page 36: Impedance Spectroscopy with Battery Cell Sensors · Control unit with 433 MHz TRX Antenna-Switch TRX MSP430 Detector 125 kHz Wakeup DC/DC 1) Commands with Data Protocol on 433 MHz

Prototype Assembly: Cell Mounted Sensor

45 Ah LiFePO4 Cylindic Cell with wireless Sensor

HAW

39/46

Page 37: Impedance Spectroscopy with Battery Cell Sensors · Control unit with 433 MHz TRX Antenna-Switch TRX MSP430 Detector 125 kHz Wakeup DC/DC 1) Commands with Data Protocol on 433 MHz

1 Battery Monitoring and Management

2 Sensor Measurements and Communication Methods

3 Precise Measurements for Highly Dynamic Events

4 Electrochemical Impedance Spectroscopy for StateDetermination

5 Application Projects and Future Work

HAW

40/46

Page 38: Impedance Spectroscopy with Battery Cell Sensors · Control unit with 433 MHz TRX Antenna-Switch TRX MSP430 Detector 125 kHz Wakeup DC/DC 1) Commands with Data Protocol on 433 MHz

Imaginable as Application:Electric Busses with > 1000 Cells

Political objective: a complete change to CO2-free city-bussesin Hamburg will start in 2020

HAW

41/46

Page 39: Impedance Spectroscopy with Battery Cell Sensors · Control unit with 433 MHz TRX Antenna-Switch TRX MSP430 Detector 125 kHz Wakeup DC/DC 1) Commands with Data Protocol on 433 MHz

Under Research at HAW: Optimization ofBattery Cycles for Electric Busses

Recent Project BEEDel:Battery lab cycle tests based on logged data of city-bus tours

HAW

42/46

Page 40: Impedance Spectroscopy with Battery Cell Sensors · Control unit with 433 MHz TRX Antenna-Switch TRX MSP430 Detector 125 kHz Wakeup DC/DC 1) Commands with Data Protocol on 433 MHz

E-Mobility Research at HAW Hamburg

Wireless sensor system for real-time cell state observationincluding:

- Cell balancing, wake-up functionality- Synchronized burst measurements for high dynamic events- Electrochemical impedance spectroscopy- Delivering an additional safety level

Concept design for communication between battery, car and gridin a proposed EU Project application

Data collection and lab tests for electric busses in Hamburg

Basic research for real-time optical electrode observation

HAW

43/46

Page 41: Impedance Spectroscopy with Battery Cell Sensors · Control unit with 433 MHz TRX Antenna-Switch TRX MSP430 Detector 125 kHz Wakeup DC/DC 1) Commands with Data Protocol on 433 MHz

Acknowledgements• Project ’BATSEN’: German Federal Ministry of Education and Research BMBF

• E-Mobility NSR Interreg Project: EU Commission

• Collaborative Graduate School with Univ. of Hamburg

• Battery Test Laboratory HAW:

Environmental Authority City of Hamburg

• Project ’BEEDeL’, Evaluation of E-Busses

• Project ’SINGER’ Sino-German Electromobility Research

HAW

44/46

Page 42: Impedance Spectroscopy with Battery Cell Sensors · Control unit with 433 MHz TRX Antenna-Switch TRX MSP430 Detector 125 kHz Wakeup DC/DC 1) Commands with Data Protocol on 433 MHz

