IIE Simulation Competition Dalhousie University

download IIE Simulation Competition Dalhousie University

of 37

Transcript of IIE Simulation Competition Dalhousie University

  • 8/17/2019 IIE Simulation Competition Dalhousie University

    1/37

    Institute of Industrial Engineering ArenaStudent Simulation Competition

    Spotted Dog Gold Mine Operations Simulation

    Submitted to Alexandre Ouellet on December 31st, !1

    Submitted "#$ %aul &enton, 'ra(is &oster and )iara *eiler 

    Dal+ousie ni(ersit#

    !

  • 8/17/2019 IIE Simulation Competition Dalhousie University

    2/37

    Executive Summary

    '+e Spotted Dog Mine is an open pit gold mine located in -estern nited States. Operations at t+e mine

    include drilling, blasting, loading/+auling material, 0eco(ering gold from ore, and dumping -aste.

    American Mining Ser(ices AMS2 is responsible for pro(iding reliable dump truc transportation

     bet-een t+e loading s+o(els and t+e (arious material destinations at t+e mine.

    Operations at t+e Spotted Dog Mine are sc+eduled to ad(ance t+roug+ four p+ases in t+e coming #ears.

    4auling distances for t+e trucs -ill gro- -it+ eac+ p+ase. AMS must determine t+e optimal number of

    trucs re5uired for eac+ of t+e four stages in order to maximi6e profits b# exceeding production targets

    and maintaining a +ig+ le(el of truc utili6ation.

    1

  • 8/17/2019 IIE Simulation Competition Dalhousie University

    3/37

    '+is report documents t+e problem sol(ing approac+ t+at -as used to arri(e at a set of recommendations

    for expanding trucing capacit# as time goes for-ard. '+e follo-ing steps -ere taen to arri(e at a

    reliable set of solutions$

    • An Arena model -as constructed to capture rele(ant s#stem c+aracteristics.• '+e model -as (alidated based on anal#tical solutions and field data.

    • '+e model -as run under a (ariet# of potential scenarios to determine t+e optimal number of

    trucs at eac+ p+ase of operations.

    • '+e results -ere anal#6ed according to e# performance indicators for t+e s#stem.

    • A set of recommendations -ere put toget+er based on t+e anal#sis of t+e simulation model.

     

    pon running t+e simulation -it+ t+e pro(ided +aul profiles for eac+ stage, t+e optimal number of trucs

    -as determined to be 3! trucs in %+ases 1 and , 31 trucs in %+ase 3, and 33 trucs in %+ase 7. It is

    recommended t+at AMS pro(ide t+is amount of trucs for p+ases of operation in order to ac+ie(e t+e

    +ig+est expected profit.

  • 8/17/2019 IIE Simulation Competition Dalhousie University

    4/37

    Table of Contents

    Executi(e Summar#..................................................................................................................................... i

    )ist of 'ables.............................................................................................................................................. iii

    )ist of &igures............................................................................................................................................ iii1.!2 %roblem Statement...........................................................................................................................1

    1.12 8e# %erformance Indicators................................................................................................ ........

    1.2 %roblem Scope.............................................................................................................................3

    .!2 Met+odolog# and Assumptions........................................................................................................3

    .12 Input Data....................................................................................................................................3

    .2 Model Specifications................................................................................................................... 7

    3.!2 Experimental Design...................................................................................................................... .9

    7.!2 0esults.............................................................................................................................................:

    7.12 %+ase 1.........................................................................................................................................;

    7.2 %+ase .........................................................................................................................................<

    7.32 %+ase 3.........................................................................................................................................=

    7.72 %+ase 7.......................................................................................................................................1!

    9.!2 Anal#sis.........................................................................................................................................11

    9.12 *arm>p %eriod........................................................................................................................ 11

    9.2 ?umber of 0eplications............................................................................................................. 11

    :.!2 @erification and @alidation...................................................................................................... ......1

    :.12 S+o(el constraint producti(it# approximation$..........................................................................13

    :.2 S+o(el constraint producti(it# -it+ s+o(el failures...................................................................13

    :.32 ?umerical Calculation...............................................................................................................13

    :.72 'ruc constraint producti(it# approximation.............................................................................13

    :.92 ueuing t+eor# (alidation..........................................................................................................17

    ;.!2 Implementation %lan...................................................................................................................... 19

    Gradient Speed 0eduction Calculation................................................................................1<Appendix C > Mont+l# 'ruc Operating Cost Estimation..........................................................................1

    Appendix D B Expected %rofit 'ables........................................................................................................

    Appendix E B tili6ation 'ables................................................................................................................7

    Appendix & B %roducti(it# Slope Calculation...........................................................................................:

    3

  • 8/17/2019 IIE Simulation Competition Dalhousie University

    5/37

    List of Tables

    'able 1 > Experiment Summar# 'able.............................................................................................. ...........:'able > Expected %rofit %+ase 12, Selection.............................................................................................;'able 3 > Expected %rofit %+ase 2, Selection.............................................................................................<'able 7 > Expected %rofit %+ase 32..................................................................................................... ........=

