Historical review from early days of aperiodic crystals to ... · 4. Crystal structures Historical...

50
Overview Historical review from early days of aperiodic crystals to the state of the art 1. Introduction Standards, Incommensurate, Aperiodic 2. Description Modulation, Intergrowth, Quasicrystals 3. Symmetry Euclidean, Non-Euclidean, Groups 4. Crystal structures Historical and more recent results 5. Structure determination Methods, Programs 6. The Web SIG, Databases, Tools 7. The inverse crystallographic problem Rational indices 8. The geometry problem Scaling transformations Zao (Miyagi), 17.09.06, Aperiodic06 A. Janner – p. 1/41

Transcript of Historical review from early days of aperiodic crystals to ... · 4. Crystal structures Historical...

  • Overview

    Historical review from early daysof aperiodic crystals to the state of the art

    1. Introduction Standards, Incommensurate, Aperiodic

    2. Description Modulation, Intergrowth, Quasicrystals

    3. Symmetry Euclidean, Non-Euclidean, Groups

    4. Crystal structures Historical and more recent results

    5. Structure determination Methods, Programs

    6. The Web SIG, Databases, Tools

    7. The inverse crystallographic problem Rational indices

    8. The geometry problem Scaling transformations

    Zao (Miyagi), 17.09.06, Aperiodic06 A. Janner

    – p. 1/41

  • Measurement

    Commensurate: common standards

    Space Time

    length: human body duration: sun, moon1 foot = 12 inches 1 year = 12 months

    1 month = 30 days

    1 f + 8 i = (1 + 23) f = 20 i 5 m + 7 d = ( 5

    12+ 7

    360) y = 157 d

    Standards −→ Units −→ Integers −→ Rationals

    – p. 2/41

  • Incommensurate

    IncommensuratePythagora of Samos (570 - 490 BC)

    (ape10, sqrt(2)-incommensurate)(SX=0,SY=150,F=300,U=115)

    ds

    L

    sd

    d =√

    2s d2

    s2= 2 = p

    2

    q22q2 = p2

    p odd no

    p even → q odd no

    s, d Incommensurate

    L = 4 s + 2 d = [4, 2]

    Two units: s and d

    – p. 3/41

  • Superstructure

    Superstructure

    (ape2, superstructure )()

    a

    b = 5a0 b* a*

    Displacive Modulation Satellite Main reflection

    Density Modulation

    0 b* a*

    Intergrowth (Composite)

    0 b* a*

    b = n a b∗ = 2πb

    , a∗ = 2πa

    – p. 4/41

  • Aperiodic

    Aperiodic

    (ape3, inc intergroth, quasicrystal )()

    Intergrowth incommensurate

    Quasicrystal

    Invariant scaling (Inflation): a -> A = ab, b -> B = aba

    a b a b a a b a b a a b a b

    A B A B A A

    b = α a, α irrational

    α =√

    2

    b =√

    2 a,

    S =

    1 2

    1 1

    , S−1 =

    −1 −21 −1

    – p. 5/41

  • Kyoto

    From aperiodic to periodic1972 Kyoto, PM de Wolff: world-lines for modulated atomic positions

    A.J.: vibrating crystalt

    x

    x

    4

    32

    1

    1 2 3 4– p. 6/41

  • Superspace

    Superspace: the basic idea

    � � � � � � � � � � �� � � � � � � � � � �

    � � � � � � � � � � �� � � � � � � � � � �

    �� ���

    � �

    ��� �� ���

    � �� ���� �

    � ���

    � �� ���

    � � � � � � � � � � � � � �� � � � � � � � � � � � � �

    � � � � � � � � � � � � � �� � � � � � � � � � � � � �

    � � � � � � � � � � � � � �

    ���

    ��

    !"#

    $ $$ $�%

    B

    B

    A

    Direct space

    A*

    B*

    B*

    a*

    b*

    Reciprocal space

    A*

    A

    a

    b

    (ape4)

