High-Level Description of Thermodynamical Effects in … ·  · 2011-12-20High-Level Description...

23
EKV v2.6 Users' Meeting EKV v2.6 Users' Meeting - - 2004 2004 1 1 High High - - Level Level Description Description of of Thermodynamical Thermodynamical Effects Effects in in the the EKV 2.6 MOST Model EKV 2.6 MOST Model C. C. Lallement Lallement *, F. *, F. Pecheux Pecheux **, W. **, W. Grabinski Grabinski *** *** * * CNRS CNRS - - PHASE (ERM PHASE (ERM - - PHASE) Laboratory, Strasbourg, France PHASE) Laboratory, Strasbourg, France christophe.lallement christophe.lallement @ @ ensps.u ensps.u - - strasbg.fr strasbg.fr **LIP6 Laboratory, Paris, France **LIP6 Laboratory, Paris, France [email protected] [email protected] ***Motorola, ***Motorola, Geneva Geneva Modeling Modeling Center Center , , Switzerland Switzerland [email protected] [email protected]

Transcript of High-Level Description of Thermodynamical Effects in … ·  · 2011-12-20High-Level Description...

EKV v2.6 Users' Meeting EKV v2.6 Users' Meeting -- 20042004 11

HighHigh--LevelLevel Description Description ofofThermodynamicalThermodynamical EffectsEffects in in thethe

EKV 2.6 MOST ModelEKV 2.6 MOST ModelC.C. LallementLallement*, F.*, F. PecheuxPecheux**, W. **, W. GrabinskiGrabinski******

**CNRSCNRS--PHASE (ERMPHASE (ERM--PHASE) Laboratory, Strasbourg, FrancePHASE) Laboratory, Strasbourg, Francechristophe.lallementchristophe.lallement@@ensps.uensps.u--strasbg.frstrasbg.fr

**LIP6 Laboratory, Paris, France**LIP6 Laboratory, Paris, [email protected]@lip6.fr

***Motorola, ***Motorola, GenevaGeneva ModelingModeling CenterCenter, , [email protected]@grabinski.ch

EKV v2.6 Users' Meeting EKV v2.6 Users' Meeting -- 20042004 22

PresentationPresentation overviewoverview

TheThe studiedstudied transmission transmission schemeschemeOneOne schemescheme, , twotwo HDLsHDLsOtherOther studiesstudies on on thethe EKV MOST Model v2.6EKV MOST Model v2.6ResultsResults & & OngoingOngoing researchesresearches

EKV v2.6 Users' Meeting EKV v2.6 Users' Meeting -- 20042004 33

IP

Photo-Diode

TEST_POINT

TheThe transmission transmission schemescheme

INV_IN

G

D

S B

EKV_n_TH

G

D

BS

EKV_p_TH

INV_OUT

A

C

R

Laser Diode

Lout

LIGHT_OUT

Transmissionmedium

Lin Lout

Lin

LIGHT_PROPAGATED

LIGHT_OUT

Emitter Communicationmedium

Receiver

RPLed

N-MOSTRC Network

Laser DiodeRC Network

P-MOSTRC Network

RNLed

RNP

TJ

TJ

EKV v2.6 Users' Meeting EKV v2.6 Users' Meeting -- 20042004 44

MixedMixed--SignalSignal Model StructureModel StructureReferenceReference to to predefinedpredefined//previouslypreviously defineddefined submodelssubmodelsDeclarationDeclaration ofof thethe modelmodel interfaceinterface

GenericGeneric parametersparametersInterface Interface connectionconnection portsports

DeclarationDeclaration ofof thethe modelmodel contentscontentsDeclarationDeclaration ofof objectsobjects usedused internallyinternallyDescription Description ofof thethe modelmodel contentscontents

ContinuousContinuous ((AnalogAnalog) ) BehaviorBehaviorDiscreteDiscrete (Digital) (Digital) BehaviorBehaviorStructural Description (Structural Description (instantiationinstantiation))