    'able 9 > Expected %rofit %+ase 72...........................................................................................................1!'able : > 'rial 0un 0esults....................................................................................................................... .11'able ; > Implementation %lan...................................................................................................................19'able < > 0epresentati(e Data Distributions..............................................................................................1;'able = > p+ill Speed &actor.................................................................................................................... 1<'able 1! > %it 0amp Do-n+ill Speed &actor..............................................................................................!'able 11 > Dump 0amp Do-n+ill Speed &actor........................................................................................!'able 1 > Expected %rofit %+ase 12......................................................................................................... 'able 13 > Expected %rofit %+ase 2......................................................................................................... 'able 17 > Expected %rofit %+ase 72......................................................................................................... 3'able 19 > Expected %rofit %+ase 32......................................................................................................... 3'able 1: > Asset tili6ation %+ase 2........................................................................................................7

    'able 1; > Asset tili6ation %+ase 12........................................................................................................7'able 1< > Asset tili6ation %+ase 72........................................................................................................9'able 1= > Asset tili6ation %+ase 32........................................................................................................9

    List of Figures

    7

  • 8/17/2019 IIE Simulation Competition Dalhousie University

    6/37

    &igure 1 > Arena Animation of Spotted Dog Gold Mine %it.........................................................................1&igure > Expected Mont+l# %rofit %+ase 12......................................................................................... ....;&igure 3 > Asset tili6ation %+ase 12..........................................................................................................;&igure 7> Expected Mont+l# %rofit %+ase 2..............................................................................................<

    &igure 9 > Asset tili6ation %+ase 2.......................................................................................................... Expected Mont+l# %rofit %+ase 32......................................................................................... ....=&igure ; > Asset tili6ation %+ase 32..........................................................................................................=&igure < > Expected Mont+l# %rofit %+ase 72...........................................................................................1!&igure = > Asset tili6ation %+ase 72........................................................................................................1!&igure 1! > Model Comparison..................................................................................................................1&igure 11 > "irt+>Deat+ %rocess.................................................................................................... ............17&igure 1 > Gradeabilit#/Speed/0impull....................................................................................................1<&igure 13 > Standard 0etarding, Continuous..............................................................................................1=&igure 17 > Standard 0etarding, 19!! m....................................................................................................!

  • 8/17/2019 IIE Simulation Competition Dalhousie University

    7/37

    1.0) Problem Statement

    '+e Spotted Dog Mine is an open pit gold mine located in t+e -estern nited States. '+e mine operates

    using a truc>s+o(el s#stem. 0oc is extracted from t+e mine using t+ree large mining exca(ators,

    commonl# referred to as s+o(els. '-o s+o(els exca(ate ore material, -+ile t+e t+ird exca(ates -aste

    material. '+e roc is classified after extraction, according to t+e estimated gold concentrations in t+e

    mined roc. &ort# percent of t+e ore material is classified as ore, lea(ing sixt# percent classified as

    leac+. All of t+e -aste material is classified as -aste. 'rucs +aul t+e material to one of t+ree locations

    according to t+e material classification. Ore material is +auled to t+e crus+er -+ere t+ere are t-o

    unloading spots, -+ile leac+ and -aste material is +auled to t+eir respecti(e dumps. 'rucs arri(e at t+e

    s+o(els, are loaded -it+ material, +aul t+e material to its destination and t+en return to t+e next a(ailable

    s+o(el to repeat t+e process.

    '+ese operations of drilling,

     blasting, loading and +auling

    are contracted out to

    American Mining Ser(ices,

    Inc. AMS2.

    AMS is paid according to

    t+e amount of material

    +auled eac+ mont+ t+e more

    material +auled, t+e more AMS

    is paid. If too man# trucs are onsite, lines -ill form at t+e (arious stations, resulting in a decrease of

    truc utili6ation. AMS must pro(ide a number of trucs t+at -ill balance bot+ t+ese considerations. In

    addition, t+e nature of an open pit mine is to expand o(er time. '+e Spotted Dog Mine breas its

    expansion into four p+ases. '+e distance trucs -ill be re5uired to +aul material out of t+e mine -ill

    increase -it+ eac+ p+ase. As suc+, t+e number of trucs pro(ided in eac+ p+ase is expected to increase as

    -ell.

    @ariabilit# is also an important part of Spotted Dog Mine operations. '+is includes t+e speeds t+at trucs

    tra(el, t+e rate t+at trucs are loaded/unloaded, as -ell as s+o(el breado-n rates and repair times. In

    order to incorporate t+is (ariation and determine t+e number of trucs re5uired to +aul material at eac+

    stage, an Arena model -as built. '+is model -as (alidated and ran under a (ariet# of experiments to

    determine t+e optimal amount of trucs for eac+ p+ase of operations.

    Figure 1 - rena nimation of S!otte" #og $ol" %ine Pit

  • 8/17/2019 IIE Simulation Competition Dalhousie University

    8/37

    1.1) &ey Performance 'n"icators

    *+en sol(ing an# problem, criteria are re5uired in order to e(aluate and compare solutions. '+ree e#

     performance indicators 8%I2 -ere identified to anal#6e results from t+e Spotted Dog Mine simulation.

    All model (ariations -ill be e(aluated using t+ese 8%I$

    Profit(

    %rofit refers to AMS re(enue multiplied b# t+e pro(ided pa# factor of %& F !.

  • 8/17/2019 IIE Simulation Competition Dalhousie University

    9/37

    1.) Problem Sco!e

    As -it+ an# s#stem, t+e mining operations at t+e Spotted Dog Mine +a(e an in+erent (ariabilit#.