    Basic structure

    Modulation

    Modulated crystal

    Superspace

    Lattices

    – p. 7/41

  • Indexing

    Indexing

    � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

    � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

    � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

    n2 n3 n1 2 n3[ n+] = cb

    n1 n1 n

    a

    n2

    +

    ] = a b[ 2

    0 0 1 0 1 1 2 1 3 1 3 2 � � � � � � � � � � � �

    b

    a

    +

    1n

    0 0 0

    0 0 1

    0 0 2

    1 0 0 3 0 0 4 0 0

    0 1 1

    1 0 2 2 0 2 3 0 2 4 0 2 5 0 2 6 0 2

    0 2 1 0 3 1 0 4 1

    2 0 0 5 0 0 6 0 0

    ��

    ��

    ��

    � � � � � � � � �

    b

    a

    c

    Superspace Projection in space

    Crenel modulation

    Intergrowth (intercalate)

    (ape5)

    Lattice Z-moduleΣ Μ– p. 8/41

  • CutProjection

    Cut - Projection

    (ape6, quasicrystal cutprojection)

    x

    y

    0 1

    1 0

    -1 -1

    0 -10 0

    0 2

    1 11 2

    1 31 4

    2 22 3

    2 4

    2 52 6

    3 43 5

    3 6

    x: Parallel space = External spacey: Perpendicular space = Internal space

    – p. 9/41

  • CutProjection

    Cut - Projection

    (ape6a, quasicrystal cutprojection)

    x

    y

    0 1

    1 0

    -1 -1

    0 -10 0

    0 2

    1 11 2

    1 31 4

    2 22 3

    2 4

    2 52 6

    3 43 5

    3 6

    x: Parallel space = External spacey: Perpendicular space = Internal space

    Atomic surface ������

    – p. 9/41

  • Internal space

    Space + Internal space = Superspace

    Ib

    Ia

    Ib

    IaA

    B

    a b

    (ape7)

    10

    01

    11

    00

    10

    01

    11

    00

    a b

    00 10 01 11

    A = (a,aI ), B = (b,bI )

    MI = {aI , bI} Σ = {A, B} M = {a, b}Internal space Superspace Space

    – p. 10/41

  • Pentagonal

    Pentagonal Z-module bases

    0100

    1000

    0001

    0010

    1000

    0010

    0001

    0100

    Pentagonal basis in space Pentagonal basis in internal space

    – p. 11/41

  • Pentagonal quasicrystal

    Pentagonal Quasicrystal

    Positions in space Positions in internal spaceClusters Atomic surface

    – p. 12/41

  • Ico quasicrystal

    Icosahedral Quasicrystal

    0 0 1 0 0 0

    0 1 0 0 0 0

    1 0 0 0 0 00 0 0 1 0 0

    0 0 0 0 1 0

    0 0 0 0 0 1

    0 0 1 0 0 0

    0 0 0 -1 0 0

    0 0 1 0 0 0

    0 0 -1 0 0 0

    Indexed Icosahedron

    fivefold view

    twofold view

    threefold view

    Superspace lattice

    6-dimensional cubic lattice

    Space Z-module

    6 icosahedral vectors(as indexed)

    Internal space Z-module

    6 icosahedral vectors(not indicated)

    Icosahedron

    Clusters, Atomic surfaces

    – p. 13/41

  • Dodecahedron

    Indexed dodecahedron

    0 1 0 -1 0 1

    0 1 0 -1 -1 0

    -1 0 0 -1 -1 0

    -1 0 -1 -1 0 0

    0 1 1 0 -1 0

    0 0 -1 0 1 1

    fivefold view

    twofold view

    threefold view

    Generating point

    1 1 1 0 0 0

    Space

    Dodecahedral clusters

    Internal space

    Atomic surfaces

    – p. 14/41

  • Triacontahedron

    Indexed triacontahedron

    -1 1 1 -1 1 1

    1 1 -1 -1 -1 -1

    0 0 2 0 0 0

    0 2 0 0 0 0

    1 -1 -1 -1 -1 1

    -1 1 -1 -1 -1 -1

    0 0 2 0 0 0

    0 0 0 -2 0 0

    -1 1 1 1 -1 1

    -1 1 -1 1 1 1

    0 0 2 0 0 0

    0 0 -2 0 0 0

    fivefold view

    twofold view

    threefold view

    Superspace

    6-dimensional cube a

    Space

    Icosahedron ri = a√

    1 + τ2

    Dodecahedron rd = a√

    3

    S1/τ2 [2 2 2 0 0 0]

    =[1 1 1 -1 1 -1]

    Generating points

    Icosahedral vertices:2 0 0 0 0 0

    Dodecahedral vertices1 1 1 -1 1 -1

    Clusters, Atomic surfaces– p. 15/41

  • Euclidean

    Euclidean symmetries

    (ape10a)

    x

    y

    x x

    y

    t

    Translation Rotation Glide reflection

    Modulation shift Reflection + shift s

    s = [000 12] R5 =

    0

    B

    B

    B

    B

    B

    @

    0 0 0 −11 0 0 −10 1 0 −10 0 1 −1

    1

    C

    C

    C

    C

    C

    A

    0

    @

    my

    s

    1

    A = {my1 | [000 12 ]}

    – p. 16/41

  • Cryst.Scaling

    Crystallographic Scaling

    Scaling with scaling factor λ

    1D (linear) Xλ(x, y, z) = (λx, y, z)2D (planar) Pλ(x, y, z) = (λx, λy, z)3D (radial) Iλ(x, y, z) = (λx, λy, λz)Higher dimensional .......

    – p. 17/41

  • Cryst.Scaling

    Crystallographic Scaling

    Scaling with scaling factor λ

    1D (linear) Xλ(x, y, z) = (λx, y, z)2D (planar) Pλ(x, y, z) = (λx, λy, z)3D (radial) Iλ(x, y, z) = (λx, λy, λz)Higher dimensional .......

    Crystallographic transforming a lattice into a lattice

    SλΛ = Λ Sλ integral invertible

    in general: SλΛ = Σ Σ ⊆ Λ or Λ ⊆ ΣSλ rational invertible

    – p. 17/41

  • hexagonal scaling

    Crystallographic Scaling

    (sca1)

    1 0

    0 1

    2 0

    0 2

    1 0

    0 12 1

    -1 1

    S =

    2 0

    0 2

    S =

    2 −11 1

    λ = 2, ϕ = 0 λ =√

    3, ϕ = 300

    – p. 18/41

  • Star Pentagon

    Pentagonal Case

    (sgk1b)

    1 0 0 0

    0 1 0 0

    0 0 1 0

    0 0 0 1

    -1 -1 -1 -1

    -2 0 -1 -1

    1 -1 1 0

    0 1 -1 1

    -1 -1 0 -2

    2 1 1 2

    Polygrammal Scaling

    Star Pentagon:Schäfli Symbol {5/2}

    Scaling matrix: (planar scaling)

    S{5/2} =

    2̄ 1 0 1̄

    0 1̄ 1 1̄

    1̄ 1 1̄ 0

    1̄ 0 1 2̄

    Scaling factor:-1/τ2 = −0.3820...

    (τ = 1+√

    5

    2= 1.618...)

    – p. 19/41

  • QCR Pentagr.Scal.

    Pentagonal quasicrystal: Pentagrammal symmetry

    W. Steurer, J.Phys: Condens. Matter 3 (1991) 3397-3410

    (deca02a,Pentragamma AlMn,U1=60,N0=70)

    – p. 20/41

  • Linear Scaling

    Pentagonal Case

    (sgk1c)

    x

    y

    A

    P

    Q

    B

    1 0 0 0

    0 1 0 0

    0 0 1 0

    0 0 0 1

    -1 -1 -1 -1

    -2 0 -1 -1

    1 -1 1 0

    0 1 -1 1

    -1 -1 0 -2

    2 1 1 2

    1 -1 2 -1

    1 2 0 3

    -3 -2 -1 -3

    3 0 1 2

    -2 1 -2 -1

    -1 2 -1 1

    -1 -1 1 -2

    2 1 0 3

    -3 -1 -2 -3

    3 0 2 1

    Pentagonal Case

    (sgk1d)