SynchronizationSynchronization facilitiesfacilities

EKV v2.6 Users' Meeting EKV v2.6 Users' Meeting -- 20042004 55

A A modelmodel templatetemplate

entity name ismodel Interface

end entity name;

architecture equ of name ismodel Contents

end architecture name;

module namemodel Interfacemodel Contents

endmodule

VHDL-AMS Verilog-AMS

EKV v2.6 Users' Meeting EKV v2.6 Users' Meeting -- 20042004 66

ThermoThermo--electricalelectrical interactioninteraction

D

S

G

ekv_nmos

Thermalnetwork

Power

Temperature

Introducing a new node, of « thermal » typein the EKV transistor interface

EKV v2.6 Users' Meeting EKV v2.6 Users' Meeting -- 20042004 77

TheThe twotwo interfacesinterfaceslibrary disciplines;library disciplines;

use use disciplines.electromagnetic_system.alldisciplines.electromagnetic_system.all;;use use disciplines.thermal_system.alldisciplines.thermal_system.all;;library library ieeeieee;;use use ieee.math_real.allieee.math_real.all;;

entity entity EKV_n_THEKV_n_TH isisgenericgeneric

((WeffWeff : real := 1.5e: real := 1.5e--6; 6; ---- channel widthchannel widthLeffLeff : real := 0.15e: real := 0.15e--6; 6; ---- channel lengthchannel lengthPHI : real := 0.97; PHI : real := 0.97; ---- bulk Fermi potentialbulk Fermi potentialGAMMA : real := 0.71; GAMMA : real := 0.71; ---- substrate factorsubstrate factorKP : real := 453.0eKP : real := 453.0e--6; 6; ---- transconductancetransconductance factorfactorTHETA : real := 50.0eTHETA : real := 50.0e--3; 3; ---- Mobility reductionMobility reductionVTO : real := 0.4; VTO : real := 0.4; ----long channel threshold volt.long channel threshold volt.TCV : real := 1.5eTCV : real := 1.5e--3; 3; ---- temperature temperature coeffcoeff. (VTO). (VTO)BEX : real := BEX : real := --1.5 1.5 ---- temperature temperature coeffcoeff..););

end;end;

`includeinclude "disciplines.h""disciplines.h"

//*** model parameter definitions//*** model parameter definitionsparameter real parameter real boltzboltz = 1.3806226E= 1.3806226E--23; 23;

parameter real charge = 1.6021918Eparameter real charge = 1.6021918E--19; 19; parameter real parameter real reftempreftemp = 300.0; = 300.0; //** geometrical parameters//** geometrical parametersparameter real parameter real weffweff = 100.0E= 100.0E--6;6;parameter real parameter real leffleff = 100.0E= 100.0E--6; 6; //*** Threshold voltage and substrate effect//*** Threshold voltage and substrate effect//** parameters (long//** parameters (long--n_channeln_channel))parameter real parameter real vtovto = 0.6; = 0.6; parameter real gamma = 0.7; parameter real gamma = 0.7; parameter real phi = 0.5;parameter real phi = 0.5;//*** Mobility parameters (long//*** Mobility parameters (long--channel)channel)parameter real parameter real kpkp = 20.0E= 20.0E--6; 6; parameter real theta = 50.0Eparameter real theta = 50.0E--3;3;//*** Temperature coefficients//*** Temperature coefficientsparameter real parameter real tcvtcv = 1.5E= 1.5E--3; 3; parameter real parameter real bexbex = = --1.5; 1.5;

port (terminal port (terminal d,g,s,bd,g,s,b: electrical;: electrical;terminal terminal j:thermalj:thermal););

module module EKV_n_TH(d,g,s,b,tjEKV_n_TH(d,g,s,b,tj););// Node definitions (external nodes)// Node definitions (external nodes)inoutinout d,g,s,b,jd,g,s,b,j ;;electrical electrical d,g,s,bd,g,s,b ;;thermal thermal tjtj ;;

EKV v2.6 Users' Meeting EKV v2.6 Users' Meeting -- 20042004 88

Description Description ofof thethe modelmodel contentscontents

The description is achieved by use of The description is achieved by use of KirchhoffKirchhoff lawslawsKirchhoffKirchhoff laws imply energy conservation rules on laws imply energy conservation rules on nodesnodesA A nodenode is associated to a is associated to a disciplinediscipline (electrical, (electrical, thermal, …)thermal, …)A A disciplinediscipline is characterized by two variables : is characterized by two variables :

potential/acrosspotential/acrossflowflow//throughthrough

MeansMeans to to accessaccess thesethese variables are variables are necessarynecessary