    Specificall# to t+is s#stem, (ariabilit# includes extracted material classification, o(erall production, truc

    tra(el speeds and loading/unloading times. If (ariabilit# is not accounted for in a model, decision maers

    +a(e a limited abilit# to understand and account for t+e s#stems true be+a(iour. '+is limits t+eir abilit# to

    mae a -ell informed decision. Arena is designed to account for t+e stoc+astic nature of t+ese processes,

    so it -as used to build a model to anal#6e t+e problem described in Section 1.!.

    Se(eral aspects of mining operations at t+e Spotted Dog Mine -ere deemed to be out of scope for t+is

     proJect. '+e maret demand for gold is not included in t+e model, nor is staffing re5uirements. In

    addition, t+e re5uired operations to process material before exca(ation and after unloading are out of

    scope. As suc+, onl# t+e material +andling aspect of t+e mine is modelled. Section .! describes all t+e

    assumptions made t+roug+out t+e construction of t+e model in furt+er detail.

    .0) %et,o"ology an" ssum!tions

    '+roug+out t+e construction of t+e Arena model, numerous assumptions -ere made. '+ese assumptions

    can be classified into t-o categories B input data and model specifications. Input data refers to t+e

    distributions pro(ided to Arena in order to control (arious acti(ities, -+ile model specifications refer to

    assumptions t+at influenced t+e mae>up of t+e model.

    .1) 'n!ut #ata

    Data regarding loaded truc speeds, empt# truc speeds, s+o(el failure rates, s+o(el repair times, s+o(el

    loading times and truc dumping times -ere pro(ided to describe operating conditions at t+e Spotted Dog

    Mine. As distributions representing data sets is more representati(e t+an exact past data, t+e Arena Input

    Anal#6er -as used to determine t+e most accurate distributions t+at s+ould be used in t+e model. 0esults

    from t+is anal#sis are presented in Appendix A.

    '+e ;=3& Mining 'ruc specifications indicate t+e maximum unloaded speed of t+e truc is :! m/+, or

    1!!! m/min. Some of t+e data pro(ided included (alues abo(e t+is speed t+ese data points -ere

    considered outliers and remo(ed from t+e dataset. It -as assumed t+at all of t+e trucs speeds -ere

    collected -+ile trucs -ere tra(elling on flat ground and calculated b# di(iding total time b# total

    distance tra(elled. '+e specifications also indicated t+at truc speeds must decrease -+en tra(ersing

    do-n+ill to pre(ent t+e braes from o(er+eating. sing t+e Standard 0etarding grap+s in Appendix ", a

    factor of

  • 8/17/2019 IIE Simulation Competition Dalhousie University

    10/37

    '+e truc specifications also indicated t+at -+en loaded trucs are tra(elling up+ill, t+eir speed s+ould

    also be reduced. sing t+e pro(ided gradeabilit# grap+, a factor for speed reduction -as calculated to be

    . As suc+, t+e speed of loaded trucs tra(elling up+ill is +alf t+at of loaded trucs tra(elling on flat

    ground.

    .) %o"el S!ecifications

    A simulation model -as needed to model t+e complex and d#namic be+a(ior of t+e stoc+astic processes

    at t+e Spotted Dog Gold Mine. '+e processes and t+eir interactions -ere mapped, and an Arena model

    -as created to approximate t+em. '+e replication lengt+s and resource sc+edules are based on t-o nine

    +our s+ifts per da#, and a mont+l# pa#ment sc+edule. In order to compare t+e benefits of purc+asing

    additional trucs, a @"A controller uses a MS Excel spreads+eet to dri(e a set of experiments and reco(er 

    continuous responses from t+e s#stem based on t+e controls defined b# t+e experiment. '+ese

    experiments are described in Section 3.!. Se(eral met+odologies and assumptions -ere used in order to

    create a simplified, #et representati(e model. '+ese are summari6ed belo-$

    S,ovel Process %o"el

    *it+ sufficientl# +ig+ number of trucs, t+e s+o(els -ill be t+e constraint to production at t+e mine. '+e

    s+o(elling process sei6es t-o resources, a truc and a s+o(el2, dela#s for a random loading time, releases

    t+e s+o(el, and t+e truc proceeds to deli(er t+e loaded material to its destination. '+e s+o(el model

    maes use of t+e follo-ing assumptions about t+e s#stem$

    • An infinite suppl# of crus+ed roc is a(ailable for t+e s+o(els to exca(ate

    • S+o(el loading times account for all c+anges in position t+at a s+o(el maes -it+in a p+ase

    • External demand for gold and t+e proportion of -aste to ore is assumed to be constant. '+is

    results in a permanent allocation of one s+o(el mining gold ore, and t-o s+o(els mining -aste

    • S+o(el operators are sc+eduled for t-o = +our s+ifts a da#

    • Eac+ s+o(el +as a dedicated repair cre-. *+en t-o failures occur simultaneousl# t+e# are still

    repaired according to t+e same distribution

    Trucing/auling Process %o"el

    '+e number of trucs in t+e s#stem is t+e (ariable t+at is optimi6ed. At t+e start of a replication, t+e

    number of trucs for t+e current polic# of t+e experiment is loaded into t+e s#stem. 'rucs are resources

    t+at onl# become a(ailable -+en t+e# are KreturnedL to t+e empt# truc 5ueue beside t+e s+o(els in t+e

    mine pit. A truc is sei6ed b# a s+o(el, sent to a destination, and t+en returns empt# to t+e 5ueue. '+e

    follo-ing assumptions -ere made -+en modelling t+e trucing process$

    • 'ruc dri(ers are considered al-a#s a(ailable

  • 8/17/2019 IIE Simulation Competition Dalhousie University

    11/37

    • S+o(els stop operations at = +ours -+ile t+e rest of t+e s#stem continues to -or until it is empt#