Contributions of Students in the Research Team

[1] Eger, T.; Diploma Thesis. 2008

[2] Krannich, T.; Diploma Thesis 2008

[3] Hoops A.; Industrial Internship Report 2010

[4] Gisch,A.; Industrial Internship Report 2011

[5] Ilgin, S.; Bachelor Thesis 2011

[6] Plaschke, S.; Diploma Thesis 2010

[7] Jegenhorst, N.; Master Thesis 2011

[8] Kube, R.; Masterthesis 2011

[9] Puttjer, S.; Diplom Thesis 2011

[10] Loschwitz, S.; Bachelor Thesis 2012

[11] Hillermann, L.; Diploma Thesis 2012

[12] Durdaut, P.; Bachelor Thesis 2013

[13] Sassano, N.; Bachelor Thesis 2013

[14] Guttler, A.; Master Thesis 2013

[15] Steinmann, T.; Bachelor Thesis 2013

[16] Meinzer, M.; Bachelor Thesis 2013

[17] Schiepel, N.; Bachelor Thesis 2013

[18] Wisnewski, T.; Bachelor Thesis 2013

[19] Klockmann, H.; Bachelor Thesis 2013

[20] Nasimzada, W.; Bachelor Thesis 2013

[21] Zimny, J.; Bachelor Thesis 2014

[22] Roehn, J.; Bachelor Thesis 2014

[23] Angold, A.; Bachelor Thesis 2014

[24] Soleimanejad, H.; Ind. Intership Rep. 2014

[25] Hubel, A.; Bachelor Thesis 2014

[26] Schiepel, P.; Bachelor Thesis 2014

[27] Kusche, M.; Bachelor Thesis 2014

[28] Grießbach, J.; Bachelor Thesis 2014

[29] Mense, E.; Master Thesis 2014

[30] Palliyaguruge, M.; Ba. Th. 2014

[31] Schmidt, O.; Ba. Th. 2015

[32] Groth, F.; Ba. Th. 2015

[33] Sassano, N.; MSc. Th. 2015

[34] Lucchesi, F.; Ba. Th. (under way) 2015

[35] Manzke, G.; Ba. Th. (under way) 2015

[36] Priven, A.; Ba. Th. (under way) 2016

[37] Protsenko, A.; Ba. Th. (under way) 2016

[38] Oezden, O.; Ba. Th. (under way) 2016

[39] Akwaa, J.; Ba. Th. (under way) 2016

[40] Riekmann, N.; Ba. Th. (under way) 2016

HAW

45/46

Page 43: Impedance Spectroscopy with Battery Cell Sensors · Control unit with 433 MHz TRX Antenna-Switch TRX MSP430 Detector 125 kHz Wakeup DC/DC 1) Commands with Data Protocol on 433 MHz

References[1] Ilgin, S., Jegenhorst, N, Kube, R., Puttjer, S., Riemschneider, K.-R., Schneider. M., Vollmer, J. Automotive

Battery Monitoring by Wireless Cell Sensors. accepted IEEE International Instrumentation and MeasurementTechnology Conference I2MTC Graz 2012

[2] Muller. G. , Riemschneider, K.-R., “Tests and Cell Monitoring for Lithium Vehicle Batteries,” E-Mobility NSRTransnational Public Meeting Newcastle, UK , 2012.

[3] Schneider, M., Roscher, V., Riemschneider, K.-R., Vollmer, J., Muller, G., “Zellensensoren furFahrzeugbatterien,” EFORUM Zeitschrift der HAW Hamburg, ISSN 2196-7466, 2013.

[4] Schneider, M., Roscher, V., Riemschneider, K.-R; Vollmer, J., Muller. G., “Wireless Cellmonitoring of VehicleBatteries,” Postervortrag Tagung Kraftwerk Batterie / Batterietag, RWTH Aachen, 2013.

[5] Schneider, M., Roscher, V., Riemschneider, K.-R., Vollmer, J., Muller, G., “Elektromobilitat und intelligenterBatteriebetrieb,” Fuelling the Climate 2013 - Fachtagung ’Vehicle2Grid’, eingel. Vortrag in derHandelskammer Hamburg, 2013.

[6] Riemschneider, K.-R., Roscher, V., Schneider, M., “Intelligente Batteriesensorik,” Microtec Nord, Heide, 2013.

[7] Roscher, V., “Advanced Built-In Battery Sensors” Summer School of the Graduate School Key Technologiesfor Sustainable Energy Systems in Smart Grids, Hamburg, 2014.

[8] Roscher, V., Schneider, M., Durdaut, P., Sassano, N., Pereguda, S., Mense, E., Riemschneider, K.-R.,”Synchronisation using Wireless Trigger-Broadcast for Impedance Spectroscopy of Battery Cells”, Presentationat the 2015 IEEE Sensors Applications Symposium, Zadar, Kroatia, 2015.

[9] Roscher, V., Sassano, S., Pereguda, S., Durdaut, P., Schneider, M., Mense, E., Riemschneider, K.-R., Muller,G., Vollmer, J., ”In-Situ Electrochemical Impedance Spectroscopy with Wireless Synchronised Battery CellSensors” Tagung Kraftwerk Batterie / Batterietag, RWTH Aachen, 2015.

[10] Roscher, V., Riemschneider, K.-R., ”Current Research on E-Mobility and Battery State Observation” Workshopof the SINGER Project at Beijing University Graduate School, Shenzhen, 2015.

[11] Roscher, V., ”Advanced cell-integrated battery sensors” Workshop at the EVTIF Conference, Beijing, 2015.

[12] Sassano, N., Roscher, V., Riemschneider, K.-R., ”Verteilte Sensor-Signalverarbeitung fur dieImpedanzspektroskopie von vielzelligen Batterien”, Fachgesprach Sensornetze 2015, Erlangen, 2015

[13] Sassano, N., Roscher, V., Riemschneider, K.-R., ”Batterie-Zellensensoren mit drahtloser Kommunikation undverteilter Signalverarbeitung” Fachtagung Sensoren im Automobil, Munchen, 2016

HAW

46/46