EKV v2.6 Users' Meeting EKV v2.6 Users' Meeting -- 20042004 99

Access to conservative variables in Access to conservative variables in thetheEKV transistor EKV transistor modelmodel

port (terminal port (terminal d,g,s,bd,g,s,b: electrical;: electrical;terminal terminal j:thermalj:thermal););

end;end;architecture architecture equequ of of ekvnekvn isis

quantity vg quantity vg acrossacross g to b;g to b;quantity quantity vdvd acrossacross d to b;d to b;quantity quantity vsvs acrossacross s to b;s to b;quantity id quantity id throughthrough d;d;quantity quantity isourceisource throughthrough s;s;quantity quantity gpowergpower throughthrough thermal_groundthermal_ground to j;to j;quantity temp quantity temp acrossacross j to j to thermal_groundthermal_ground;;

……id==(id==(ispecispec*(*(iffiff--irir));));isourceisource == == --id;id;gpowergpower == == abs(idabs(id * (* (vdvd--vsvs));));

Free and bound quantities.Free and bound quantities.Declare once,Declare once,Implicit reference when usedImplicit reference when used

Access Access functionfunction in in thethe ODAEODAEElectricalElectrical : : I()I() flowflow, , V()V() potentialpotential

Thermal : Thermal : PwrPwr()() flowflow, , TempTemp()() potentialpotentialAccess Access functionsfunctions scatteredscattered throughoutthroughout thethe code code ofofanaloganalog behaviorbehaviorImportance Importance ofof thethe contribution contribution operatoroperator <+ <+

analog begin // EKV v2.6 longanalog begin // EKV v2.6 long--channelchannelvg = vg = V(V(g,bg,b)); ; vsvs = = V(V(s,bs,b)); ; vdvd = = V(V(d,bd,b));;

konqkonq ==boltzboltz/charge; /charge; vtvt = = konqkonq * * Temp(Temp(jj)) + 1.0E+ 1.0E--20;20;

……I(I(dd)) <+ id;<+ id;Pwr(Pwr(jj)) <+ <+ abs(idabs(id * (* (vdvd--vsvs));));

end // analog end // analog endmoduleendmodule

VHDL-AMS Verilog-AMS

EKV v2.6 Users' Meeting EKV v2.6 Users' Meeting -- 20042004 1010

ContinuousContinuous BehaviorBehavior StatementStatement

analog blockbeginvar1 = f(exp1,exp2);res <+ var1;

end;

analog blockbeginif (exp)

var1 = f(exp1,exp2);else

var1 = f(exp1,exp3);res <+ var1;

end;

analog block…

end;

begin…exp1 == exp2 ;…

end;

if exp then useexp1 == exp2 ;

elseexp1 == exp3 ;

end if;

proceduralbegin…end;

Verilog-AMSVHDL-AMS

Simple simultaneousStatement

Vs

Analog block

EKV v2.6 Users' Meeting EKV v2.6 Users' Meeting -- 20042004 1111

Id(Id(VdVd) ) CharacteristicCharacteristic plotplot

Without thermal effects

For a long channel

Verilog-AMS

EKV v2.6 Users' Meeting EKV v2.6 Users' Meeting -- 20042004 1212

Id(Id(VdVd) ) CharacteristicCharacteristic plotplot

1.0x10-3

0.8

0.6

0.4

0.2

0.0

I D [A

]

1.41.21.00.80.60.40.20.0

VD [V]

VG = 0.5, 0.75, ... 1.5V

Without thermal effects

W/L = 1.5µµµµm/0.15µµµµm

VHDL-AMS

EKV v2.6 Users' Meeting EKV v2.6 Users' Meeting -- 20042004 1313

ThermalThermal--electronicelectronic effectseffects in action:in action:downgradingdowngrading ofof IIDD -- VVDD characteristiccharacteristic

800x10-6

600

400

200

0

I D [A

]

1.41.21.00.80.60.40.20.0

VD [V]

440

420

400

380

360

340

320

300

Chip temperature [K

]