    • 'rucs +aul material at t+e full capacit# of 9! tonnes

    • '+ere are no capacit# constraints associated -it+ roads, ramps, or intersections in t+e model

    • 'rucs do not experience failures

    • 0oute times are calculated b# di(iding effecti(e distance b# a stoc+astic (elocit# effecti(e

    distances are defined in Appendix "

    #estination Process %o"el

    %rocessing at t+e destination uses t+e follo-ing set of assumptions to simplif# t+is aspect of t+e model$

    • One distribution is fit to a set of data and used to model dumping at all destinations

    • '+ere are no capacit# restrictions on leac+ -aste dumps

    • Ore production targets consist of t+e amount of bot+ leac+ and ore material +auled eac+ mont+

    • '+e pa# factor is calculated according to t+e total amount of ore material and -aste material

    +auled b# trucs eac+ mont+

    • '+e effecti(e grade of eac+ ramp is estimated to ne(er be greater t+an 19

    • '+e mont+l# aggregate truc cost is N9!,!!! see Appendix C

    .0) Ex!erimental #esign

    '+e run controller for t+e model can feed a set of control parameters into t+e model at t+e start of eac+

    replication, and output data out of t+e model at t+e end of t+e replication. '+e different scenarios to be

    considered are represented as sets of (alues for t+e control parameters, -+ic+ can be defined in a

    spreads+eet t+at is lined to t+e model t+roug+ t+e run controller.

    Due to t+e small computational si6e of t+e model, and t+e need to onl# optimi6e one control (ariable, a

     brute force approac+ is used to run t+e model under a range of different truc 5uantities. '+e experiments

    in 'able 1 -ere run to produce results for anal#sis.

  • 8/17/2019 IIE Simulation Competition Dalhousie University

    12/37

    Table 1 - Ex!eriment Summary Table

    Experiment 0ange of 'rucs Experiment

     parameters

     ?umber of

    replications da#s2/

    truc 5uantit#

    &ilename

    %+ase 1 'ruc

    Optimi6ation

    1,9,1!,19,!,3,9,;,=,3!

    31,3,33,37,39,3:,3;,3

    Optimi6ation

    1,9,1!,19,!,3,9,;,=,3!

    31,3,33,37,39,3:,3;,3

    Optimi6ation

    1,9,1!,19,!,3,9,;,=,3!

    31,3,33,37,39,3:,3;,3

    Optimi6ation

    1,9,1!,19,!,3,9,;,=,3!

    31,3,33,37,39,3:,3;,3

    determine t+e optimal number of trucs in eac+ p+ase. '+ese results are presented in t+e follo-ing

    subsections, eac+ -it+ an Expected Mont+l# %rofit table, grap+ and an Asset tili6ation grap+. '+e

    figures of Expected Mont+l# %rofit and Asset tili6ation s+o- t+e relations+ip bet-een t+e number of

    trucs pro(ided b# AMS, and t+e ser(ice le(el t+at -ould be ac+ie(ed, as t+e +ig+er t+e ser(ice le(el, t+e

    more AMS -ill be paid.

    '+e Expected Mont+l# %rofit grap+ displa#s t+e relations+ip bet-een t+e number of trucs and t+e profit

    AMS s+ould expect to recei(e. '+e met+od used to calculate costs in t+ese grap+s is re(ie-ed in

    Appendix C. '+e Expected Mont+l# %rofit table s+o-s a selection of t+e number of truc (alues as -ell

    as correlating expected profit. '+e +ig+est expected profit (alue for eac+ p+ase is +ig+lig+ted in dar

    green, -+ile t+e second +ig+est (alue is +ig+lig+ted in lig+t green. '+e complete tables are displa#ed in

    Appendix D. '+e Asset tili6ation grap+ s+o-s t+e trade>off bet-een truc utili6ation and s+o(el

    utili6ation. '+e number of trucs and t+e truc utili6ation le(el at t+e s+o(el and truc utili6ation

    intersection is +ig+lig+ted. '+e tables used to create t+ese grap+s can be found in Appendix E. In eac+

     p+ase, t+e +ig+est expected profit -as ac+ie(ed -+en s+o(el utili6ation reac+ed its maximum and truc

    utili6ation -as at approximatel#

  • 8/17/2019 IIE Simulation Competition Dalhousie University

    13/37

    .1) P,ase 1

    '+e follo-ing grap+s and table s+o- t+e results of t+e simulation for %+ase 1 of t+e mine.

    ! 9 1! 19 ! 9 3! 39 7! 79N!

    N1!,!!!,!!!

    N!,!!!,!!!

    N3!,!!!,!!!

    N7!,!!!,!!!

    N9!,!!!,!!!

    N:!,!!!,!!!

    N7

  • 8/17/2019 IIE Simulation Competition Dalhousie University

    14/37

    ! 9 1! 19 ! 9 3! 39 7! 79

    !.!!

    !.!

    !.7!

    !.:!

    !.

    1.!!

    1.!

    sset *tili+ation 3P,ase 1)

    S+o(el tili6ation

    'ruc tili6ation

    4umber of Trucs

    *tili+ation

    Figure - sset *tili+ation 3P,ase 1)

    .) P,ase

    ! 9 1! 19 ! 9 3! 39 7!

    N!

    N1!,!!!,!!!N!,!!!,!!!

    N3!,!!!,!!!

    N7!,!!!,!!!

    N9!,!!!,!!!

    N:!,!!!,!!!

    N;!,!!!,!!!

    N9,;!!,:79.

  • 8/17/2019 IIE Simulation Competition Dalhousie University

    15/37

    Table - Ex!ecte" Profit 3P,ase )6 Selection

    ! 9 1! 19 ! 9 3! 39 7! 79

    !.!!

    !.!

    !.7!

    !.:!

    !.

    1.!!

    1.!

    sset *tili+ation 3P,ase )

    S+o(el tili6ation

    'ruc tili6ation

    4umber of Trucs

    *tili+ation

    .) P,ase

    '+e follo-ing grap+s and table s+o- t+e results of t+e simulation for %+ase 3 of t+e mine.

    ure : - sset *tili+ation 3P,ase )

    Figure ; - Ex!ecte" %ont,ly Profit 3P,ase )

    7 Trucs E8Profit9

    9 N79,9:3,

  • 8/17/2019 IIE Simulation Competition Dalhousie University

    16/37

    ! 9 1! 19 ! 9 3! 39 7! 79

    N!

    N1!,!!!,!!!

    N!,!!!,!!!

    N3!,!!!,!!!

    N7!,!!!,!!!N9!,!!!,!!!

    N:!,!!!,!!!

    N;!,!!!,!!!

    N9:,737,9!1.;9

    Ex!ecte" %ont,ly Profit 3P,ase )

    %rofit

    0e(enue

    Costs

    4umber of Trucs

    %ont,ly 5alues

    Table - Ex!ecte" Profit 3P,ase )

    7 Trucs E8Profit9

    = N9,;:,3;3.1.!!!

    sset *tili+ation 3P,ase )

    S+o(el tili6ation 'ruc tili6ation

    4umber of Trucs

    *tili+ation

    Figure < - sset *tili+ation 3P,ase )

  • 8/17/2019 IIE Simulation Competition Dalhousie University

    17/37

    .) P,ase

    '+e follo-ing grap+s and table s+o- t+e results of t+e simulation for %+ase 3 of t+e mine.

    ! 9 1! 19 ! 9 3! 39 7! 79

    N!

    N!,!!!,!!!

    N7!,!!!,!!!

    N:!,!!!,!!!

    N

    N:!,79!,199.79

    Ex!ecte" %ont,ly Profit 3P,ase )

    %rofit

    0e(enue

    Costs

    4umber of Trucs

    %ont,ly 5alues

    Table : - Ex!ecte" Profit 3P,ase )

    7 Trucs E8Profit9

    31N9;,:;9,:::.9

    7

    3N9=,

    :

    33N:!,79!,199.7

    9

    37N:!,9,::!.;

    =

    39N:!,!

  • 8/17/2019 IIE Simulation Competition Dalhousie University

    18/37

    ! 9 1! 19 ! 9 3! 39 7! 79

    !

    !.

    !.7

    !.:

    !.<

    1

    1.

    sset *tili+ation 3P,ase )

    S+o(el tili6ation

    'ruc tili6ation

    4umber of Trucs

    *tili+ation

    Figure > - sset *tili+ation 3P,ase )

    :.0) nalysis

    '+e conclusions from t+e results presented in Section 3.! are dependent on AMSs polic# on truc

    utili6ation. If an increased profit -it+ lo-er truc utili6ation is acceptable, AMS s+ould emplo# 3! trucs

    in %+ases 1 and , 31 trucs in %+ase 3 and 33 trucs in %+ase 7. 4o-e(er, if AMS desires a certain

    t+res+old for truc utili6ation to be met, Appendix E s+ould be consulted. &or instance, if AMS -is+es

    t+eir trucs to maintain

    trucs in %+ase 3 and 33 trucs in %+ase 7 -ould be desirable. Alternatel#, if t+e# -is+ to meet certains+o(el utili6ation standards and eep a constant flo- of production2, Appendix E s+ould again be

    consulted.

    :.1) ?arm-*! Perio"

    '+e Spotted Dog Mine operates t-o 1! +our s+ifts eac+ da#. As t+ese are discrete time blocs, a -arm>up

     period is not re5uired for t+e simulation. '+e mine onl# +as 1< +ours of effecti(e operations, so it is

    assumed t+at an# -aste and ore in a truc -ill lea(e t+e s#stem, and t+e trucs -ill immediatel# be

    a(ailable to t+e s+o(els once operations start ane-.

    :.) 4umber of 2e!lications

    '+e number of replications is important to determine for statistical accurac# in t+e model. '+e larger t+e

    number of replications, t+e smaller t+e confidence inter(al, and t+e more accurate t+e model is. 4o-e(er,

    t+e more replications re5uired, t+e longer t+e model taes to run.

  • 8/17/2019 IIE Simulation Competition Dalhousie University

    19/37

    'o determine t+e appropriate number of replications, a trial run of 3! mont+s -as conducted for 3! trucs

    during %+ase 7. '+e pa# for eac+ mont+ -as calculated, and t+e =9 confidence inter(al -as calculated.

    It -as decided t+at t+is confidence inter(al s+ould be no larger t+an 1 t+en t+e a(erage (alue of mont+l#

     pa#. '+is (alue -as c+osen because t+e optimal number of trucs can be c+anged -it+ slig+t (ariations in

    t+e model. '+e results from t+is trial run are displa#ed in 'able :.

