Hrvoje Štefančić Universitat de Barcelona IRGAC 2006, Barcelona July 14, 2006

30
What is in the black box of dark energy: variable cosmological parameters or multiple (interacting) components? Hrvoje Štefančić Universitat de Barcelona IRGAC 2006, Barcelona July 14, 2006

description

Hrvoje Štefančić Universitat de Barcelona IRGAC 2006, Barcelona July 14, 2006. What is in the black box of dark energy: variable cosmological parameters or multiple (interacting) components?. Accelerating universe. accelerating universe – observationally established - PowerPoint PPT Presentation

Transcript of Hrvoje Štefančić Universitat de Barcelona IRGAC 2006, Barcelona July 14, 2006

What is in the black box of dark energy: variable cosmological parameters or multiple (interacting) components?

Hrvoje ŠtefančićUniversitat de Barcelona

IRGAC 2006, BarcelonaJuly 14, 2006

Accelerating universe

● accelerating universe – observationally established

● mechanism behind the acceleration?● dark energy● alternative mechanisms: modified gravity,

braneworlds, ...● dark energy – single component which encodes

all our ignorance – efficient effective description - “a black box”

Cosmic coincidences

● w presently close to -1

● possible CC boundary

crossing at small redshift

● the ratio of dark energy density and matter energy density presently of order 1

● Variable cosmological parameters (phenomenology, RGE approaches, holographic DE, 4D effective description of the dynamics in higher dimensions)

● composite dark energy (multiple dark energy components)

observational features

proposed approaches

S. Hannestad, E. Mortsell, JCAP 0409 (2004) 001 A. Upadhye, M. Ishak, P.J. Steinhardt, Phys. Rev. D 72 (2005) 063501 H.K. Jassal, J.S. Bagla, T. Padmanabhan, astro-ph/0601389 G-B. Zhao, J-Q. Xia, B. Feng, X. Zhang, astro-ph/0603621

Formalism – variable cosmological parameters

● modification of GR at the level of Einstein equation

● Generalized Bianchi identity

● GR as a limit (for nonvariable parameters)

Cosmology – variable cosmological term picture

● FRW metrics – generalized Bianchi identity gives

1)

2)

3)

4)

variable CC energy density matter density (possibly interacting)

Variable cosmological term picture

● variability of parameters with redshift

● Hubble parameter

Cosmology – dark energy picture

● standard formalismdark energy

matter (noninteracting)

Matching of pictures

● Effective dark energy behaviour – matching of pictures

● general results J. Solà, H. Š., Mod. Phys. Lett. A 21 (2006) 479

+ +Generalized Bianchi identity

Matching of pictures (2)

● redshift dependence of the efective dark energy EOS

existence of z* close to z=0

Effective dark energy EOS

● slope of the effective dark energy

monotonously growing with redshift

phantom-like

quintessence-like

monotonously falling with redshift quintessence-like

phantom-like

Dark energy effective EOS

● noninteracting (conserved – standard scaling)

An example – RG motivated model

● Hubble parameter as a RG scale

J. Solà, H. Š., Phys. Lett. B 624 (2005) 147

Redshift dependence of the effective EOS (1)

Redshift dependence of the effective EOS (2)

Explanation of w(z) “coincidence”

● If it exists (to be hopefuly resolved by the upcoming observational data), the CC boundary transition – should happen at small redshift

– is allowed for a wide range of parameters (no special values need to be chosen)

● The parameter of effective dark energy EOS is at present close to w(0)=-1 (general result)

● w(z) may exibit substantial variation with the redshift

Composite dark energy

● matter component (noninteracting)

● two (interacting) dark energy components: (variable) cosmological term

+ additional dynamical component

J. Grande, J. Solà, H. Š., gr-qc/0604057

interaction

dynamics

Evolution of analytical (closed form) solution – simple expressions for =const

stopping of the expansion: H(z)=0

r has a maximum! How high is it?

the redshift dependence of (z)?

Parameter constraints

● nucleosynthesis bound:

● existence of the expansion stopping

● height of the maximum of r :

Parametric dependence

● dependence

Time evolution

● The peak of r(z) is less pronounced

Special cases and extensions

● The effect persists for . r is not bounded from below

● Variable cosmological term Lambda and variable Newton coupling G – similar results

J. Grande, J. Solà, H. Š., in preparation

Conclusions● effective dark energy picture for the cosmological models with

variable parameters

● general and simple analitic results - “RG like” relation between and

● counterintuitive behaviour of the effective dark energy density

● explanation of w(z) “coincidences”

● composite dark energy – solution of the r(z) coincidence problem

– when the expansion of the universe stops, r(z) is bounded from above

– r(z) may stay close to r(0) for a nonnegligible volume of the parametric space

Auxilliary slides

Observational evidence

● Dark energy EOS w(z) – various parametrizations used

– variability with the redshift

– w(z) close to -1

– indication of CC boundary crossing

S. Hannestad and E. Mortsell, JCAP 0409 (2004) 001

w(a)=w0 w1(aq + asq)/(aq w1+as

q w0)

Variable cosmological parameters – motivation (1)

● Phenomenological approaches

– “relaxation” of CC – solution of the CC problem

– Dirac – big number hypothesis – variable G

– cosmology with a decaying vacuum -K. Freese, F.C. Adams, J.A. Frieman, E. Mottola, Nucl. Phys. B 287 (1987) 797

– variable CC interacting with matter - J.M. Overduin, F.I. Cooperstock, Phys. Rev. D 58 (1998) 043506

– variable G and CC - A. Beesham, Nuovo Cim. B 96 (1986) 17

Variable cosmological parameters – motivation (2)

● RG cosmology– quantum field theory in curved space-time

● soft decoupling -importance of the most massive fields– scale dependent effective quantum gravity action

(Einstein-Hilbert truncation)● RG flow - IR fixed point hypothesis

I.L. Shapiro, J. Solà, Phys. Lett. B 475 (2000) 236 I.L. Shapiro, J. Solà, JHEP 0202 (2002) 006 A. Babić, B. Guberina, R. Horvat, H. Š., Phys. Rev. D 65 (2002) 085002 I.L. Shapiro, J. Solà, C España-Bonet, P. Ruiz-Lapuente, Phys. Lett. B 574 (2003) 149

A. Bonnano, M. Reuter, Phys. Rev. D 65 (2002) 043508A. Bonnano, M. Reuter, Phys. Lett. B 527 (2000) 9

Variable cosmological parameters – motivation (3)

● A.G. Cohen, D.B. Kaplan, A.E. Nelson, Phys. Rev. Lett. 82 (1999) 4971

● Effective field theory + entropy constraint = relation between UV( ) and IR (1/L) cutoffs

● excluding all states that lie within their Schwarzschield radius

● Holographic dark energy – M. Li, Phys. Lett. B 603 (2004)

● Variable cosmological term - R. Horvat, Phys. Rev. D 70 (2004) 087301

Variable cosmological parameters – motivation (4)

● Higher-dimensional models (e.g. GR in 4+N dimensions)

● Variability of e.g. G due to dynamics of extra (compactified) dimensions

Effective dark energy EOS

Redshift dependence of the effective EOS (3)