IEEE 802.15-18-0516-00-0thz Tutorial TAGthz · AI 1.15 @ WRC 2019 • WRC 2015 agreed in resolution...

61
doc.: IEEE 802.15-18-0516-00-0thz-Tutorial_TAGthz November 2018 Project: IEEE P802.15 Working Group for Wireless PersonalArea Networks (WPANs) Project: IEEE P802.15 Working Group for Wireless PersonalArea Networks (WPANs) Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs) Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs) Submission Title: THz Communications – An Overview and Options for IEEE 802 Standardization Date Submitted: 5 November 2018 Source: Thomas Kürner (Editor) Company: TU Braunschweig, Institut für Nachrichtentechnik Address: Schleinitzstr. 22, D-38092 Braunschweig, Germany Voice: +495313912416 FAX: +495313915192, E-Mail: [email protected] Re: n/a Re: n/a Abstract: Over the last couple of years in particular, THz communications, i. e. the frequency range beyond 275 GHz, has become an attractive new research area for commercial development. It has reached a level of maturity that a couple of projects are now underway to develop technological solutions enabling h fh d d hi il ill id bif i h f the set-up of hardware demonstrators. This tutorial will provide a brief overview on the current status of THz Communication systems focusing on ongoing research activities such as the European Horizon 2020 framework, and provide an overview of the ongoing WRC 2019 preparations, as well as discussing the potential for IEEE 802 to play a major role in this interesting frequency range. potential for IEEE 802 to play a major role in this interesting frequency range. Purpose: Tutorial on the activities and the status of the IEEE 802.15 TAG THz presented to the IEEE 802 Plenary Notice: This document has been prepared to assist the IEEE P802 15 It is offered as a basis for Notice: This document has been prepared to assist the IEEE P802.15. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein. 12 November 2018 Thomas Kürner, TU Braunschweig/Germany Slide 1 Release: The contributor acknowledges and accepts that this contribution becomes the property of IEEE and may be made publicly available by P802.15.

Transcript of IEEE 802.15-18-0516-00-0thz Tutorial TAGthz · AI 1.15 @ WRC 2019 • WRC 2015 agreed in resolution...

Page 1: IEEE 802.15-18-0516-00-0thz Tutorial TAGthz · AI 1.15 @ WRC 2019 • WRC 2015 agreed in resolution 767: – to have an agenda item for WRC 2019 to consider identification of spectrum

doc.: IEEE 802.15-18-0516-00-0thz-Tutorial_TAGthzNovember 2018

Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs)Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs)Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs)Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs)

Submission Title: THz Communications – An Overview and Options for IEEE 802 StandardizationDate Submitted: 5 November 2018Source: Thomas Kürner (Editor) Company: TU Braunschweig, Institut für NachrichtentechnikAddress: Schleinitzstr. 22, D-38092 Braunschweig, GermanyVoice: +495313912416 FAX: +495313915192, E-Mail: [email protected]: n/aRe: n/aAbstract: Over the last couple of years in particular, THz communications, i. e. the frequency range beyond 275 GHz, has become an attractive new research area for commercial development. It has reached a level of maturity that a couple of projects are now underway to develop technological solutions enabling h f h d d hi i l ill id b i f i h fthe set-up of hardware demonstrators. This tutorial will provide a brief overview on the current status of

THz Communication systems focusing on ongoing research activities such as the European Horizon 2020 framework, and provide an overview of the ongoing WRC 2019 preparations, as well as discussing the potential for IEEE 802 to play a major role in this interesting frequency range.potential for IEEE 802 to play a major role in this interesting frequency range.Purpose: Tutorial on the activities and the status of the IEEE 802.15 TAG THz presented to the IEEE 802 PlenaryNotice: This document has been prepared to assist the IEEE P802 15 It is offered as a basis forNotice: This document has been prepared to assist the IEEE P802.15. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein.

12 November 2018 Thomas Kürner, TU Braunschweig/GermanySlide 1

Release: The contributor acknowledges and accepts that this contribution becomes the property of IEEE and may be made publicly available by P802.15.

Page 2: IEEE 802.15-18-0516-00-0thz Tutorial TAGthz · AI 1.15 @ WRC 2019 • WRC 2015 agreed in resolution 767: – to have an agenda item for WRC 2019 to consider identification of spectrum

doc.: IEEE 802.15-18-0516-00-0thz-Tutorial_TAGthzNovember 2018

THz Communications – An Overview and Options for IEEE 802

StandardizationStandardizationTutorial at IEEE 802 Plenary, November 2018y,

by IEEE 802.15 TAG THz

Presenters:Thomas Kürner, TU Braunschweig, GermanyAkif i K t NICT JAkifumi Kasamatsu, NICT, JapanOnur Sahin, InterDigital, UKCarlos Castro Fraunhofer Heinrich Hertz Institute Germany

12 November 2018

Carlos Castro, Fraunhofer Heinrich Hertz Institute, Germany

Thomas Kürner, TU Braunschweig/GermanySlide 2

Page 3: IEEE 802.15-18-0516-00-0thz Tutorial TAGthz · AI 1.15 @ WRC 2019 • WRC 2015 agreed in resolution 767: – to have an agenda item for WRC 2019 to consider identification of spectrum

doc.: IEEE 802.15-18-0516-00-0thz-Tutorial_TAGthzNovember 2018

Outline

• Status on THz Communication in Standardisation, Regulation and Research (Thomas Kürner)Regulation and Research (Thomas Kürner)

• Silicon CMOS Transceiver for Terahertz Wireless Communication (Akifumi Kasamatsu)Communication (Akifumi Kasamatsu)

• Towards Ultra-High Throughput FEC Design: EPIC Project (Onur Sahin)Project (Onur Sahin)

• Integration of fiber-optics/THz Technologies (Carlos Castro)( )

• Conclusion and Outlook (Thomas Kürner)

12 November 2018 Thomas Kürner, TU Braunschweig/GermanySlide 3

Page 4: IEEE 802.15-18-0516-00-0thz Tutorial TAGthz · AI 1.15 @ WRC 2019 • WRC 2015 agreed in resolution 767: – to have an agenda item for WRC 2019 to consider identification of spectrum

doc.: IEEE 802.15-18-0516-00-0thz-Tutorial_TAGthzNovember 2018

Status on THz Communication inStatus on THz Communication in Standardisation, Regulation and Research

Thomas Kürner, Sebastian Rey, Johannes Eckhardt

Technische Universität Braunschweig, Germany

12 November 2018 Thomas Kürner, TU Braunschweig/GermanySlide 4

Page 5: IEEE 802.15-18-0516-00-0thz Tutorial TAGthz · AI 1.15 @ WRC 2019 • WRC 2015 agreed in resolution 767: – to have an agenda item for WRC 2019 to consider identification of spectrum

doc.: IEEE 802.15-18-0516-00-0thz-Tutorial_TAGthzNovember 2018

Motivation for THz Communications

un/ti

rele

ss-w

irel

es3 kHz

300 kHz

300 kHz

3 MHz

tp://

disc

over

mag

azin

e.co

m/2

007/

jal

loch

rt_l

g.jp

gIss

ue

3 MHz

30 MHz

300 MHz

3 GHz

30 MHz

300 MHz

3 GHz

30 GHz

http

s/a

30 GHz 300 GHz

> 20 GHz Bandwidth @ 300 GHz +

Temporal Evolution of Data Rates in Transmission Schemes Spektrum

10..100 Gbit/s 10...100 Gbit/s 10...100 Gbit/s

Backhaul/Fronthaul links Wi l Li k i I t D i

12 November 2018 Thomas Kürner, TU Braunschweig/GermanySlide 5

ac au / o t au s Wireless Links in Data Centers

Intra-Device CommunicationApplications (as in IEEE Std. 802.15.3d-2017)

Page 6: IEEE 802.15-18-0516-00-0thz Tutorial TAGthz · AI 1.15 @ WRC 2019 • WRC 2015 agreed in resolution 767: – to have an agenda item for WRC 2019 to consider identification of spectrum

doc.: IEEE 802.15-18-0516-00-0thz-Tutorial_TAGthz<month year>

STATUS IN STANDARDISATION

12 November 2018 Thomas Kürner, TU Braunschweig/GermanySlide 6

Page 7: IEEE 802.15-18-0516-00-0thz Tutorial TAGthz · AI 1.15 @ WRC 2019 • WRC 2015 agreed in resolution 767: – to have an agenda item for WRC 2019 to consider identification of spectrum

doc.: IEEE 802.15-18-0516-00-0thz-Tutorial_TAGthz

IEEE Std 802 15 3d 2017November 2018

IEEE Std. 802.15.3d-2017Key Factsy

– New PHY for Std. IEEE 802.15.3-2016– MAC is mainly based on IEEE 802.15.3e-2017,

hi h i t d d th t f P i t“which introduced the concept of „Pairnet“• Point-to-point nature with highly-directive

antennas reduces the problem of interference and „fighting for access“

• Positions of Tx and Rx antennas are known– 8 different channel bandwidths

(as multiples of 2.16 GHz)– 2 PHY-modes (THz-SC PHY, THz-OOK-PHY)

with 7 modulation schemes:• BPSK, QPSK, 8-PSK, 8-APSK, 16-QAM, 64

QAM OOKQAM, OOK– 3 channel coding schemes:

• 14/15-rate LDPC (1440,1344), 11/14-rate LDPC (1440,1056), 11/14-rate RS(240,224)-code.

12 November 2018 Thomas Kürner, TU Braunschweig/GermanySlide 7

Page 8: IEEE 802.15-18-0516-00-0thz Tutorial TAGthz · AI 1.15 @ WRC 2019 • WRC 2015 agreed in resolution 767: – to have an agenda item for WRC 2019 to consider identification of spectrum

doc.: IEEE 802.15-18-0516-00-0thz-Tutorial_TAGthzNovember 2018

Channel plan

12 November 2018 Thomas Kürner, TU Braunschweig/GermanySlide 8

Page 9: IEEE 802.15-18-0516-00-0thz Tutorial TAGthz · AI 1.15 @ WRC 2019 • WRC 2015 agreed in resolution 767: – to have an agenda item for WRC 2019 to consider identification of spectrum

doc.: IEEE 802.15-18-0516-00-0thz-Tutorial_TAGthz

E l Si l ti R lt fNovember 2018

Exemplary Simulation Results for Backhaul/Fronthaul Applicationspp

• Assumption of a margin of 20 dB for atmospheric attenuationMCS Modulation FEC Rate Maximum Link Distance in mMCS Identifier

Modulation FEC Rate Maximum Link Distance in m2.16 GHz

4.32 GHz

8.64 GHz

12.96 GHz

17.28 GHz

25.92 GHz

51.84 GHz

69.12 GHz

0 BPSK 11/15 5343 3778 2671 2181 1889 1542 1091 9441 BPSK 14/15 3646 2578 1823 1488 1289 1052 744 6441 BPSK 14/15 3646 2578 1823 1488 1289 1052 744 6442 QPSK 11/15 3796 2684 1898 1550 1342 1096 775 6713 QPSK 14/15 2563 1812 1282 1046 906 740 523 4534 8-PSK 11/15 2157 1525 1078 880 762 623 440 3815 8 PSK 14/15 1725 1220 862 704 610 498 352 3055 8-PSK 14/15 1725 1220 862 704 610 498 352 3056 8-APSK 11/15 2157 1525 1078 880 762 623 440 3817 8-APSK 14/15 1729 1223 864 706 611 499 353 3068 16-QAM 11/15 1709 1209 855 698 604 493 349 3029 16 QAM 14/15 1152 814 576 470 407 332 235 2049 16-QAM 14/15 1152 814 576 470 407 332 235 20410 64-QAM 11/15 949 671 475 387 336 274 194 16811 64-QAM 14/15 581 411 291 237 205 168 119 103

Data rate > 50 Gbit/s

12 November 2018 Thomas Kürner, TU Braunschweig/GermanySlide 9

Data rate > 100 Gbit/sSource: doc. IEEE 802.15-17-0039-04-003d

Page 10: IEEE 802.15-18-0516-00-0thz Tutorial TAGthz · AI 1.15 @ WRC 2019 • WRC 2015 agreed in resolution 767: – to have an agenda item for WRC 2019 to consider identification of spectrum

doc.: IEEE 802.15-18-0516-00-0thz-Tutorial_TAGthz<month year>

STATUS IN REGULATION

12 November 2018 Thomas Kürner, TU Braunschweig/GermanySlide 10

Page 11: IEEE 802.15-18-0516-00-0thz Tutorial TAGthz · AI 1.15 @ WRC 2019 • WRC 2015 agreed in resolution 767: – to have an agenda item for WRC 2019 to consider identification of spectrum

doc.: IEEE 802.15-18-0516-00-0thz-Tutorial_TAGthz

St ti i t f R di R l tiStarting point for Radio Regulations: Outcome of WRC 2012

• 5.565 A number of bands in the frequency range 275-1 000 GHz are identified for use by administrations for passive service applications. The following specific frequency bands are identified for measurements by passive services:identified for measurements by passive services:

• – radio astronomy service: 275-323 GHz, 327-371 GHz, 388-424 GHz, 426-442 GHz, 453-510 GHz, 623-711 GHz, 795-909 GHz and 926-945 GHz;

• – Earth exploration-satellite service (passive) and space research service (passive): 275-286 GHz, 296-306 GHz, 313-356 GHz, 361-365 GHz, 369-392 GHz, 397-399 GHz, 409-411 GHz, 416-434 GHz, 439-467 GHz, 477-502 GHz, 523-527 GHz, 538-581 GHz, 611-630 GHz, 634-654 GHz,657-692 GHz, 713-718 GHz,729-733 GHz, 750-754 GHz, 771-776 GHz, 823-846 GHz, 850-854 GHz, 857-862 GHz, 866-882 GHz, 905-928 GHz, 951-956 GHz, 968-973 GHz and 985-990 GHz.

• The use of the range 275-1 000 GHz by the passive services does not preclude use of this range by active services.

• Administrations wishing to make frequencies in the 275-1 000 GHz range available forAdministrations wishing to make frequencies in the 275 1 000 GHz range available for active service applications are urged to take all practicable steps to protect these passive services from harmful interference until the date when the Table of Frequency Allocations is established in the above-mentioned 275-1 000 GHz frequency range.

• All frequencies in the range 1 000-3 000 GHz may be used by both active and passive

12 November 2018

All frequencies in the range 1 000-3 000 GHz may be used by both active and passive services. (WRC-12)

Page 12: IEEE 802.15-18-0516-00-0thz Tutorial TAGthz · AI 1.15 @ WRC 2019 • WRC 2015 agreed in resolution 767: – to have an agenda item for WRC 2019 to consider identification of spectrum

doc.: IEEE 802.15-18-0516-00-0thz-Tutorial_TAGthz

P ibl I t f S i t bPossible Interference Scenarios to be studied

Reflectionat rooftop

Nomadic Links Fixed LinksMultiple Interferers

S. Priebe et al. „Interference Investigations of Active Communications and Passive Earth Exploration Services in the THz Frequency Range“, IEEE Transactions on THz Science and Technology, vol. 2, no. 5, pp. 525-537, 2012

12 November 2018

Page 13: IEEE 802.15-18-0516-00-0thz Tutorial TAGthz · AI 1.15 @ WRC 2019 • WRC 2015 agreed in resolution 767: – to have an agenda item for WRC 2019 to consider identification of spectrum

doc.: IEEE 802.15-18-0516-00-0thz-Tutorial_TAGthz

C t t t f th t k fCurrent status of the preparatory work of AI 1.15 @ WRC 2019@

• WRC 2015 agreed in resolution 767: – to have an agenda item for WRC 2019 to consider identification of spectrum for

l d bil d fi d i i i h f 2 GH 4 0 GH hilland-mobile and fixed active services in the range of 275 GHz to 450 GHz while maintaining protection of the passive services identified in the existing footnote 5.565.

Current StatusCurrent Status– Regarding the new active services the reports ITU-R F.2416 and ITU-R M.2417

have been published. – The frequency bands of interest areThe frequency bands of interest are

• between 275 to 450 GHz for land mobile applications.• especially, 275-325 GHz and 380-445 GHz for fixed service applications

ITU-R WP 1A is conducting sharing studies and preliminary results are available– ITU-R WP 1A is conducting sharing studies and preliminary results are available.• For instances in the band 275 to 296 GHz coexistence with the passive

services seems to be possible. This provides a continues bandwidth of 44 GHz with the existing band from 252-275 GHz.

12 November 2018

g• Other bands are under consideration.