    Table ; - Trial 2un 2esults

    5ariable 5alue

    Alp+a 1.=:

    A(erage N 3,:99,!1:.;

    Standard De(iation N

  • 8/17/2019 IIE Simulation Competition Dalhousie University

    20/37

    ! 9 1! 19 ! 9 3! 39 7! 79

    !

    !!

    7!!

    :!!

    1!!!

    1!!

    %o"el Com!arison( Ex!ecte" #aily Loa"s #elivere" 3P,ase )

    Simulated Amount 'ruc Constraint Approximation

    S+o(el Constraint Approximation ueueing '+eor# Approximation

    S+o(el Constraint Approximation -/ &ailures

    4umber of Trucs

    vg. Loa"s #elivere" #ay

    A mining operation +as some c+aracteristics t+at allo- for accurate anal#tic models in certain

    circumstances. '+e (alidation p+ase of model creation compared a (ariet# of anal#tic and simplified

    numerical models to t+e output of t+e simulation model. '+is comparison is summari6ed b# &igure 1!

     belo-$

    Eac+ of t+ese models -as created based on t+e s#stem structure, and (alidated to t+e output

    c+aracteristics presented in Appendix A. '+e reasoning and calculations supporting t+e e#

    approximations are described belo-.

    Figure 10 - %o"el Com!arison

  • 8/17/2019 IIE Simulation Competition Dalhousie University

    21/37

    ;.1) S,ovel constraint !ro"uctivity a!!roximation(

    *+en t+e number of trucs is increased be#ond t+e optimum le(el, t+e s+o(eling process becomes a

     bottlenec in t+e material +andling process. In t+is situation, a large 5ueue of empt# trucs forms at t+e

    s+o(el stations and t+e producti(it# of t+e mine as a function of number of trucs2 approac+es a constant(alue. '+is (alue can be gi(en b# t+e follo-ing e5uation$

     Ps (n )≅1080∙3

    t load

    '+e loading times are represented b# a s+ifted lognormal distribution. '+e a(erage loading time is$

    t load= E [2+ LOG  (1.52,0 .716) ]=2+1.52=3.52

    Sol(ing for t+e s+o(el producti(it# constraint gi(es$

     Ps (n )≅920.45 ( loadsday )

    ;.) S,ovel constraint !ro"uctivity @it, s,ovel failures

    *+en s+o(el failures are added to t+e model, t+e ne- stead# state producti(it# can be gi(en b#

    multipl#ing t+e e5uation in Section 9.1 b# t+e stead# state a(ailabilit# of t+e s+o(el$

     P! 

    s ( n )≅  "#$F 

     "#$F + "##R ∙1080∙3

    t load

    *+ere s+o(el failure times follo- t+e *eibull distribution, and repair times follo- a lognormal

    distribution, t+is e5uation becomes$

     P! 

    s ( n )≅ % & (1+ 1k )

     % & (1+ 1k )+1.4∙1080 ∙3

    t load P

    s ( n )≅879.422( loadsday )

    ;.) 4umerical Calculation

    sing a simple set of processes to model s+o(els in Arena, stead# state producti(it# -as estimated see

    file S+o([email protected] for furt+er information2$

     R2≅

  • 8/17/2019 IIE Simulation Competition Dalhousie University

    22/37

    ;.) Truc constraint !ro"uctivity a!!roximation

    *+en t+e number of trucs is reduced belo- t+e optimum le(el, t+e trucing process becomes a

     bottlenec in t+e material +andling process. In t+is situation, t+e s+o(els must -ait for trucs to arri(e,

    and t+e a(erage loads/da# can be approximated b# t+e linear function$

     Pt  (n )i≅(   1080 ∙ v̂d̂ i+ v̂ (t load+t dump))ni

    where Pt  (n ) ismine productivity whentrucks are the constraint .( loadsday )

    v̂ isthe avera'e tr uck velocity .(   mmin )

    d̂ i is the avera'e distance¿deliver a load∈ phasei . (m )

    t load isthe avera'e loadin'time .(min)

    t dump isthe avera≥dumpin' time .(min)

    n isthe number of trucks∈the system.

    '+e calculations for t+e producti(it# slope for eac+ p+ase can be found in Appendix &.

    ;.:) Aueuing t,eory vali"ation

    Due to t+e capacit# constraints in t+e crus+ing or dumping processes, t+e s+o(els -ill ne(er +a(e to -ait

    for trucs. As suc+, t+e utili6ation le(el of t+e s+o(els pro(ided b# t+e trucing s#stem can be estimated

    anal#ticall# using a birt+>deat+ process to model t+e 5ueue of empt# trucs -aiting to be filled at t+e

    s+o(els. An example is s+o-n in &igure 11 belo-.

    Figure 11 - Birt,-#eat, Process

  • 8/17/2019 IIE Simulation Competition Dalhousie University

    23/37

    In t+is model, t+e arri(al rate is defined as t+e rate t+at empt# trucs are added to t+e 5ueue. '+e ser(ice

    rate is defined as t+e rate t+at t+e s+o(els can fill trucs and cause t+em to exit t+is simplified s#stem.

    '+is model is analogous to an %%s 5ueuing s#stem -it+ finite calling !o!ulation.