    τ

    τ

    1 x

    y

    A

    P

    Q

    B

    1 0 0 0

    0 0 0 1

    -1 -1 -1 -1

    -2 0 -1 -1

    1 -1 1 0

    0 1 -1 1

    -1 -1 0 -2

    2 1 1 2

    1 2 0 3

    -3 -2 -1 -3

    3 0 1 2

    -2 1 -2 -1

    -1 -1 1 -2

    2 1 0 3

    -3 -1 -2 -3

    3 0 2 1

    Linear Scaling

    Scaling transformation:Yλ(x, y) = (x, λy)

    Scaling matrix:

    Y1/τ3 =

    0 1 1̄ 1

    1 1̄ 2 1̄

    1̄ 2 1̄ 1

    1 1̄ 1 0

    Scaling factor:1/τ3 = 0.2361...

    (τ = 1+√

    5

    2= 1.618...)

    Linear Scaling

    The linear scaling Y1/τ3appears alongthe pentagonal edgewith the scaling ratios

    τ : 1 : τ

    – p. 21/41

  • Linear Scaling

    Pentagonal Case

    (sgk1d)

    τ

    τ

    1 x

    y

    A

    P

    Q

    B

    1 0 0 0

    0 0 0 1

    -1 -1 -1 -1

    -2 0 -1 -1

    1 -1 1 0

    0 1 -1 1

    -1 -1 0 -2

    2 1 1 2

    1 2 0 3

    -3 -2 -1 -3

    3 0 1 2

    -2 1 -2 -1

    -1 -1 1 -2

    2 1 0 3

    -3 -1 -2 -3

    3 0 2 1

    Linear Scaling

    Scaling transformation:Yλ(x, y) = (x, λy)

    Scaling matrix:

    Y1/τ3 =

    0 1 1̄ 1

    1 1̄ 2 1̄

    1̄ 2 1̄ 1

    1 1̄ 1 0

    Scaling factor:1/τ3 = 0.2361...

    (τ = 1+√

    5

    2= 1.618...)

    Linear Scaling

    The linear scaling Y1/τ3appears alongthe pentagonal edgewith the scaling ratios

    τ : 1 : τ

    – p. 21/41

  • QCR lin.scaling

    Pentagonal quasicrystal: Linear scaling with fivefold RotationsW. Steurer, J.Phys: Condens. Matter 3 (1991) 3397-3410

    (deca03a,Linear scaling AlMn,U1=60,N0=70)

    τ

    τ

    1

    τ3

    – p. 22/41

  • Groups

    Crystallographic symmetry groups

    Point groups Morphology Diffraction

    32 Crystal classes (1826) Crystal forms (1611-1804) von Laue ZnS (1912)

    (3+1)D Rotations Calaverite (1895-1989) γ Na2CO3 (1964)

    (3+3)D Rotations Dodecahedron, ... Icosahedral QCR (1984)

    1D,2D,3D Scalings Quasicrystals (1985)

    Scale-Rotations Snow flakes (1997) Steurer, Haibach (2001)

    Space groups Structure Diffraction

    3D Fedorov (1895) Periodic crystals Bragg reflections

    (3+n)D Superspace (1979) Modulated, Intergrowth Main reflections + Satellites

    (3+2)D Ssp gr. (+scaling) 5-,10-,8-,12-gonal QCR 1D,2D Scaling symmetry

    (3+3)D Ssp gr. (+scaling) Icosahedral QCR 3D Scaling symmetry

    Multimetrical sp gr.(1991) Ice P63/mmcLz 12

    LyLx 12

    – p. 23/41

  • History

    Aperiodic crystals: Historical turning points

    AuTe2 1902 Non-indexable growth forms Penfield, Ford, Smith

    1931 Singular point at [5 29 -3] Goldschmidt, Palache, Peacock

    1985 4d indexing Dam, Janner, Donnay

    Na2CO3 1964 Non-indexable satellites Brouns, Visser, de Wolff

    1972 4d space group van Aalst, de Wolff

    1974 Harmonic approximation de Wolff et al.

    2005 Additional phase transitions Arakcheeva, Chapuis

    (TTF)7I5−x 1976 Local symmetry only Johnson, Watson

    1980 Incommensurate basic structure Janner, Janssen

    SiC, ZnS 1981 Polytypes as modulated crystals Yamamoto

    FexS 1982 Higher-order harmonics Yamamoto, Nakazawa

    LaTi1−xO3 2000 Family of modular structures Elcoro, Pérez-Mato, Withers

    fivefold sym. 1974 Planar tiling with inflation symmetry Penrose

    1982 Optical diffraction of Penrose tiling Mackay

    Al-Mn 1984 Icosahedral QCR Shechtman, Blech, Gratias, Cahn

    Al73Mn21Si6 1988 6d Fourier analysis Gratias, Cahn, Mozer

    Deca Al-Mn 1988 Penrose-like QCR Yamamoto

    Al78Mn22 1989 5d structure refinement Steurer

    1992 Decagrammal scaling symmetry Janner, Steurer – p. 24/41

  • Calaverite 1

    Calaverite AuTe2

    Non indexable facets Incommensurate q = [α 0 γ]

    Goldschmidt, Palache, Peacock α = −0.409... γ = 0.450...

    satellite [0001]

    – p. 25/41

  • Calaverite 2

    Calaverite AuTe2

    Goldschmidt, Palache, Peacock Dam, Janner, Donnay

    – p. 26/41

  • Na2Co3

    γ Na2CO3

    Non indexable satellites Incommensurate modulations

    Brouns, Visser, de Wolff van Aalst et al., Hogervorst et al.

    – p. 27/41

  • FeS

    Polytype Fe1−xS

    Modulation: higher-order harmonics

    Yamamoto, Nakazawa 1982

    – p. 28/41

  • Family

    Family of modular structures

    Close-packed LaO3 modules: Variation of the modulation wave vectorq = γc

    B

    C

    A

    A A

    A

    x 3

    x 4

    LaO3 LaO3 LaO3 LaO3 LaO3

    C B C AA

    γ = 1/3

    (ape12b)

    LaTi1−xO3: Elcoro, Pérez-Mato, Withers (2000)K5Yb(MoO4)4 Arakcheeva, Chapuis (2006)

    – p. 29/41

  • Family

    Family of modular structures

    Close-packed LaO3 module: Variation of the modulation wave vector q = γc

    B

    C

    A

    A A

    A

    x 4

    LaO3 LaO3 LaO3 LaO3 LaO3

    x 3

    A B C A B

    zγ = 2/5

    (ape12c)

    LaTi1−xO3: Elcoro, Perez-Mato, Withers (2000)K5Yb(MoO4)4 Arakcheeva, Chapuis (2006)

    – p. 29/41

  • Penrose

    Roger Penrose: Pentaplexity

    Tiling with inflation: dart and kite Optical diffraction

    Penrose 1974 Mackay 1982

    – p. 30/41

  • AlMn Fourier-Scaling

    Al78Mn22: Fourier Map of a Decagonal Plane

    W. Steurer, J.Phys: Condens. Matter 3 (1991) 3397-3410

    – p. 31/41

  • AlMn Fourier-Scaling

    Al78Mn22: Pentagonal Lattice Points

    Comparison of the Fourier map with model positions (Low Indices only)

    (deca01a,Indexed Fourier points AlMn,U1=60,N0=70)

    -1-1-1-1 0-2-2 0 -3-4-4-3-2-2-4-1

    0-2-1-1 1-3-2 0 -2-5-4-3 1 0-1 1 -1-3-4-1

    1 0 0 0

    -2-2-3-2

    -1-3-3-2-1 0-2-1 0-1-3 0

    0-4-3-2 0-1-2-1 1-2-3 0 -2-4-5-3

    0-1-1-2 1-2-2-1 1 1-1 0 -1-2-4-2

    2 0-1 0 -1-2-3-3 0-3-4-2 0 0-3-1 -2-3-6-3

    2 0 0-1 0-3-3-3 0 0-2-2 1-1-3-1 -2-3-5-4

    1-1-2-2 2-2-3-1 -1-4-5-4 2 1-2 0 -1-1-4-3 0-2-5-2

    1-1-1-3 2 1-1-1 -1-1-3-4 0-2-4-3

    0 1-3-2 3 0-1-1 0-2-3-4 1-3-4-3

    1 0-3-2 2-1-4-1 -1-3-6-4

    1 0-2-3 2-1-3-2 -1-3-5-5 2 2-2-1 0-1-5-3

    2-1-2-3 0-4-5-5 3 1-2-1 0-1-4-4 1-2-5-3

    – p. 31/41

  • AlMn Fourier-Scaling

    Al78Mn22: Planar Scaling (Star Pentagon)

    Scaling factor: λ = −1/τ2

    (deca02a,Pentragamma AlMn,U1=60,N0=70)

    – p. 31/41

  • AlMn Fourier-Scaling

    Al78Mn22: Linear Scalings combined with Fivefold Rotations

    Pentagrammal ratios (τ : 1 : τ ) and Off -center decagon

    (deca03a,Linear scaling AlMn,U1=60,N0=70)

    τ

    τ

    1

    τ3

    – p. 31/41

  • Al-Pd-Mn

    Decagonal Al-Pd-Mn

    Atomic occupation domains and clusters

    0 ≤ z ≤ 0.5 0.5 ≤ z ≤ 1Yamamoto 1993

    – p. 32/41

  • Al-Pd-Mn

    Decagonal Al-Pd-Mn

    Linear and planar crystallographic scalings

    1

    τ

    1

    0 ≤ z ≤ 0.5 0.5 ≤ z ≤ 1Yamamoto 1993

    – p. 32/41

  • Ico Al-Mn-Si

    Icosahedral Al73Mn21Si6

    6d Fourier analysis Indexed positions in a 2-fold plane

    0 2 0 2 2 2 0 2 0 2 2 2

    0 0 0 20 2 0 0

    0 0 -2 0 0 0 2 0

    -1 2 0 1 1 2 0 1

    -1 0 0 1 1 0 0 1

    -1 0 -2 -1

    -1 0 0 -1

    1 0 0 -1

    -1 0 -2 -1

    0 0 0 0 2 0 0 0

    0 2 2 0

    0 0 2 2

    n1 n2 n3 n4 = (n1 + τn3, n2 + τn4)Gratias, Cahn, Mozer (1988)

    – p. 33/41

  • Ico Al-Mn-Si

    Icosahedral Al73Mn21Si6

    6d Fourier analysis Indexed positions in a 2-fold plane

    0 2 0 2 2 2 0 2 0 2 2 2

    0 0 0 20 2 0 0

    0 0 -2 0 0 0 2 0

    -1 2 0 1 1 2 0 1

    -1 0 0 1 1 0 0 1

    -1 0 -2 -1

    -1 0 0 -1

    1 0 0 -1

    -1 0 -2 -1

    0 0 0 0 2 0 0 0

    0 2 2 0

    0 0 2 2

    n1 n2 n3 n4 = (n1 + τn3, n2 + τn4)Gratias, Cahn, Mozer (1988)

    – p. 33/41

  • Local order

    Icosahedral local order

    Bergman cluster Atomic clusters Mackay cluster

    Tamura, PhD Thesis, Grenoble (1993)

    Puyraimond, Quiquandon, Gratias, Tillard, Belin, Quivy, Calvayrac (2002)

    Icosahedron[100000], 12V, 5fold

    Dodecahedron[111-11-1], 20V, 3fold

    Icosahedron[200000]. 12V, 5fold

    44 Atoms

    Icosahedron[100000], 12V, 5fold

    Icosahedron[200000]. 12V, 5fold

    Icosidodecahedron[000202], 30V, 2fold

    54 Atoms

    – p. 34/41

  • Methods Programs

    Structure determination: Methods and programs

    Superspace approach 1982 Yamamoto REMOS

    1985 Petr̆íc̆ek JANA

    Direct methods 1987 Hao, Liu, Fan

    1993 Lam, Beurskens, van Smaalen

    Patterson method 1987 Steurer (decagonal QCR)

    1988 Gratias, Cahn, Mozer (ico QCR)

    Reciprocal space symmetry 1988 Mermin, Lifshsitz, Rabson, et al.

    "Trial-and-error" method 1988 Yamamoto, Ishihara

    Contrast variation 1989 Janot, de Boissieu, Dubois, Pannetier

    Maximum entropy method 1997 Weber, Yamamoto

    Haibach, Cervellino, Steurer

    2003 van Smaalen, Palatinus, Schneider

    Atomic surface modelling 2002 Cervellino, Haibach, Steurer

    Charge flipping 2004 Palatinus

    2005 Oszlányi, Sütő– p. 35/41

  • Web

    On the Web: SIG Aperiodic

    Special Interest Group on Aperiodic Crystalswww-xray.fzu.cz/sgpi/apright.html

    Software Yamamoto page

    JANA2000

    Superspace tools

    CCP4

    Links Incommensurate structures

    Quasicrystals

    Databases Bilbao server

    Lausanne server

    Caracas page

    Research Groups

    References– p. 36/41

  • Sym2Struct

    From Symmetry to Structure

    Classical: A crystal is Euclidean and periodic

    New: A crystal has indexable Bragg reflections

    Approach: Find the symmetries−→ Solve the structure

    230 Space groups:Superspace groups:Multimetrical space groups:

    } Indexed Bragg reflectionsConditions for reflectionsConditions for Wyckoff positions

    1964 de Wolff Standard 3d space groups only

    1982 Yamamoto REMOS (3+1)d superspace groups

    1985 Petr̆íc̆ek JANA general modulations

    – p. 37/41

  • Struct2Symm

    From Structure to Symmetry

    Approach: Solve the structure−→ Find the symmetriesDirect methods, Charge flipping:Tiling models:Indexed atomic positionsFamily of structures

    } Space groupScaling symmetryCommon superspace group

    Which structure?

    Indexed atomic positions Scaling relations

    Clusters of indexed polyhedra

    Internal positions (same indices) Polyhedral atomic surfaces

    Superspace positions (same indices) Indexed polytopes

    Indexed Bragg reflections Correlated reflections

    – p. 38/41

  • Felix Klein

    The Klein View of Geometry

    Felix Klein (Erlanger 1872)

    Geometry:A set S, the points of the geometryA group G of transformations of S

    No Axioms only Theorems

    Euclidean Geometry

    Set Group Transformations Invariant objects

    S = R3 Euclidean group E(3) Transl. T, Rot. R, Refl. M Distance d (AB)Angle ϕ (ABC)

    Similarity Geometry

    Set Group Transformations Invariant objects

    S = R3 Similarity group S(3) T, R, M, Isotropic scaling Sk Angle ϕ (ABC)Distance ratio d(AB)/d(CD)

    Problem: Linear and planar scaling in R3

    Crystallographic Geometry ?

    – p. 39/41

  • end

    Thank you for the attention

    – p. 40/41

  • Inverse problem

    The Inverse Crystallographic Problem

    Indexed positions(Rational indices)

    Internal positions(same indices)

    Superspace positions(same indices)

    Equivalent positions(by scale-rotations)

    Indexed model(with scale-rotations)

    StructureAtomic positions

    Rational indices

    DiffractionCorrelated reflections

    ?

    ?

    Polyhedra(with rational indices)

    Clusters(local order)

    Atomic surfaces(polyhedral)

    Polytopes(in superspace)

    Scaling relations(crystallographic)

    Indexed model(with scale-rotations)

    – p. 41/41

    OverviewMeasurementIncommensurateSuperstructureAperiodicKyotoSuperspaceIndexingCutProjectionCutProjection

    Internal spacePentagonalPentagonal quasicrystalIco quasicrystalDodecahedronTriacontahedronEuclideanCryst.ScalingCryst.Scaling

    hexagonal scalingStar PentagonQCR Pentagr.Scal.Linear ScalingLinear Scaling

    QCR lin.scalingGroupsHistoryCalaverite 1Calaverite 2Na2Co3FeSFamilyFamily

    PenroseAlMn Fourier-ScalingAlMn Fourier-ScalingAlMn Fourier-ScalingAlMn Fourier-Scaling

    Al-Pd-MnAl-Pd-Mn

    Ico Al-Mn-SiIco Al-Mn-Si

    Local orderMethods ProgramsWebSym2StructStruct2SymmFelix KleinendInverse problem