Page 14: IEEE 802.15-18-0516-00-0thz Tutorial TAGthz · AI 1.15 @ WRC 2019 • WRC 2015 agreed in resolution 767: – to have an agenda item for WRC 2019 to consider identification of spectrum

doc.: IEEE 802.15-18-0516-00-0thz-Tutorial_TAGthz<month year>

RECENT ACTIVITIES IN THEEU-RESEARCH PROGRAM HORIZON 2020

12 November 2018

HORIZON 2020Thomas Kürner, TU Braunschweig/GermanySlide 14

Page 15: IEEE 802.15-18-0516-00-0thz Tutorial TAGthz · AI 1.15 @ WRC 2019 • WRC 2015 agreed in resolution 767: – to have an agenda item for WRC 2019 to consider identification of spectrum

doc.: IEEE 802.15-18-0516-00-0thz-Tutorial_TAGthz

H2020 ICT 09 2017 Cl tH2020-ICT-09-2017-Cluster onNetworks Beyond 5Gy

Seven funded projects from the H2020 calls ICT-09-2017 and EUJ-02-2018 form an informal cluster:EUJ 02 2018 form an informal cluster:

• DREAM: D-band Radio solution Enabling up to 100 Gb/s reconfigurable Approach for Meshed beyond 5G network

• EPIC: Enabling Practical Wireless Tb/s Communications with Next Generation Channel C diCoding

• TERAPOD: Terahertz based Ultra High Bandwidth Wireless Access Networks• TERRANOVA: Terabit/s Wireless Connectivity by Terahertz Innovative Technologies to

deliver Optical Network Quality of Experience in Systems Beyond 5Gp y p y y• ULTRAWAVE: Ultra capacity wireless layer beyond 100 GHz based on millimeter wave

Traveling Wave Tubes• WORTECS: Wireless Optical/Radio Terabit Communications

Th R T H t d t d i l t ti lt hi h d t R t• ThoR: TeraHertz end-to-end wireless systems supporting ultra high data Rate applications

12 November 2018

Page 16: IEEE 802.15-18-0516-00-0thz Tutorial TAGthz · AI 1.15 @ WRC 2019 • WRC 2015 agreed in resolution 767: – to have an agenda item for WRC 2019 to consider identification of spectrum

doc.: IEEE 802.15-18-0516-00-0thz-Tutorial_TAGthzNovember 2018

Horizon 2020 Project TERAPOD

• Project Duration: September 2017 – August 2020

• Project Goals:– to investigate and demonstrate the feasibility of ultra high bandwidth

wireless access networks operating in the Terahertz band. – The project will focus on end to end demonstration of the THz wireless link

within a Data Centre Proof of Concept deployment, while also investigating other use cases applicable to beyond 5G Th j t k t b i TH i ti l l t i d t– The project seeks to bring THz communication a leap closer to industry uptake through leveraging recent advances in THz components, a thorough measurement and characterization study of components and devices, coupled with specification and validation of higher layer communicationcoupled with specification and validation of higher layer communication protocol specification.

• Web Page: www.terapod-project.eu

12 November 2018

g p p j

Thomas Kürner, TU Braunschweig/GermanySlide 16

Page 17: IEEE 802.15-18-0516-00-0thz Tutorial TAGthz · AI 1.15 @ WRC 2019 • WRC 2015 agreed in resolution 767: – to have an agenda item for WRC 2019 to consider identification of spectrum

doc.: IEEE 802.15-18-0516-00-0thz-Tutorial_TAGthzNovember 2018

Some first Results from TERAPOD

• 300 GHz channel measurements in the Research Data Center of Dell/EMC using a time-domain channel sounder (approx. 8 GHz ofDell/EMC using a time domain channel sounder (approx. 8 GHz ofbandwidth)

For more information see doc IEEE 802 15 18 0519 00 0thz

12 November 2018 Thomas Kürner, TU Braunschweig/GermanySlide 17

For more information see doc. IEEE 802.15-18-0519-00-0thz

Page 18: IEEE 802.15-18-0516-00-0thz Tutorial TAGthz · AI 1.15 @ WRC 2019 • WRC 2015 agreed in resolution 767: – to have an agenda item for WRC 2019 to consider identification of spectrum

doc.: IEEE 802.15-18-0516-00-0thz-Tutorial_TAGthzNovember 2018

Horizon 2020 EU-Japan Project ThoRP ti i t C t

• Project duration 1 7 2018-30 6 2020

Participants CountryCompaniesDeutsche Telekom AG Germany

NEC Corporation JapanProject duration 1.7.2018 30.6.2020, equally funded from

• Horizon 2020, the European Union’s Framework

NEC Corporation JapanSiklu Communication Ltd. IsraelVivid Components Ltd. UKHRCP JapanUnion s Framework

Programme for Research and Innovation, under grant agreement No. 814523 and

C JapaR&DFraunhofer IAF Germany

University of Lille / IEMN Laboratory Franceagreement No. 814523 and• the National Institute of

Information and Communications Technology

UniversitiesTU Braunschweig (Coordinator, EU) Germany

Chiba Institute of Technology JapanGif U i i JCommunications Technology

in Japan (NICT)

Web page: www thor project eu

Gifu University JapanUniversity of Stuttgart GermanyWaseda University (Coord., Japan) Japan

12 November 2018

Web page: www.thor-project.eu

Thomas Kürner, TU Braunschweig/GermanySlide 18

Page 19: IEEE 802.15-18-0516-00-0thz Tutorial TAGthz · AI 1.15 @ WRC 2019 • WRC 2015 agreed in resolution 767: – to have an agenda item for WRC 2019 to consider identification of spectrum

doc.: IEEE 802.15-18-0516-00-0thz-Tutorial_TAGthz<month year>

ThoR Concept

For more information see doc IEEE 802 15 18 0518 00 0thz

12 November 2018 Thomas Kürner, TU Braunschweig/GermanySlide 19

For more information see doc. IEEE 802.15-18-0518-00-0thz

Page 20: IEEE 802.15-18-0516-00-0thz Tutorial TAGthz · AI 1.15 @ WRC 2019 • WRC 2015 agreed in resolution 767: – to have an agenda item for WRC 2019 to consider identification of spectrum

doc.: IEEE 802.15-18-0516-00-0thz-Tutorial_TAGthzNovember 2018

In the following presentations …

…we will provide a more detailed overview on threeresearch activties covering:research activties covering:

CMOS for THz– CMOS for THz– Forward Error Correction for the Tbps age

Seamless integration of fibre ith TH ireless– Seamless integration of fibre with THz wireless

12 November 2018 Thomas Kürner, TU Braunschweig/GermanySlide 20

Page 21: IEEE 802.15-18-0516-00-0thz Tutorial TAGthz · AI 1.15 @ WRC 2019 • WRC 2015 agreed in resolution 767: – to have an agenda item for WRC 2019 to consider identification of spectrum

doc.: IEEE 802.15-18-0516-00-0thz-Tutorial_TAGthzNovember 2018

Silicon CMOS Transceiver forSilicon CMOS Transceiver for Terahertz Wireless Communication

Akifumi Kasamatsu#1, Shinsuke Hara#1, Kyoya Takano#2, Kosuke K t #2 R ibi D #2 S L #2 I i W t b #1 N ihikKatayama#2, Ruibing Dong#2, Sangyeop Lee#2, Issei Watanabe#1, Norihiko

Sekine#1, Junji Sato#3, Takeshi Yoshida#2, Shuhei Amakawa#2, Minoru Fujishima#2

#1 National Institute of Information and Communications Technology#2 Hiroshima University

#3 Panasonic

12 November 2018 Kasamatsu, NICTSlide 21

#3 Panasonic

Page 22: IEEE 802.15-18-0516-00-0thz Tutorial TAGthz · AI 1.15 @ WRC 2019 • WRC 2015 agreed in resolution 767: – to have an agenda item for WRC 2019 to consider identification of spectrum

doc.: IEEE 802.15-18-0516-00-0thz-Tutorial_TAGthz

Ch ll f 300 GH CMOS t iNovember 2018

Challenge of 300-GHz CMOS transceiver PA- and LNA-less architecture because of low fmax

High data rate with multi-level signals (QPSK, QAMs)for high speed wireless communication

Developed 300-GHz transceivers in 40-nm Si CMOS process with fmax≃ 280GHz

in collaboration with Hiroshima Univ Panasonic and NICT

LOIF1IF P S litt

IF Mixer Rat-race Balun RFRF (~300GHz)(~300GHz)Square Mixer

IF IFSplitter

in collaboration with Hiroshima Univ., Panasonic, and NICT.

LOIF1 Power Splitter

Cubic Mixer Double-rat-race

Rat-race Balun

Quasi SSB Mixer

x2

RF

(~30

0GH

z)

FundamentalD Mi

Combiner

RFPower Combiner

300GHz Si CMOS transmitter[1]

Tripler

Quasi-SSB Mixer

IFIF (~10GHz)(~10GHz)

LOLO(~50GHz)(~50GHz)

300GHz Si CMOS transmitter[2] 300GHz Si CMOS receiver[3]

x3LO1/6

(~50GHz)

Down-MixerLO Multiplier

12 November 2018 Kasamatsu, NICTSlide 22

[1] K. Katayama, et al.,ISSCC2016, pp. 342–343, Feb. 2016. [2] K. Takano, et al., ISSCC2017, pp. 308–309, Feb. 2017.[3] S. Hara, et al., IMS2017, pp. 1-4, June 2017.

Page 23: IEEE 802.15-18-0516-00-0thz Tutorial TAGthz · AI 1.15 @ WRC 2019 • WRC 2015 agreed in resolution 767: – to have an agenda item for WRC 2019 to consider identification of spectrum

doc.: IEEE 802.15-18-0516-00-0thz-Tutorial_TAGthz

K t h l f CMOS t ittNovember 2018

Key technology for CMOS transmitter Gate-pumped Mixer (Square-Mixer)

S Mi i i ll d bl Square-Mixer is essentially a doubler. IF2 and LO signals are injected into the gate of the FET mixer.

Up-converted IF2 signal using LO is generated.R l ti l hi h t t d li it > RF i l

LO l k lQuasi SSB Mixer (LO + IF )2 (LO IF )2 = 4LO IF

Relatively high output power, good linearity -> RF signal Image suppression and LO leak cancellation systems

Square-MixerLO leak cancelerQuasi-SSB Mixer

IFRF

IF2

(LO + IF2)2 − (LO − IF2)2 = 4LO·IF2

RFLO leak cancellation

Image suppression

IF

LO LOIF2 IF2

IF

fmax: ~280GHz ~300GHz~150GHzLO leakImage LO

f2LO(~150GHz) (~300GHz)

Suppressed unwanted signals

12 November 2018 Kasamatsu, NICTSlide 23[2] K. Takano, et al., ISSCC2017, pp. 308–309, Feb. 2017.

LO leak cancellation

Image suppression input output

( 150GHz) ( 300GHz)

Page 24: IEEE 802.15-18-0516-00-0thz Tutorial TAGthz · AI 1.15 @ WRC 2019 • WRC 2015 agreed in resolution 767: – to have an agenda item for WRC 2019 to consider identification of spectrum

doc.: IEEE 802.15-18-0516-00-0thz-Tutorial_TAGthz

300 GH CMOS t ittNovember 2018

300-GHz CMOS transmitter Schematic, chip micrograph, and measured performance

of the 300 GHz CMOS transmitterof the 300-GHz CMOS transmitter

RFRF (~300GHz)(~300GHz)

2760μm

Rat-race Balun

Square MixerLO leak LO leak cancellationcancellation

μm

Double-rat-race

Rat race Balun

Quasi-SSB Mixer

1880μ

TriplerIFIF (~10GHz)(~10GHz)

LOLO(~50GHz)(~50GHz)Image Image

suppressionsuppression

Pout: –5.5 dBmRF Freq.: 289 - 311 GHz3 dB BW 22 GH

12 November 2018 Kasamatsu, NICTSlide 24[2] K. Takano, et al., ISSCC2017, pp. 308–309, Feb. 2017.

3-dB BW: 22 GHz

Page 25: IEEE 802.15-18-0516-00-0thz Tutorial TAGthz · AI 1.15 @ WRC 2019 • WRC 2015 agreed in resolution 767: – to have an agenda item for WRC 2019 to consider identification of spectrum

doc.: IEEE 802.15-18-0516-00-0thz-Tutorial_TAGthz

D t ti f T hiNovember 2018

Demonstration of Tx chip

Achieved a highest data rate of 105 Gbit/s with 32QAM

12 November 2018 Kasamatsu, NICTSlide 25[2] K. Takano, et al., ISSCC2017, pp. 308–309, Feb. 2017.

105 Gbit/s with 32QAM

Page 26: IEEE 802.15-18-0516-00-0thz Tutorial TAGthz · AI 1.15 @ WRC 2019 • WRC 2015 agreed in resolution 767: – to have an agenda item for WRC 2019 to consider identification of spectrum

doc.: IEEE 802.15-18-0516-00-0thz-Tutorial_TAGthz

300 GH CMOS iNovember 2018

300-GHz CMOS receiver Schematic, chip micrograph, and measured performance

f th 300 GH CMOS i

Double-rat-race splitter

IF IF

IF IF

of the 300-GHz CMOS receiver 2100 μm

x6~300GHz

x2 x2

IF IF

RFLORat-racebalun

GH

z)

Rat-racebalun

0μm

x6

50GH

~150GHz ~300GHzx2 x2 Rat-racebalun

LOx3 x3

x2

RF

(~30

0

Fundamental Mixer

150

~50GHz Double balanced fundamental-mixerLO1/6

LO multiplier chain

R

LO1/6

(~ 50 GHz)

Double rat-race

CG peak: –19.5 dBNoise figure: 27 dB3 dB BW 26 5 GH

(Generating high LO power)

12 November 2018 Kasamatsu, NICTSlide 26

3-dB BW: 26.5 GHz[3] S. Hara, et al., IMS2017, pp. 1-4, June 2017.

Page 27: IEEE 802.15-18-0516-00-0thz Tutorial TAGthz · AI 1.15 @ WRC 2019 • WRC 2015 agreed in resolution 767: – to have an agenda item for WRC 2019 to consider identification of spectrum

doc.: IEEE 802.15-18-0516-00-0thz-Tutorial_TAGthz

Wi l f ith TX d RX hiNovember 2018

Wireless performance with TX and RX chipsQPSK 16-QAM

LO1/6

stel

latio

n ua

lized

)RX chipRF probe

To TX

LO

300-GHz RX

Con

s

(Equ

EVM 19 0%rms 12 2%rms

IF

V t i lRFRF probes

300-GHz RXTest chip[8]

EVM 19.0%rms 12.2%rmsBER 7.1 x 10−8 9.3 x 10−5

Sym. 14 Gbaud 8 Gbaud

Vector signal analyzer300-GHz TX

Test chip[7]

rate14 Gbaud 8 Gbaud

Data t

28 Gbit/s 32 Gbit/s

Arbitrary waveformgenerator

LO1/6

IF rateAchieved a wireless data rate of 32 Gbit/s⇒ For practical use, CMOS TX and RX chip

must be packaged and modularized

IF

12 November 2018 Kasamatsu, NICTSlide 27[2] K. Takano, et al., ISSCC2017, pp.308-309, Feb. 2017. [3] S. Hara, et al., IMS2017, pp. 1-4, June 2017.

must be packaged and modularized.

Page 28: IEEE 802.15-18-0516-00-0thz Tutorial TAGthz · AI 1.15 @ WRC 2019 • WRC 2015 agreed in resolution 767: – to have an agenda item for WRC 2019 to consider identification of spectrum

doc.: IEEE 802.15-18-0516-00-0thz-Tutorial_TAGthz

300 GH CMOS TX d RX d lNovember 2018

300-GHz CMOS TX and RX modulesTo GSG pads

(on CMOS chip)GCPW-to-WG transition

CMOS-chip-to-waveguide transition integrated into a low-cost multilayered

WR-3.4 WG flangeL3

L2Au stud bumps(flip chip bonding)

WG transitionL1

integrated into a low cost multilayered glass epoxy PCB

Vertical hollow(d h λ/4)

PC

B

IF

To coaxial connector L4

L3(depth: λ/4)

Back short

mul

tilay

er P

LO1/6

IFIF

CMOS chip (back face)GCPW

GCPW-to-WG transition

L2

L1Close-up view of WG transition

DC line

ss e

poxy

m LO (back face)GCPW

L4

L3L2

LO

IFIF

LO

DC line

IF

IF

Gla

s

TX moduleTX module

LO

DC line RX moduleRX module

LO

12 November 2018 Kasamatsu, NICTSlide 28

Structure of the module PCB[4] K. Takano, et al., RWS2018, pp. 154–156, Jan. 2018. [5] S. Hara, et al., EuMW2018, Sep. 2018.

Page 29: IEEE 802.15-18-0516-00-0thz Tutorial TAGthz · AI 1.15 @ WRC 2019 • WRC 2015 agreed in resolution 767: – to have an agenda item for WRC 2019 to consider identification of spectrum

doc.: IEEE 802.15-18-0516-00-0thz-Tutorial_TAGthz

P f f TX d lNovember 2018

Performance of TX moduleBER0

WR-3.4 horn antennas (24dBi)LO1/6 : 48.5GHz, 6 dBmIF: 1 GHz

203040

[%]

b d

2G

4G8G16G 12G= 10-3

= 10-4

BER

-20-10

0

r [dB

m]

RFTX moduleTX module Commercial

RF: 292 GHz

01020

EV

M

QPSK

1Gbaud

-40-3020

ut p

owe

LO leak

IF 2

odu eodu e Commercial RX

Guide rail

15

20

[%] = 10-3

= 10-4

1Gbaud2G4G8G12GBER

-60-50

20 15 10 5 0 5

Out

pu IF2

5

10

EV

M [ = 10

16QAMPout : 13 5 dBm

-20 -15 -10 -5 0 5IF power [dBm]

00 20 40 60 80 100

Distance [cm]

Achieved a wireless data rate of 48 Gbit/s with 16 QAM

Pout : –13.5 dBm3-dB BW: 10 GHz

12 November 2018 Kasamatsu, NICTSlide 29

Achieved a wireless data rate of 48 Gbit/s with 16-QAM[4] K. Takano, et al., RWS2018, pp. 154–156, Jan. 2018.

Page 30: IEEE 802.15-18-0516-00-0thz Tutorial TAGthz · AI 1.15 @ WRC 2019 • WRC 2015 agreed in resolution 767: – to have an agenda item for WRC 2019 to consider identification of spectrum

doc.: IEEE 802.15-18-0516-00-0thz-Tutorial_TAGthz

Performance of RX module and wireless linkNovember 2018

Performance of RX module and wireless link2G3G4G6Gs]

40BER:

WRWR--3.4 horn3.4 hornantennas (24dBi)antennas (24dBi)-10

RF: -15 dBmLO1/6 : 48.3GHz, 2 dBm(LO: 289 8GHz)

1Gbaud

2G4G6G8G

VM

[%rm

s

20

30 10-3

10-4

TX moduleTX module

RX moduleRX module-30

-20

RX module

Bare chip

CG

[dB

] (LO: 289.8GHz)

QPSK

EV

10

0 0 20 40 60 80 100Di t [ ]

TX moduleTX moduleGuide railGuide rail-40

RX module

4050

RX module [dB

]

2G4G

5G6G 3G

Distance [cm]

15

20

ms]

BER:10-3

10-410203040

Bare chip

USBLSBoise

figu

re

CG 23 33 16QAM

1Gbaud

5

10

EVM

[%rm 10

0USBLSB LON

o

RF frequency [GHz]300260 270 280 290 310 320

CG peak: 23.7 dB, NF: 33 dB3-dB BW : 18.4 GHz

16QAM

Distance [cm]0 10 20 30 40 7050 600

A hi d i l d t t f 20 Gbit/ ith 16 QAM

12 November 2018 Kasamatsu, NICTSlide 30[4] K. Takano, et al., RWS2018, pp. 154–156, Jan. 2018. [5] S. Hara, et al., EuMW2018, Sep. 2018.

Achieved a wireless data rate of 20 Gbit/s with 16-QAM

Page 31: IEEE 802.15-18-0516-00-0thz Tutorial TAGthz · AI 1.15 @ WRC 2019 • WRC 2015 agreed in resolution 767: – to have an agenda item for WRC 2019 to consider identification of spectrum

doc.: IEEE 802.15-18-0516-00-0thz-Tutorial_TAGthzNovember 2018

Towards Ultra High Throughput FECTowards Ultra-High Throughput FEC Design: EPIC Project

Onur SahinInterDigital Europe Ltd.

htt // i h2020 /https://epic-h2020.eu/

12 November 2018 Onur Sahin, InterDigital Europe Ltd.Slide 31

Page 32: IEEE 802.15-18-0516-00-0thz Tutorial TAGthz · AI 1.15 @ WRC 2019 • WRC 2015 agreed in resolution 767: – to have an agenda item for WRC 2019 to consider identification of spectrum

doc.: IEEE 802.15-18-0516-00-0thz-Tutorial_TAGthz

E di 100 Gb/ B i i Wi lNovember 2018

Exceeding 100 Gb/s Barrier in Wireless Communications

Huge available spectrum potential above 250 GHz to achieve 100 Gb/s and higher throughputs.g g p

− 252-325 GHz bands already considered under 802.15.3d.− Potential bandwidth allocations: 275-450 GHz in WRC 2019 (AI 1.15).

Substantial progress in device-level and RF front-end. − THz photonics based RF front-end solutions demonstrate ~100 Gb/s ([1]). − 300 GHz Si CMOS transceiver solutions with >100 Gb/s transmitters ([2]).

Novel baseband algorithms and architectures are necessary to enable ultra-high throughputs in THz domain for a wide range of g g p gpractical use-cases.

– FEC is the most complex and computationaly intense component in the baseband chain A key enabler and challenge for ultra-high

12 November 2018

throughput/THz communications.

Onur Sahin, InterDigital Europe Ltd.Slide 32

Page 33: IEEE 802.15-18-0516-00-0thz Tutorial TAGthz · AI 1.15 @ WRC 2019 • WRC 2015 agreed in resolution 767: – to have an agenda item for WRC 2019 to consider identification of spectrum

doc.: IEEE 802.15-18-0516-00-0thz-Tutorial_TAGthz

St t f th A t FEC f Hi hNovember 2018

State-of-the-Art FEC for High Throughput Wireless Systemsg p y

In existing wireless standards, IEEE 802.11ad*, IEEE 802.15.3d, and 3GPP 5G NR present FEC classes with highest throughputand 3GPP 5G NR present FEC classes with highest throughput requirements.

IEEE 802.11ad (Target peak TP: 7 Gb/s)− Rate (1/2, 5/8, 3/4, 13/16) LDPC with code-word length 672

IEEE 802.15.3d (Target peak TP: 100 Gb/s)− Rate 14/15 LDPC (1440,1344)− Rate 11/15 LDPC (1440,1056)

3GPP 5G NR (Target peak TP: 20 Gb/s)− Flexible QC-LDPC; 20 Gb/s with rate 8/9 is supported

12 November 2018 Onur Sahin, InterDigital Europe Ltd.Slide 33

* 802.11ay amendment (Draft 3.0 stage) targets >20 Gb/s, in addition includes Rate (1/2, 5/8, 3/4, 13/16) LDPC-1344. The decoder architectures are based on 11ad LDPC-672 codes.

Page 34: IEEE 802.15-18-0516-00-0thz Tutorial TAGthz · AI 1.15 @ WRC 2019 • WRC 2015 agreed in resolution 767: – to have an agenda item for WRC 2019 to consider identification of spectrum

doc.: IEEE 802.15-18-0516-00-0thz-Tutorial_TAGthz

St t f th A t 802 11 d FECNovember 2018

State-of-the-Art 802.11ad FEC Implementations: 65/28 nm Silicon [3]p [ ]

Code Ref. Codelength

Ratesupport

Process

nm

Areamm2

FreqMHz

TPGb/s

Area eff.Gb/s/mm2

Energyeff.

pJ/bit

Power dens.

W/mm2nm pJ/bit W/mm

LDPC [4] 672 13/16 65 0.16 500 5.6 35 17.65 0.62

LDPC [5] 672 802.11ad 28 0.78 470 18 23.6 18 0.41[ ]

LDPC [6]9 iter 672 13/16 28 2.8 220 160 57.1 6 0.32

The referenced FEC architecture designs, and several others in the literature, comfortably achieve 802.11ad implementation requirements (throughput, power density, energy efficiency).

Particular designs (e.g. [6]) achieve 160 Gb/s throughput, yet for fixed code-rates and code block-lengths.

12 November 2018

Each design has a different communication performance (BERvsSNR). Onur Sahin, InterDigital Europe Ltd.Slide 34

Page 35: IEEE 802.15-18-0516-00-0thz Tutorial TAGthz · AI 1.15 @ WRC 2019 • WRC 2015 agreed in resolution 767: – to have an agenda item for WRC 2019 to consider identification of spectrum

doc.: IEEE 802.15-18-0516-00-0thz-Tutorial_TAGthz

St t f th A t 802 11 d FECNovember 2018

State-of-the-Art 802.11ad FEC Implementations: 7 nm Projection [3]p j [ ]

Code Ref. Codelength

Ratesupport

Process

nm

Areamm2

FreqMHz

TPGb/s

Area eff.Gb/s/mm2

Energyeff.

pJ/bit

Power dens.

W/mm2nm pJ/bit W/mm

LDPC [4] 672 13/16 7 0.003 29231000

3211

111133832

1.91.9

21.17.2

LDPC [5] 672 802.11ad 7 0.07 1410 54 830 2.24 3.8LDPC [5] 672 802.11ad 7 0.07 1000 39 600 2.24 2.7

LDPC[6]

9 iter4 iter

672 13/16 7 0.20.1

660.0 480480

20574100

1.50.6

3.13.1

With 7nm nodes, substantial increase in area efficiency is anticipated. Multiple decoder instances of [4], [5], and a few decoder instances in [6]

4 iter 0.1 480 4100 0.6 3.1

p [ ] [ ] [ ]could well-exceed 100 Gb/s throughputs and approach 1 Tb/s.

However, significant increase in power density and energy efficiency are observed.

12 November 2018 Onur Sahin, InterDigital Europe Ltd.Slide 35

Page 36: IEEE 802.15-18-0516-00-0thz Tutorial TAGthz · AI 1.15 @ WRC 2019 • WRC 2015 agreed in resolution 767: – to have an agenda item for WRC 2019 to consider identification of spectrum

doc.: IEEE 802.15-18-0516-00-0thz-Tutorial_TAGthz

Ob ti S A Hi h th h tNovember 2018

Observations on SoA High-throughput FEC Implementation Studiesp

SoA implementation studies of 802.11ad LDPC codes demonstrate significant performance gaps in achieving practicaldemonstrate significant performance gaps in achieving practical ultra-high throughputs (100 Gb/sTb/s) even when taking 7nm performance scaling into account.

Silicon technology evolution to 7nm is expected to provide− Silicon technology evolution to 7nm is expected to provide sufficient area efficiency gain.

− Power density will emerge as a binding constraint, with an initial estimate of 10x 100x performance gap between the practicalinitial estimate of 10x-100x performance gap between the practical requirements and SoA FEC in 7nm.

− Energy efficiency will also be another constraint with id bl fconsiderable performance gap.

− The clock frequency feasible value of 1 GHz impose additional constraints on ultra-high throughputs – extreme parallel and

ll d hit t d t

12 November 2018

unrolled architectures are mandatory.

Onur Sahin, InterDigital Europe Ltd.Slide 36

Page 37: IEEE 802.15-18-0516-00-0thz Tutorial TAGthz · AI 1.15 @ WRC 2019 • WRC 2015 agreed in resolution 767: – to have an agenda item for WRC 2019 to consider identification of spectrum

doc.: IEEE 802.15-18-0516-00-0thz-Tutorial_TAGthz

P ti l Tb/ FEC I l t ti KPINovember 2018

Practical Tb/s FEC Implementation KPI Bounds – EPIC Projectj

New generation of FEC technology to enable ultra-high throughput (Tb/s) wireless communications in 7nm silicon.(Tb/s) wireless communications in 7nm silicon.

EPIC FEC KPI bounds

Area limit 10 mm²

Practical FEC IP area constraint on a SoC: 10 mm2Area limit 10 mm

Area efficiency limit 100 Gb/s/ mm²Energy efficiency limit ~1 pJ/bit

10 mm FEC IP power budget

to avoid heat removal issues: ~1 W

FEC decoder

Satisfy stringent communications performance (BER 10-6 to 10-12)

Power density limit 0.1 W/mm² FEC decoder

throughput: 1 Tb/s

y g p ( )and flexibility requirements (in terms of e.g. code rates, block length)

Focus on: Turbo Codes LDPC Codes and Polar Codes

12 November 2018

Focus on: Turbo Codes, LDPC Codes, and Polar Codes.

Onur Sahin, InterDigital Europe Ltd.Slide 37

Page 38: IEEE 802.15-18-0516-00-0thz Tutorial TAGthz · AI 1.15 @ WRC 2019 • WRC 2015 agreed in resolution 767: – to have an agenda item for WRC 2019 to consider identification of spectrum

doc.: IEEE 802.15-18-0516-00-0thz-Tutorial_TAGthz

Wh W T d i EPIC P j tNovember 2018

Where We are Today in EPIC Project towards 1 Tb/s [7][ ]

28nm low Vt FDSOI Technology, worst case PVT, after Place & Route

12 November 2018 Onur Sahin, InterDigital Europe Ltd.Slide 38

Page 39: IEEE 802.15-18-0516-00-0thz Tutorial TAGthz · AI 1.15 @ WRC 2019 • WRC 2015 agreed in resolution 767: – to have an agenda item for WRC 2019 to consider identification of spectrum

doc.: IEEE 802.15-18-0516-00-0thz-Tutorial_TAGthz

Ch ll f Tb/ Th h tNovember 2018

Challenges for Tb/s Throughput Decoders

Architectural approach “Unrolling” of iterations (MAP, Turbo Code, LDPC belief propagation).Unrolling of iterations (MAP, Turbo Code, LDPC belief propagation). “Flattening” of Polar Factor Tree traversal (SC algorithm). Heavy pipelining and spatial parallelism.

Good news Throughputs beyond 100 Gbit/s are feasible for all three code classes.

B dBad news Limited to small block sizes (all three codes) and small number of iterations

(Turbo, LDPC) degrades the communications performance. Suffers from limited flexibility in block lengths (all three codes), varying

number of iterations (Turbo, LDPC) and code rate flexibility (LDPC, Polar). Pipelining increases the latency.

12 November 2018

p g y Power density in the order of 1 W/mm2 is far too high for air-cooled package.

Onur Sahin, InterDigital Europe Ltd.Slide 39

Page 40: IEEE 802.15-18-0516-00-0thz Tutorial TAGthz · AI 1.15 @ WRC 2019 • WRC 2015 agreed in resolution 767: – to have an agenda item for WRC 2019 to consider identification of spectrum

doc.: IEEE 802.15-18-0516-00-0thz-Tutorial_TAGthz

Ob ti f Tb/ Th h tNovember 2018

Observations for Tb/s Throughput Decoders

Comparison related to implementation Efficiency LDPC and Polar code decoder outperform Turbo-Code decoder.LDPC and Polar code decoder outperform Turbo Code decoder. LDPC and Polar code decoder have similar implementation efficiencies.

C i ti f tt !Communications performance matters! Depends on code, block length, code rate and decoding algorithm. Code impacts decoder complexity; e.g. position of frozen bits for Polar

code decoder, structure of H matrix for LDPC code decoding.

A comparison based only on communication performance makes just as A comparison based only on communication performance makes just as little sense as a comparison only on implementation level.

Communication and implementation performance have to be jointly considered

12 November 2018

considered.

Onur Sahin, InterDigital Europe Ltd.Slide 40

Page 41: IEEE 802.15-18-0516-00-0thz Tutorial TAGthz · AI 1.15 @ WRC 2019 • WRC 2015 agreed in resolution 767: – to have an agenda item for WRC 2019 to consider identification of spectrum

doc.: IEEE 802.15-18-0516-00-0thz-Tutorial_TAGthzNovember 2018

Design Trade-Offs for Efficient Design

Vdd downscaling of high throughput decoders Decreases throughput but largely improves energy efficiency.g y gy y

Decrease decoder parallelism: E.g. P ≤ 1 for LDPC belief propagation algorithm Decreases throughput but improves flexibilityalgorithm Decreases throughput but improves flexibility.

More complex decoding algorithms: E.g. SCL for Polar code decoding Improves communications performance but decreases throughput areaImproves communications performance, but decreases throughput, area and energy efficiency.

Hybrid decoders and concatenated codes: Combination of high throughput and high performance decoders, e.g. Majority-Logic and successive cancellation in Polar codes, inner and outer codes.

12 November 2018 Onur Sahin, InterDigital Europe Ltd.Slide 41

Page 42: IEEE 802.15-18-0516-00-0thz Tutorial TAGthz · AI 1.15 @ WRC 2019 • WRC 2015 agreed in resolution 767: – to have an agenda item for WRC 2019 to consider identification of spectrum

doc.: IEEE 802.15-18-0516-00-0thz-Tutorial_TAGthz

C i ti P fNovember 2018

Communications Performance Comparison: LDPC vs Polar Codesp

FEC classes evaluated: 802.15.3d LDPC: Length-1440,802.15.3d LDPC: Length 1440,

Rate=11/15. Polar codes: Length(L) = 2048,

4096 Rate=11/15 List-size=1 24096, Rate 11/15. List size 1,2 (CRC=8bits). Density (D) evolution based code design.

Observation:Observation: Polar code L=4096, List-size=1 and

Polar code L=2048, List-size=2 are able to compete with LDPC codes atable to compete with LDPC codes at SNRs greater than 6dB.

LDPC code experiences degraded performance at high SNRs (>6dB) a

Modulation: QPSKAWGN channel (BH/FH use case

12 November 2018

performance at high SNRs (>6dB), a critical range for THz use-cases.

Onur Sahin, InterDigital Europe Ltd.Slide 42

AWGN channel (BH/FH use-case in 802.15.3d study)

Page 43: IEEE 802.15-18-0516-00-0thz Tutorial TAGthz · AI 1.15 @ WRC 2019 • WRC 2015 agreed in resolution 767: – to have an agenda item for WRC 2019 to consider identification of spectrum

doc.: IEEE 802.15-18-0516-00-0thz-Tutorial_TAGthzNovember 2018

Conclusion

New baseband and FEC solutions are necessary to materialize practical ultra-high throughput (>100 Gb/s) THz communications. g g ( )

Progress made in 100 Gb/s1 Tb/s LDPC and Polar code implementations within THz use-cases practicality constraints. Challenges remain including relatively small block lengths number of Challenges remain including relatively small block lengths, number of

iterations (LDPC and Turbo), and low code flexibility. Power density is a key issue in ultra-high throughput THz!

A joint study of the two domains, which is often done independently, is mandatory for ultra-high throughput THz communications: New and improved code design with better communications performance FEC architecture design with THz implementation requirements

The standard 802.15.3d codes lack a detailed implementation study in the literature A necessary next step to explore their potentials

12 November 2018

the literature. A necessary next step to explore their potentials.

Onur Sahin, InterDigital Europe Ltd.Slide 43

Page 44: IEEE 802.15-18-0516-00-0thz Tutorial TAGthz · AI 1.15 @ WRC 2019 • WRC 2015 agreed in resolution 767: – to have an agenda item for WRC 2019 to consider identification of spectrum

doc.: IEEE 802.15-18-0516-00-0thz-Tutorial_TAGthzNovember 2018

EPIC Grant Agreement No. 760150EPIC Grant Agreement No. 760150

“The EPIC project has received funding from the European Union’s Horizon 2020 research andEuropean Union s Horizon 2020 research and

innovation programme under grant agreement No 760150.”

If you need further information, please contact the coordinator:TECHNIKON Forschungs- und Planungsgesellschaft mbH

Burgplatz 3a, 9500 Villach, AUSTRIATel: +43 4242 233 55 Fax: +43 4242 233 55 77

E Mail: coordination@epic h2020 euE-Mail: [email protected]

The information in this document is provided “as is”, and no guarantee or warranty is given that the information is fit for any particular purpose. The content of this document reflects only the author`s view – the European Commission is not responsible

for any use that may be made of the information it contains The users use the information at their sole risk and liability

12 November 2018 Onur Sahin, InterDigital Europe Ltd.Slide 44

for any use that may be made of the information it contains. The users use the information at their sole risk and liability.

Page 45: IEEE 802.15-18-0516-00-0thz Tutorial TAGthz · AI 1.15 @ WRC 2019 • WRC 2015 agreed in resolution 767: – to have an agenda item for WRC 2019 to consider identification of spectrum

doc.: IEEE 802.15-18-0516-00-0thz-Tutorial_TAGthzNovember 2018

REFERENCES

• [1] Koenig, S., et al. "Wireless sub-THz communication system with high data rate." Nature Photonics 7.12 (2013): 977.[2] K T k t l ISSCC2017 308 309 F b 2017• [2] K. Takano, et al., ISSCC2017, pp. 308–309, Feb. 2017.

• [3] O. Sahin, “A Preliminary 7nm implementation and communication performance study of SoA FEC classes for Tbps throughputs”, IEEE 802.15 THz IG contribution, Warsaw, Poland, May 7, 2018.

• [4] M. Li, et al., “An area and energy efficient half row-paralleled layer LDPC decoder for the 802.11ad standard,” in Proc. IEEE Workshop on Signal Processing Systems (SiPS’13), Taipei City, Oct. 2013, pp. 112–117.

• [5] M. Li, J. W. Weijers, V. Derudder, I. Vos, M. Rykunov, S. Dupont, P. Debacker, A.[5] M. Li, J. W. Weijers, V. Derudder, I. Vos, M. Rykunov, S. Dupont, P. Debacker, A. Dewilde, Y. Huang, L. V. der Perre, and W. V. Thillo, in Solid-State Circuits Conference (A-SSCC), 2015 IEEE Asian, 2015, pp. 1–5.

• [6] S. Scholl, S. Weithoffer, N. Wehn, “Advanced Iterative Channel Coding Schemes: When Shannon meets Moore” in 9th International Symposium on Turbo Codes and InformationShannon meets Moore , in 9 International Symposium on Turbo Codes and Information Processing, pp. 406-411, Invited Talk, 2016, Brest.

• [7] C. Kestel, M. Herrmann, N. Wehn, “When Channel Coding Hits the Implementation Wall”, to appear in the proceedings of International Symposium on Turbo Codes & Iterative Information Processing 2018 Hong Kong

12 November 2018

Information Processing 2018, Hong Kong.

Onur Sahin, InterDigital Europe Ltd.Slide 45

Page 46: IEEE 802.15-18-0516-00-0thz Tutorial TAGthz · AI 1.15 @ WRC 2019 • WRC 2015 agreed in resolution 767: – to have an agenda item for WRC 2019 to consider identification of spectrum

doc.: IEEE 802.15-18-0516-00-0thz-Tutorial_TAGthzNovember 2018

Integration of fiber optics/THzIntegration of fiber-optics/THz Technologies

Colja Schubert, Robert Elschner, Carlos Castro

Fraunhofer Heinrich-Hertz-InstituteTutorial THz Communications

November 2018

12 November 2018 Carlos Castro, Fraunhofer Heinrich Hertz InstituteSlide 46

Page 47: IEEE 802.15-18-0516-00-0thz Tutorial TAGthz · AI 1.15 @ WRC 2019 • WRC 2015 agreed in resolution 767: – to have an agenda item for WRC 2019 to consider identification of spectrum

doc.: IEEE 802.15-18-0516-00-0thz-Tutorial_TAGthzNovember 2018

IntroductionHigh bandwidth

Availability

THz

B <= 1 GHz B <= 10 GHz B <= 100 GHzy

300

• THz bandwidth is adequate to fit contemporary transpondersolutions 100/200 Gb/ssolutions 100/200 Gb/s

• Main question: how to interconnect both technologies

12 November 2018 Carlos Castro, Fraunhofer Heinrich Hertz InstituteSlide 47

Page 48: IEEE 802.15-18-0516-00-0thz Tutorial TAGthz · AI 1.15 @ WRC 2019 • WRC 2015 agreed in resolution 767: – to have an agenda item for WRC 2019 to consider identification of spectrum

doc.: IEEE 802.15-18-0516-00-0thz-Tutorial_TAGthzNovember 2018

Network scenarios

12 November 2018 Carlos Castro, Fraunhofer Heinrich Hertz InstituteSlide 48

Page 49: IEEE 802.15-18-0516-00-0thz Tutorial TAGthz · AI 1.15 @ WRC 2019 • WRC 2015 agreed in resolution 767: – to have an agenda item for WRC 2019 to consider identification of spectrum

doc.: IEEE 802.15-18-0516-00-0thz-Tutorial_TAGthzNovember 2018

System architectures• Indoor quasi-omnidirectional

P i t t P i t• Point-to-Point

• Point-to-MultipointPoint to Multipoint

12 November 2018 Carlos Castro, Fraunhofer Heinrich Hertz InstituteSlide 49

Page 50: IEEE 802.15-18-0516-00-0thz Tutorial TAGthz · AI 1.15 @ WRC 2019 • WRC 2015 agreed in resolution 767: – to have an agenda item for WRC 2019 to consider identification of spectrum

doc.: IEEE 802.15-18-0516-00-0thz-Tutorial_TAGthzNovember 2018

Point-to-point systems

• Stationary/static outdoor connections that require to cover longdistances and to support large data ratesdistances and to support large data rates

L2 switch L2 switchTHz Frontend THz Frontend

DSP

DSP

TxTxRxRx

Opto-electricalinterfaceOptical

SystemOpticalSystem

• Target: 1 Tb/s over up to 1 km wireless link (per connection)

12 November 2018 Carlos Castro, Fraunhofer Heinrich Hertz InstituteSlide 50

Page 51: IEEE 802.15-18-0516-00-0thz Tutorial TAGthz · AI 1.15 @ WRC 2019 • WRC 2015 agreed in resolution 767: – to have an agenda item for WRC 2019 to consider identification of spectrum

doc.: IEEE 802.15-18-0516-00-0thz-Tutorial_TAGthzNovember 2018

Transceivers

Aspect CFP CFP2 CFP8 QSFP28 QSFP-DD

W x L x H 82 x 145 x 14 41.5 x 106 x 12.4 40 x 102 x 9.5 18.4 x 72 x 8.5 18.35 x 58.26 x 8.5

PowerClass

8 W16 W

3 W6 W

4 W8 W

1.5 W2 W

1.5 W3.5 W

24 W32 W

9 W12 W15 W18 W

12 W16 W20 W24 W

2.5 W3.5 W4 W

4.5 W5 W

7.0 W8.0 W 10 W 12 W 14 W5 W 14 W

> 14 W

Electrical interface

148 pins10x10G / 4x25G

104 pins10x10G / 4x25G 8x25G / 8x50G

124 pins16x25G / 8x50G

4x100G

38 pins4x25G

76 pins 8x25G / 8x50G

Application C-band DCO100G Single

carrier for metro/long-haul

C-band ACO100G 200G

Reach: tens of

Reach: from tens of meters to

couple of kms

CWDM4: 4λ x 2km 100G LR: 10 km

SR: tens of metersE standard: 40 km

SR: tens of meters

Data center intra-connect

12 November 2018 Carlos Castro, Fraunhofer Heinrich Hertz InstituteSlide 51

meters to thousands of meters

Equipment interconnection

Page 52: IEEE 802.15-18-0516-00-0thz Tutorial TAGthz · AI 1.15 @ WRC 2019 • WRC 2015 agreed in resolution 767: – to have an agenda item for WRC 2019 to consider identification of spectrum

doc.: IEEE 802.15-18-0516-00-0thz-Tutorial_TAGthzNovember 2018

IM/DD systems

• IM/DD stands for ‚Intensity modulation/Direct detection‘ Information is encoded in different amplitude levels,

which are detected by a simple photodiode at Rx

• Advantages: cost-effective• Disadvantages: reach and data rateg

• Most common form-factors: SFP+, QSFP28, XFP, CFP2

12 November 2018 Carlos Castro, Fraunhofer Heinrich Hertz InstituteSlide 52

Page 53: IEEE 802.15-18-0516-00-0thz Tutorial TAGthz · AI 1.15 @ WRC 2019 • WRC 2015 agreed in resolution 767: – to have an agenda item for WRC 2019 to consider identification of spectrum

doc.: IEEE 802.15-18-0516-00-0thz-Tutorial_TAGthzNovember 2018

IM/DD system configuration

MUXDMUX

MUXDMUX

N xQSFP

N xQSFP

N xQSFP

N xQSFP

L2 switch L2 switchTHz Frontend THz FrontendOpticalSystem

OpticalSystem

• Multiple QSFP modules act as interfaces between optics andTHz. Media converter agreggates channels TDM/FDM• Media converter agreggates channels TDM/FDM

• Data rates: 10 Gb/s 200 Gbit/s per line

• Challenges: compliance of the media converter with the channelspecification with client-side interfaces

12 November 2018 Carlos Castro, Fraunhofer Heinrich Hertz InstituteSlide 53

Page 54: IEEE 802.15-18-0516-00-0thz Tutorial TAGthz · AI 1.15 @ WRC 2019 • WRC 2015 agreed in resolution 767: – to have an agenda item for WRC 2019 to consider identification of spectrum

doc.: IEEE 802.15-18-0516-00-0thz-Tutorial_TAGthzNovember 2018

Structure of an IM/DD transceiverElectrical signals

D i

Transmitter of an IM/DD transceiver

D t LData

Driveramplifier

Output TxLaser

Laser array

Data Laser p

... MUXTransimpedance

amplifier

Opticalinput

ElectricalSignal

PIN diode

input Signal

12 November 2018 Carlos Castro, Fraunhofer Heinrich Hertz InstituteSlide 54

i.e. QSFP28 SR4

Page 55: IEEE 802.15-18-0516-00-0thz Tutorial TAGthz · AI 1.15 @ WRC 2019 • WRC 2015 agreed in resolution 767: – to have an agenda item for WRC 2019 to consider identification of spectrum

doc.: IEEE 802.15-18-0516-00-0thz-Tutorial_TAGthzNovember 2018

Coherent transmission systems

• Coherent detection is a technique that involves encoding the• Coherent detection is a technique that involves encoding thedata both in the amplitude and phase of the optical signal

• Advantages: high spectral efficiency, high data rates, andsuperior performance

• Disadvantages: more expensive than IM/DD• Disadvantages: more expensive than IM/DD

• Form-factors that currently support coherent transmission areCFP/CFP2 (either DCO or ACO)

12 November 2018 Carlos Castro, Fraunhofer Heinrich Hertz InstituteSlide 55

Page 56: IEEE 802.15-18-0516-00-0thz Tutorial TAGthz · AI 1.15 @ WRC 2019 • WRC 2015 agreed in resolution 767: – to have an agenda item for WRC 2019 to consider identification of spectrum

doc.: IEEE 802.15-18-0516-00-0thz-Tutorial_TAGthzNovember 2018

Coherent system configurationD

SP

DSP

TxTxRxRxCFP2

ACOCFP2ACO

CFP2ACO

CFP2ACO

L2 switch L2 switchTHz Frontend THz Frontend

D DTxRx

OpticalSystem

OpticalSystem

ACOACOACO ACO

• Standard CFP2-ACO modules act as interfaces between opticaland electrical domainsTransparency of the THz link• Transparency of the THz link

• Data rates: 100 Gb/s 500 Gb/s per line

• Challenges: joint impairment mitigation phase noise, I/Q imbalances, SNR

12 November 2018 Carlos Castro, Fraunhofer Heinrich Hertz InstituteSlide 56

Page 57: IEEE 802.15-18-0516-00-0thz Tutorial TAGthz · AI 1.15 @ WRC 2019 • WRC 2015 agreed in resolution 767: – to have an agenda item for WRC 2019 to consider identification of spectrum

doc.: IEEE 802.15-18-0516-00-0thz-Tutorial_TAGthzNovember 2018

Structure of a coherent transceiverElectrical signals

MZM IXMZM QXMZM IY

VOA/SOA

PolMuxCombine the

Pol X Pol Y

MZM IYMZM QY

o uπ/2 phase shift

Localoscillator

90°

Pol X

Combine theoutputs of the PDs

IX90hybrid

90°

QX

IYSignalf

Data IQ Data IQ

90hybrid

Pol YQY

fromfiber

Mix signals

Output Tx

to determine amplitude and phase

i.e. CFP2-ACO

12 November 2018 Carlos Castro, Fraunhofer Heinrich Hertz InstituteSlide 57

p

Page 58: IEEE 802.15-18-0516-00-0thz Tutorial TAGthz · AI 1.15 @ WRC 2019 • WRC 2015 agreed in resolution 767: – to have an agenda item for WRC 2019 to consider identification of spectrum

doc.: IEEE 802.15-18-0516-00-0thz-Tutorial_TAGthzNovember 2018

Outlook

• Applications can be summarized in three large groups: indoorquasi-omnidirectional, point-to-multipoint, and point-to-pointquasi omnidirectional, point to multipoint, and point to point

• Interface between the optical domain and the THz elements iscritical for a seamless integration of these technologies in theexisting communication networks

• There are different approaches to construct an optical/THzsystem: IM/DD and coherent transmission

• Currently in the process of investigating THz transmission in combination with optical components

12 November 2018

p p

Carlos Castro, Fraunhofer Heinrich Hertz InstituteSlide 58

Page 59: IEEE 802.15-18-0516-00-0thz Tutorial TAGthz · AI 1.15 @ WRC 2019 • WRC 2015 agreed in resolution 767: – to have an agenda item for WRC 2019 to consider identification of spectrum

doc.: IEEE 802.15-18-0516-00-0thz-Tutorial_TAGthzNovember 2018

Conclusions and Outlook

Thomas Kürner

Technische Universität Braunschweig, Germany

12 November 2018 Thomas Kürner, TU Braunschweig/GermanySlide 59

Page 60: IEEE 802.15-18-0516-00-0thz Tutorial TAGthz · AI 1.15 @ WRC 2019 • WRC 2015 agreed in resolution 767: – to have an agenda item for WRC 2019 to consider identification of spectrum

doc.: IEEE 802.15-18-0516-00-0thz-Tutorial_TAGthzNovember 2018

Conclusions

• Frequency bands beyond 275 GHz offer a huge potential to implement wireless communication systems with data rates targeting of more than y g g100 Gbit/s

• A first standard @ IEEE 802 has been completed in 2017A first standard @ IEEE 802 has been completed in 2017

• Activities targeting allocation of spectrum beyond 275 GHz at WRC 2019 (AI 1 15)2019 (AI 1.15)

• A couple of H2020 projects are working towards THz Communications

• THz Communications is a real option for wireless networks beyond 5G!

12 November 2018 Thomas Kürner, TU Braunschweig/GermanySlide 60

Page 61: IEEE 802.15-18-0516-00-0thz Tutorial TAGthz · AI 1.15 @ WRC 2019 • WRC 2015 agreed in resolution 767: – to have an agenda item for WRC 2019 to consider identification of spectrum

doc.: IEEE 802.15-18-0516-00-0thz-Tutorial_TAGthzNovember 2018

Outlook

• The THz frequency range may provide variousoportunities for the development of further standardsoportunities for the development of further standardsor amendments targeting beyond 5G networks

• Examples are standards coveringExamples are standards covering– Applications requiring beamforming– Systems targeting data rates in Tbps range– Systems targeting data rates in Tbps range– Seamless integration of fibre with THz wireless

linkslinks

12 November 2018 Thomas Kürner, TU Braunschweig/GermanySlide 61