    'o appl# t+is model to t+e Spotted Dog gold mine, t+e arri(al and ser(ice rates -ere estimated from t+emodel parameters for %+ase 7 of operations. '+e arri(al rate -as found b# calculating t+e a(erage amount

    of time a truc spends deli(ering a load. '+e total arri(al rate to t+e 5ueue is t+e number of trucs in t+e

    s#stem t+at are currentl# deli(ering loads, di(ided b# t+e a(erage time to deli(er a load, as s+o-n in t+e

    follo-ing e5uation$

     % ((   1080 ∙ v̂d̂+ v̂ t dump )=(  1080 ∙472.82

    13482.23+472.82 ∙0.90423 )=36.711

    '+e ser(ice rate is e5ual to t+e production rate of a single s+o(el$

     ) (1080

    t load=

    1080

    3.52=306.818

  • 8/17/2019 IIE Simulation Competition Dalhousie University

    24/37

    reliabilit# of t+is result. '+ese results taen from t+e current perspecti(e -ill result in a plan to purc+ase

    one truc for p+ase 3, and t+en t-o more additional trucs for t+e final p+ase of mine operations.

  • 8/17/2019 IIE Simulation Competition Dalhousie University

    25/37

    Bibliogra!,y

    Catepillar Inc. !1!2. ;=3& Mining 'ruc Operating Specifications. AEHQ6038-03 (03-2010).

    4illier, &. S., )ieberman, G. . !1!2. Introduction to Operations Research, th Edition!

    0ossetti, M. D. anuar# !!=2. "i#u$ation %ode$in& and Arena!

    *alpole, 0. E., M#ers, 0. 4., M#ers, S. )., Te, 8. !!;2. 'roai$it * "tatistics +or En&ineers *

    "cientists, 8th Edition!

  • 8/17/2019 IIE Simulation Competition Dalhousie University

    26/37

    !!en"ix - 2e!resentative #ata #istributions

    Table = - 2e!resentative #ata #istributions

    #ata Set #istribution rena Co"e %ean Comments

    )oaded 'ruc 

    Speed

    "eta 311 11U"E'A.==,3.=22¿311+211(   * * +¿402.566

    "est fit from t+e inputanal#6er 

    Empt# 'ruc

    Speed

    Erlang 3!< GAMM9;.=, 7.!:2

    ¿308+k,

    ¿543.074

    0emo(ed truc speedst+at -ere o(er safedri(ing limit. "est fitfrom input anal#6ergamma fit +ad lo-er

    urtosis2

    S+o(el 'ime

    "et-een

    &ailure

    *eibull *EI"3!.;,1.!:2

    ¿ % & (1+ 1k  )

    ¿30.0054

    Among t+e best fits frominput anal#6er. )inearl#increasing +a6ardfunction is a good modelfor failures.

    S+o(el 'ime

    to 0epair 

    )ognormal )OG?1.7,1.;=2   ¿1.4 Excluded 6eroes fromdata. "est fit from inputanal#6er .

    S+o(el

    )oading 'ime

    )ognormal )OG?1.9, !.;1:2   ¿2+1.52

    ¿3.52

    "est fit from t+e inputanal#6er 

    'ruc

    Dumping

    'ime

    Gamma GAMM!.79=,1.=;2   ¿k,

    ¿0.904

    "est fit from t+e inputanal#6er 

  • 8/17/2019 IIE Simulation Competition Dalhousie University

    27/37

    !!en"ix B - $ra"ient S!ee" 2e"uction Calculation

    Figure 1 - $ra"eabilityS!ee"2im!ull

    &igure 1 -as used to calculate t+e proper gear and, subse5uentl#, t+e maximum speed2 of t+e ;=3&

    Mining 'ruc -+ile tra(elling up+ill. 'able = displa#s t+e factor used to decrease t+e truc speed -+ile

    tra(elling up+ill.

    Table > - *!,ill S!ee" Factor

    &ull p+ill %it 0amp$ea

    r %ax S!ee" 3m,)

    Truc %ax S!ee" 3m,)

    Factor

    %+ase 1 7t+ 3! :! 1/

    %+ase 7t+ 3! :! 1/

    %+ase 3 7t+ 3! :! 1/

    %+ase 7 7t+ 3! :! 1/

  • 8/17/2019 IIE Simulation Competition Dalhousie University

    28/37

    If t+e effecti(e grade is an#-+ere bet-een 1! and 19, t+e truc must be in 7 t+ gear.

    Figure 1 - Stan"ar" 2etar"ing6 Continuous

    &igure 13 -as used to calculate t+e proper gear and, subse5uentl#, t+e maximum speed2 of t+e ;=3&

    Mining 'ruc -+ile tra(elling do-n+ill, for roads t+at are longer t+an 19!! metres.

  • 8/17/2019 IIE Simulation Competition Dalhousie University

    29/37

    Figure 1 - Stan"ar" 2etar"ing6 1:00 m

     

    &igure 17 -as used to calculate t+e proper gear and, subse5uentl#, t+e maximum speed2 of t+e ;=3&

    truc -+ile tra(elling do-n+ill, for roads t+at are roug+l# 19!! metres. 'ables 1! and 11 s+o- t+e factor

    used to decrease t+e truc speed -+ile tra(elling do-n+ill.