Chip temperature ID

VG = 0.5, 0.75, ... 1.5V

W/L = 1.5µµµµm/0.15µµµµm

With thermal effects

VHDL-AMS

EKV v2.6 Users' Meeting EKV v2.6 Users' Meeting -- 20042004 1414

ThermalThermal--electronicelectronic effectseffects in action:in action:downgradingdowngrading ofof QQII/G/GMM -- VVGG characteristicscharacteristics

-1.0x10-15

-0.8

-0.6

-0.4

-0.2

0.0

Inve

rsio

n Ch

arge

, QI [

C]

1.41.21.00.80.60.40.20.0VG [V]

800x10-6

600

400

200

0

GM

[A/V

] QI (with thermal coupling) QI (without themal coupling) GM (without thermal coupling) GM ( with thermal coupling)

VD = 1.1 V

Temperature

Temperature

W/L = 1.5µµµµm/0.15µµµµm

VHDL-AMS

EKV v2.6 Users' Meeting EKV v2.6 Users' Meeting -- 20042004 1515

Thermal Thermal couplingcoupling betweenbetween thethe nMOSTnMOSTandand thethe pMOSTpMOST for for differentdifferent values values ofof

couplingcoupling

N

PRcoupling

Ambienttemp.

Vdd = 1.5 V

Load

EKV v2.6 Users' Meeting EKV v2.6 Users' Meeting -- 20042004 1616

Simulation Simulation resultsresults300.0005

300.0004

300.0003

300.0002

300.0001

Tran

sisto

r chi

p te

mpe

ratu

re [K

]

700x10-9

6005004003002001000

Time [s]

1.0x10-3

0.8

0.6

0.4

0.2

0.0

Dissipated pow

er [W]

n- transistor (strong thermal coupling) (1) p- transistor (strong thermal coupling) (2) n- transistor (weak thermal coupling) (3) p- transistor (weak thermal coupling) (4)

power in a n-transistor

12

3

4 W/L = 1.5µµµµm/0.15µµµµm

VHDL-AMS

EKV v2.6 Users' Meeting EKV v2.6 Users' Meeting -- 20042004 1717

OthersOthers studiesstudies on on thethe EKV MOST EKV MOST Model v2.6Model v2.6

Gate

Drain

cgsov

Bulk

Source

Intrinsic EKV model elements

cgbov cgbi cgs i cgdi cgdov

IDS

csbj csbi cdbi IDB cdbjRSeff RDeff

EKV v2.6 Users' Meeting EKV v2.6 Users' Meeting -- 20042004 1818

TakingTaking DeepDeep submicronsubmicron effectseffects intointoaccountaccount ((extrinsicextrinsic aspects)aspects)

tpoly

tox

Hdif

Ld

n+

Ldif

Leff/2

n-

Source Gate

Oxyde

(Ω/ )RSH0 RS0

Cov,eff

Cfringing

ld eff

tpoly

tox

n+

source

ld

Gate

n-

depleted area(bias dependent)

Mandatory when L ≤ 0.35 µ

CapacitancesResistances

5 parameters added to the EKV model

EKV v2.6 Users' Meeting EKV v2.6 Users' Meeting -- 20042004 1919

SeriesSeries parasiticparasitic resistancesresistances effectseffects : : IIDD--VVGG andand RsRseffeff//RdRdeffeff -- VVGG characteristicscharacteristics

1.4x10-3

1.2

1.0

0.8

0.6

0.4

0.2

0.0

I D [A

]

2.01.51.00.50.0

VG [V]

35

30

25

20

15

10

RS eff [ohm

] ID, for RS eff, RD eff = f(bias) ID, for RS eff, RD eff = constant RS eff

VD = 0.1 VVD = 2.1 V

ID for VD = 0.1 V

ID for VD = 2.1 V RS eff

W/L = 1.5µµµµm/0.15µµµµm

VHDL-AMS

EKV v2.6 Users' Meeting EKV v2.6 Users' Meeting -- 20042004 2020

ParasiticParasitic capacitancescapacitances1.2

1.0

0.8

0.6

0.4

0.2

0.0

Nor

mal

ized

CG

S cap

acita

nce

[-]

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5VG [V]

