IRGAC 2006

18
IRGAC 2006 COLOR SUPERCONDUCTIVITY and MAGNETIC FIELD: Strange Bed Fellows in the Core of Neutron Stars? Vivian de la Incera Western Illinois University Barcelona, Spain, July 11-15, 2006

description

COLOR SUPERCONDUCTIVITY and MAGNETIC FIELD: Strange Bed Fellows in the Core of Neutron Stars?. Vivian de la Incera Western Illinois University. IRGAC 2006. Barcelona, Spain, July 11-15, 2006. Neutron Stars. Diameter:. Mass:. Density:. Magnetic fields:. - PowerPoint PPT Presentation

Transcript of IRGAC 2006

Page 1: IRGAC 2006

IRGAC 2006

COLOR SUPERCONDUCTIVITY and MAGNETIC FIELD:

Strange Bed Fellows in the Core of Neutron Stars?Vivian de la Incera

Western Illinois University

Barcelona, Spain, July 11-15, 2006

Page 2: IRGAC 2006

IRGAC 2006

B~ 1012 – 1014 G in the surface of pulsars

B~ 1015 – 1016 G in the surface of magnetars

Neutron Stars

20R km (12 miles)

Diameter:

Mass:

30 010 , 0.15 fm

Magnetic fields:

Density:

?

Page 3: IRGAC 2006

• Color Superconductivity

• Magnetic Field and Color

Superconductivity

• MCFL: Symmetry, gap structure, gap

solutions

• Conclusions and Outlook

E.J. Ferrer, V.I. and C. Manuel,

PRL 95, 152002 ; NPB 747, 88. IRGAC 2006

Outline

Page 4: IRGAC 2006

( )

High baryon density

quark deconfined matter

Attractive

one-gluon-exchange

interactions

Cooper instability

quark-quark pairing

IRGAC 2006Color Superconductivity

Bailin and Love ‘84

Page 5: IRGAC 2006

IRGAC 2006

Three flavors at very high density: CFL phase

C L R BSU( ) X SU( ) X S

U

Symmetry Br

( ) X U(

eaki

)3

n

g

3 3 1

:

Pairs: spin zero, antisymmetric in flavor and color

CFLib bi

j jia a

i

C+L+R( )S 3URapp, Schafer, Shuryak and Velkovsky, ‘98 Alford, Rajagopal and Wilczek, ‘98

Page 6: IRGAC 2006

Magnetic Field Inside a Color Superconductor

BB8G

In spin-zero color superconductivity a linear combination of the photon and one gluon remains massless (in-medium electromagnetic field). An external magnetic field penetrates the superconductor in the form of a “rotated” field (no Meissner effect)

u u ud d ds s s

0 0 -1 0 0 -1 1 1 0

- CHARGES

All -charged quarks have integer charges All pairs are -neutralQ

Q

Q

IRGAC 2006

Page 7: IRGAC 2006

IRGAC 2006

Color Superconductivity & B

Will a magnetic field reinforce color superconductivity?

Page 8: IRGAC 2006

CFL:SU(3)C X SU(3)L X SU(3)R

X U(1)B X U(1)e.m.

SU(3)C+L+R X U(1)e.m

Rapp, Schafer, Shuryak

and Velkovsky, PRL 81 (1998)

Alford, Rajagopal and Wilczek,

PLB 422 (1998)

1 2 331 2 31 2~j j

a a ab b b bi

aji i ij

MCFL:

SU(3)C X SU(2)L X SU(2)R

X U(1)B X U(1)e.m X U(-)(1)A

SU(2)C+L+R X U(1)e.m

Ferrer, V.I. and Manuel

PRL 95,152002

1 2 3

Dominant attractive interactions in 3-flavor QCD lead to a general order parameter of the form

1 2 3

IRGAC 2006

B = 0 B 0

Page 9: IRGAC 2006

0 0 01 1 1

( )0 ( )0 ( )0

5 0 5

5

0

( )[ ] ( ) ( )[ ] ( ) ( )[ ] ( )

1 [ ( ) ( ) ( ) ( )

2

( ) ( ) h.c.

{

]}

B

C

xy

MCFL MCFL

MCFL

C

C

x G y x G y x G y

x y x y

x

I

y

2 3 3

0 0

0

1 2 11 3 2( , , , , , , , , )

, ,

0

s s s d d d u u

Q

u

Q

0

0

' '

(1,1,0,1,1,0,0,0,1)

(0,0,0,0,0,0,1,1,0)

(0,0,1,0,0,1,0,0,0)

1

diag

diag

d

Q

iag

( )0

( )00

10

10

[ ] ( )

[ ] ( )

G i

G i

eA

Three-flavor NJL Theory

with Rotated Magnetic Field

Page 10: IRGAC 2006

MCFL ansatz including subdominant interactions

MCFL

and S A only get contributions from pairs of neutral quarks

IRGAC 2006

2 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 2 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 2

S S A S A

S A

S A

S A

S A S S A

S A

S

B B

B B

B B

B B

B BA

S A

S A S

B

BA S

B

B B B

and B BS A get contributions from pairs of neutral and pairs of

charged quarks

Page 11: IRGAC 2006

0 0 01 1 11

[ , ] [2

]xy

S SI S

00

0

C C C

where the Gorkov fields are defined by:

The mean-field action can be written as:

and the Gorkov inverse propagators are

IRGAC 2006

Page 12: IRGAC 2006

( )

( )

(

( )0

( )0

)

( )

(0

0

( )0

( )0

( )0

( 0

0)

( ) )0

1

1

1

1

1

1

1

1

10

[ ] ( , )

[ ] ( , )

[ ] ( , )

[ ] ( , )

[ ] ( , )

[ ] ( , )

G x y

G x y

G x y

G x y

G x y

G x y

S

S

S

00

0

C

C C

(0)

( )

( )

0 0MCFL

MCFL

MCFL

IRGAC 2006

Page 13: IRGAC 2006

Gap Equations

IRGAC 2006

Page 14: IRGAC 2006

2 3 2

2 3 2 22 22 23 (2 ) 3 (2 )( ) 2( ) ( ) ( )

B BB

B

AA

A AB

Aeg d g

q

Bq dq

q

For fields the gap equations can be reduced to

2Be

2

2 2

3

2 3 2 2

17 7

9 94 (2 ) ( ) ( ) 2( )B

A AA

A A

g d q

q q

2 3

2 3 2 22 218 (2 ) ( ) ( ) 2( )B

A AS

A A

g d q

q q

2 2 3

2 2 2 32 22 26 (2 ) 6 (2 )( ) ( ) ( ) 2( )

A A

A

BB

S

A

B

B B

g dq g d q

q

eB

q

IRGAC 2006

Page 15: IRGAC 2006

2

2

2

2 2

0.3, 0.2

~

~ B

1A8

A

g

=3/2, ,

1

eB

B 0

yx

=

yx

G

Gap Solutions

2 2

2 2

3 1exp( )

1 2( )

36 21 1 2 2exp 1

17 17 (1 ) 74

1 1

4A S

A

B B

S A

BA

eg

x

y

y

x y y

B

2

2

1exp( ),

(2 2 )

2 2

3

~

2

2

B

B 2

AB

G

= , = ,

g

N N

N N

Be

G

Ferrer, V.I. and Manuel, NPB 747, 88IRGAC 2006

Page 16: IRGAC 2006

IRGAC 2006

The magnetic field “helps” CS. The field reinforces the gap that gets contributions from pairs of -charged quarks.

Q

1exp( )~

(2 2 )AB

BG N N

The physics behind MCFL is different from the phenomenon of magnetic catalysis. In MCFL the field reinforces the diquark condensate through the modification of the density of state

Page 17: IRGAC 2006

CFL vs MCFL

• 9 Goldstone modes: charged and neutral.

• 5 Goldstone modes: all neutral

• Low energy similar to low density QCD. Schafer & Wilzcek’ PRL 82 (1999)

• Low energy similar to low density QCD in a magnetic field.

Ferrer, VI and Manuel, NPB’06

IRGAC 2006

C L+ R+ 3

( )SU

( ) , ( ) 2

8 1

8 1

R+C +L(2)

SU

221 12 2

221 12 2

( ) , ( ) ,

( )

3 4 1 1

3 4

( 81

81

)

B

B

B

A

A

A

A

A A

A

A

Page 18: IRGAC 2006

CONCLUSIONS and OUTLOOK

Neutron stars provide a natural lab to explore the effects of B in CS

Is MCFL the correct state at intermediate, more realistic, magnetic fields? Gluon condensates?

What is the correct ground state at intermediate densities; is it affected by the star’s magnetic field?

Explore possible signatures of the CS-in-B phase in neutron stars: neutrino cooling, thermal conductivity, etc.

IRGAC 2006