    Table 10 - Pit 2am! #o@n,ill S!ee" Factor

    Empt# Do-n+ill %it0amp

    S!ee" 3m,) Factor

    %+ase 1 19!! m2 3

  • 8/17/2019 IIE Simulation Competition Dalhousie University

    30/37

    !!en"ix C - %ont,ly Truc !erating Cost Estimation

    Since t+e Spotted Dog Mine pa#s AMS on a mont+l# basis, it is useful to express all of t+e fixed and

    operating costs of a single truc as a recurring mont+l# cost. A met+odolog# for calculating a mont+l#

    truc cost is summari6ed belo-.

    2elevant Cost %o"el(

    A simple #et po-erful model for asset purc+ase costing breas t+e costs into t+ree classifications$ A fixed

    unit purc+ase cost, a series of e5uall# spaced (ariable costs t+at are incurred t+roug+out t+e assets

    operations, and finall# a sal(age (alue t+at is reco(ered at t+e end of its operational life. '+ese costs are

    represented b# &igure 19.

    Figure 1: - Cas, Flo@ #iagram

    Conversion to mont,ly cost(

    Due to t+e time (alue of mone#, t+ese costs cannot be compared unless t+e# are con(erted to a common

    reference point. '+is can be accomplis+ed using t+e follo-ing e5uation$

    - total=(   P /"RR /  ) ∙ - ¿+- var−(  F  / "RR / )∙ - salva'e

    where - ¿ / - var / - salva'e are the relevantcosts .

    where - total is expressed∈ 0ollars

     "onth

    where "RRis the companies ! "inimum cceptable Rate of Return

  • 8/17/2019 IIE Simulation Competition Dalhousie University

    31/37

    where is the number of months a truck will operate for .

    where

    (

     

     P / i / n

    )= P

    [

    1−(1+i)−n

    i

      ]

    −1

    ssum!tion of mont,ly cost(

    sing t+is met+od -ould re5uire t+e estimation of se(eral unno-n parameters, so a total mont+l# cost of 

    N9!,!!! is assumed for t+e cost anal#sis. '+is (alue -as used to calculate expected mont+l# profits

     based on t+e number of trucs used.

    !!en"ix # D Ex!ecte" Profit Tables

    Table 1 - Ex!ecte" Profit

    3P,ase )

    7 Trucs E8Profit9

    1 N1,9;!,;!.9=

    9 N;,

  • 8/17/2019 IIE Simulation Competition Dalhousie University

    32/37

  • 8/17/2019 IIE Simulation Competition Dalhousie University

    33/37

  • 8/17/2019 IIE Simulation Competition Dalhousie University

    34/37

    !!en"ix E D *tili+ation Tables

    Table 1< - sset *tili+ation 3P,ase 1)

    7 TrucsS,ovel*tili+ation

    Truc

    *tili+ation

    1 !.!7 !.=<

    9 !. !.=;

    1! !.73 !.=:

    19 !.:3 !.=9

    ! !.

    3: 1.!! !.:;

    3; 1.!! !.:9

    3< 1.!! !.:3

    3= 1.!! !.:1

    7! 1.!! !.:!

  • 8/17/2019 IIE Simulation Competition Dalhousie University

    35/37

    Table 1> - sset *tili+ation 3P,ase )

    7 Trucs

    S,ovel

    *tili+atio

    n

    Truc

    *tili+ation

    1 !.!7 !.=<

    9 !.1= !.=;

    1! !.3< !.=;

    19 !.9; !.=:

    ! !.;7 !.=7

    3 !.

    3! !.=; !.

  • 8/17/2019 IIE Simulation Competition Dalhousie University

    36/37

    !!en"ix F D Pro"uctivity Slo!e Calculation

    Eac+ truc t+at is filled b# a s+o(el must dri(e to its destination and return empt# to t+e s+o(el. As suc+

    t+e a(erage speed is gi(en b#$

    v̂=( 12 ) E [ vloaded ]+( 12 ) E [vempty ]

    v loaded  is gi(en b# a s+ifted beta distribution, andvempty is gi(en b# a s+ifted gamma distribution$

    v̂=( 12 )( +   * * + + )+(1

    2 ) ($+k))

    ¿( 12 )(311+ 211∙2.992.99+3.9 )+( 12 ) (308+57.9∗4.06 )=472.82

    d̂ i=(( 13 )(( 25 ) (dcrush+dcrush )+( 35 )( d leach+dcrush ))+( 23 ) (ddump+dcrush ))

    d̂1=

    ((1

    3

    )((

    2

    5

    )(4749+4553.38 )+

    (

    3

    5

    )(4483+4287.38 )

    )+

    (

    2

    3

    )(6125+5828.63 )

    )=10963.48

    d̂2=(( 13 )(( 25 ) (5049+4834.625 )+(35 ) (4783+4568.625 ))+( 23 ) (6625+6297.375 ))=11803.058

    d̂3=(( 13 )(( 25 ) (5349+5115.875)+( 35 ) (5083+4849.875 ))+( 23 ) (7125+6766.125 ))=12642.642

    d̂4=(( 13 )((25 ) (5649+5397.13 )+( 35 ) (5383+5131.13 ))+( 23 ) (7625+7234.88 ))=13482.23 '+e

    loading times are represented b# a s+ifted lognormal distribution. '+e a(erage loading time is$

  • 8/17/2019 IIE Simulation Competition Dalhousie University

    37/37

    t load= E [2+ LOG  (1.52,0 .716) ]=2+1.52=3.52 '+e dumping times at eac+ of t+e truc

    destinations are represented b# a gamma distribution$

    t dump= E [G""  (0.459,1 .97) ]=k,=0.90423