COX

Extrinsic behavior Intrinsic behavior

Fringing capacitance

VS = VD = 0V W/L = 1.5µµµµm/0.15µµµµm

VHDL-AMS

EKV v2.6 Users' Meeting EKV v2.6 Users' Meeting -- 20042004 2121

OngoingOngoing researchesresearches

StudiesStudies on on ModelingModeling on on MultiMulti--disciplinesdisciplines systemssystems((electricalelectrical, , mechanicalmechanical, thermal, , thermal, opticaloptical, , chemicalchemical)*)*

* F. Pécheux, C. Lallement, A. Vachoux, “VHDL-AMS and Verilog-AMS as alternative HDL's for the Efficient Modeling of Multi-disciplines Schemes,” 'IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems‘,February 20005

* F. Pécheux, B. Allard, C. Lallement, A. Vachoux, H. Morel “Modeling and simulation using bond graphs and VHDL-AMS” accepted to the ICBGM’2005 conference, january2005, New Orleans - USA

2222

ConclusionConclusion

+ + ImplicitImplicit construction construction ofof thethe Kirchhoff Kirchhoff graphgraph+ Simple + Simple SimultaneousSimultaneousstatementstatement-- Non mutable PortsNon mutable Ports-- ProceduralProcedural notnotsupportedsupported yetyet by by toolstoolsPowerfulPowerful simultaneoussimultaneousstatementsstatements

Explicit construction via Explicit construction via contribution contribution operatoroperator <+<+-- Access Access functionsfunctions scatteredscatteredthroughoutthroughout thethe ODAEODAE+ + ImplicitImplicit declarationdeclaration ofofnets nets andand portsports+ + AutomaticAutomatic insertion insertion ofofconnectconnect modulesmodules+ Major + Major enhancementsenhancements in in VerilogVerilog--DD 2001 but 2001 but notnot yetyetsupportedsupported by by toolstools

TheThe samesame systemsystem cancan bebe implementedimplementedbothboth in VHDLin VHDL--AMS and AMS and VerilogVerilog--AMSAMSVHDL-AMS Verilog-AMS

EKV v2.6 Users' Meeting EKV v2.6 Users' Meeting -- 20042004 2323

ArticlesArticlesF. Pécheux, C. Lallement, A. Vachoux, “VHDL-AMS and Verilog-AMS as alternative HDL's for the Efficient Modeling of Multi-disciplines Schemes,” 'IEEE Transactions on Computer-AidedDesign of Integrated Circuits and Systems‘, February 2005F. Pécheux, B. Allard, C. Lallement, A. Vachoux, H. Morel “Modeling and simulation usingbond graphs and VHDL-AMS” accepted to the ICBGM’2005 conference, january 2005, New Orleans - USAF. Pécheux, C. Lallement, “VHDL-AMS and VERILOG-AMS as Competitive Solutions for theHigh Level Description of Thermoelectrical Interactions in Opto-Electronic InterconnectionSchemes,” System Specification and Design Languages, Editeurs: E. Villar, J. Mermet, Kluwer(ISBN 1-4020 - 7414-X), pp. 41 - 43, avril 2003.C. Lallement, F. Pécheux, W. Grabinski, “High Level Description of Thermodynamical effectsin the EKV 2.6 MOST Model (Special session "MOS Modeling and Modern Mixmode Design"),” 9th International Conference Mixed Design of Integrated Circuits and Systems (MIXDES 2002), Wroclaw/Pologne, pages 45-50, juin 2002.C. Lallement, F. Pécheux et Y. Hervé, “A VHDL-AMS Case Study: The Incremental Design ofan Efficient 3rd generation MOS Model of Deep Sub Micron Transistor,” SOC Design Methodologies, Editeurs: M. Robert, B. Rouzeyre, C. Piguet, M. -L. Flottes, Kluwer AcademicPublishers, Boston, Hardbound (ISBN 1-4020-7148-5), pages 349 - 360, juillet 2002.C. Lallement, F. Pêcheux, Y. Hervé,” VHDL-AMS design of a MOST model including deepsubmicron and thermal-electronic effects,” 2001 IEEE Workshop BMAS 2001, pp. 91-96, Santa Rosa, USA, 2001.

More informations More informations cancan bebe foundfound in:in: