Hermann Nicolai MPI fu¨r Gravitationsphysik, Potsdam...

23
bla Conformal Standard Model and the Planck Scale Hermann Nicolai MPI f¨ ur Gravitationsphysik, Potsdam (Albert Einstein Institut) Based on joint work with Krzysztof A. Meissner [hep-th/0612165, arXiv:0710.2840, arXiv:0803.2814, arXiv:0809.1338[hep-th]]

Transcript of Hermann Nicolai MPI fu¨r Gravitationsphysik, Potsdam...

Page 1: Hermann Nicolai MPI fu¨r Gravitationsphysik, Potsdam ...planckscale/lectures/1-Monday/3-Nicolai.pdfConformal Standard Model and the Planck Scale Hermann Nicolai MPI fu¨r Gravitationsphysik,

bla

Conformal Standard Model and the Planck Scale

Hermann Nicolai

MPI fur Gravitationsphysik, Potsdam

(Albert Einstein Institut)

Based on joint work with Krzysztof A. Meissner

[hep-th/0612165, arXiv:0710.2840, arXiv:0803.2814, arXiv:0809.1338[hep-th]]

Page 2: Hermann Nicolai MPI fu¨r Gravitationsphysik, Potsdam ...planckscale/lectures/1-Monday/3-Nicolai.pdfConformal Standard Model and the Planck Scale Hermann Nicolai MPI fu¨r Gravitationsphysik,

Executive Summary

• Standard Model (= SM) of elementary particle physicsnot only well tested but also extremely economical(chirality, anomalies, CP-violation, etc.)

• Nevertheless, SM is incomplete: neither it nor anyof its extensions (supersymmetric or not) withinrelativistic QFT are expected to exist rigorously.

• Resulting need to embed the SM into a theory whichis probably not a space-time based QFT is one ofthe strongest arguments for quantizing gravity.

• Key question: how is SM linked to Planck scale?

• To be decided by experiment (LHC??): is the Planckscale MPl ‘screened’ from weak scale mW by (possi-bly a cascade of) new scales or not?

Page 3: Hermann Nicolai MPI fu¨r Gravitationsphysik, Potsdam ...planckscale/lectures/1-Monday/3-Nicolai.pdfConformal Standard Model and the Planck Scale Hermann Nicolai MPI fu¨r Gravitationsphysik,

• Basic hypothesis: SM can survive as is up to MPl

for a restricted range of SM coupling parameters:

– no low energy supersymmetry

– no GUTs (grand unification)

– no large extra dimensions BUT: ‘Occam’s razor’!

• Existence of small scales with respect to MPl mightbe explained by conformal symmetry SO(2, 4) andits quantum mechanical breaking via anomalies.

• Our approach tries to be ‘agnostic’ about what isthe correct theory of quantum gravity.

• Conversely, search for quantum gravity better notignore hints from SM about physics at large scales(renormalizability, anomaly cancellations, ...).

• What does the presumed UV finiteness of quantumgravity imply for low energy (= SM) physics?

Page 4: Hermann Nicolai MPI fu¨r Gravitationsphysik, Potsdam ...planckscale/lectures/1-Monday/3-Nicolai.pdfConformal Standard Model and the Planck Scale Hermann Nicolai MPI fu¨r Gravitationsphysik,

Reminder: the conformal group SO(2, 4)

This is an old subject! [see e.g. H.Kastrup, arXiv:0808.2730]

Conformal group = extension of Poincare group (withgenerators Mµν, Pµ) by five more generators D and Kµ:

• Dilatations (D) : xµ → eαxµ

• Special conformal transformations (Kµ):

x′µ =xµ − x2 · cµ

1 − 2c · x + c2x2

eiαDP µPµe−iαD = e2αP µPµ ⇒ exact conformal invariance

implies that one-particle spectrum is either continuous(= R+) or consists only of the single point {0}.

Consequently, conformal group cannot be realized asan exact symmetry in nature.

Page 5: Hermann Nicolai MPI fu¨r Gravitationsphysik, Potsdam ...planckscale/lectures/1-Monday/3-Nicolai.pdfConformal Standard Model and the Planck Scale Hermann Nicolai MPI fu¨r Gravitationsphysik,

Mass Generation and Hierarchy

• Fact: Standard Model of elementary particle physicsis conformally invariant at tree level except for ex-plicit mass term m2Φ†Φ in potential → masses forvector bosons, quarks and leptons.

• Why m2 < 0 rather than m2 > 0 ?

• Quantum corrections δm2 ∼ Λ2 ⇒ why mH ≪ MPl ?(with UV cutoff Λ = scale of ‘new physics’)

– stabilization/explanation of hierarchy?

• Most popular proposal: SM −→ MSSM or NMSSM:use supersymmetry to control quantum correctionsvia cancellation of quadratic divergences ⇒

δm2 ∼ Λ2SUSY ln(Λ2/Λ2

SUSY )

Page 6: Hermann Nicolai MPI fu¨r Gravitationsphysik, Potsdam ...planckscale/lectures/1-Monday/3-Nicolai.pdfConformal Standard Model and the Planck Scale Hermann Nicolai MPI fu¨r Gravitationsphysik,

The demise of relativistic quantum field theory

• With SM-like bosonic and fermionic matter, UVand IR Landau poles are generically unavoidable.

• Thus breakdown of any extension of the standardmodel (supersymmetric or not) that stays withinthe framework of relativistic quantum field theoryis probably unavoidable [as it appears to be for λφ4

4].

• Therefore the main challenge is to delay breakdownuntil MPl where a proper theory of quantum gravityis expected to replace quantum field theory.

• How the MSSM achieves this: scalar self-couplingstied to gauge coupling λ ∝ g2 by supersymmetry,and thus controlled by gauge coupling evolution.

⇒ mH ≤√

2mZ in (non-exotic variants of) MSSM.

Page 7: Hermann Nicolai MPI fu¨r Gravitationsphysik, Potsdam ...planckscale/lectures/1-Monday/3-Nicolai.pdfConformal Standard Model and the Planck Scale Hermann Nicolai MPI fu¨r Gravitationsphysik,

Conformal invariance and the Standard Model

Can classically unbroken conformal symmetry stabilizethe weak scale w.r.t. the Planck scale? Claim: Yes, if

• there are no intermediate mass scales betweenmW and MPl (‘grand desert scenario’); and

• the RG evolved couplings exhibit neither Landaupoles nor instabilities (of the effective potential)over this whole range of energies.

Thus: is it possible to explain all mass scales from asingle scale v via the quantum mechanical breaking ofconformal invariance (i.e. via conformal anomaly)

→ Hierarchy ‘natural’ in the sense of ’t Hooft?

NB: 97% of proton mass is explained by such an effect(quantum mechanically generated mass scale ΛQCD)!

Page 8: Hermann Nicolai MPI fu¨r Gravitationsphysik, Potsdam ...planckscale/lectures/1-Monday/3-Nicolai.pdfConformal Standard Model and the Planck Scale Hermann Nicolai MPI fu¨r Gravitationsphysik,

Evidence for large scales other than MPl?

• Light neutrinos (mν ≤ O(1 eV)) and heavy neutrinos

→ most popular (and most plausible) explanationof observed mass patterns via seesaw mechanism:

m(1)ν ∼ m2

D

M, mD = O(mW ) ⇒ m(2)

ν ∼ M ≥ O(1012 GeV)?

• Resolution of strong CP problem ⇒ need axion a(x).

Limits e.g. from axion cooling in stars ⇒

L =1

4faaF µνFµν with fa ≥ O(1010 GeV)

NB: axion is (still) an attractive CDM candidate.

• By contrast, no experimental evidence for GUTs sofar although these have some attractive features.

Page 9: Hermann Nicolai MPI fu¨r Gravitationsphysik, Potsdam ...planckscale/lectures/1-Monday/3-Nicolai.pdfConformal Standard Model and the Planck Scale Hermann Nicolai MPI fu¨r Gravitationsphysik,

Coleman-Weinberg Mechanism (1973)

• Idea: spontaneous symmetry breaking by radiativecorrections =⇒ can small mass scales be explainedvia conformal anomaly and effective potential ?

V (ϕ) =λ

4ϕ4 → Veff(ϕ) =

λ

4ϕ4 +

9λ2ϕ4

64π2

[

ln

(

ϕ2

µ2

)

+ C0

]

• But: when can we trust one-loop approximation?

– Radiative breaking spurious for pure ϕ4 theory

– Scalar electrodynamics: consistent for λ ∼ e4

[See e.g.: Sher, Phys.Rep.179(1989)273; Ford,Jones,Stephenson,Einhorn, Nucl.Phys.B395(1993)17;

Chishtie,Elias,Mann,McKeon,Steele, NPB743(2006)104]

• And: can this be made to work for real world (=SM)?

– mH > 115 GeV and mtop = 174 GeV

Page 10: Hermann Nicolai MPI fu¨r Gravitationsphysik, Potsdam ...planckscale/lectures/1-Monday/3-Nicolai.pdfConformal Standard Model and the Planck Scale Hermann Nicolai MPI fu¨r Gravitationsphysik,

Regularization and Renormalization

• Conformal invariance must be broken explicitly forcomputation of quantum corrections via regulatormass scale with any regularization.

• Most convenient: dimensional regularization∫

d4k

(2π)4→ v2ǫ

d4−2ǫk

(2π)4−2ǫ

• Renormalize by requiring exact conformal invari-ance of the local part of the effective action ⇒ pre-serve anomalous Ward identity T µ

µ(φ) = β(λ)O4(φ)[See also: W. Bardeen, FERMILAB-CONF-95-391-T, FERMILAB-CONF-95-377-T]

• (Renormalized) effective action to any order:

– no mass terms (∝ v2) in divergent or finite parts

– conformal symmetry broken only by logarithmic terms

containing L ≡ ln(φ2/v2) (to any order!)

Page 11: Hermann Nicolai MPI fu¨r Gravitationsphysik, Potsdam ...planckscale/lectures/1-Monday/3-Nicolai.pdfConformal Standard Model and the Planck Scale Hermann Nicolai MPI fu¨r Gravitationsphysik,

A Minimalistic Proposal

• Minimal extension of SM with classical conformalsymmetry (i.e. no tree level mass terms) and:

– right-chiral neutrinos

– enlarged scalar sector: Φ and φ

• No large intermediate scales (‘grand desert’)

⇒ no grand unification, no low energy SUSY[also: M. Shaposhnikov, arXiv:0708.3550[hep-th]; R. Foot et al., arXiv:0709.2750[hep-ph]]

• All mass scales from effective (CW) potential:

– no new scales required to explain mν < 1 eV ifYukawa couplings vary over Y ∼ O(1) – O(10−5)

– no new scales required to explain fa ≥ O(1012 GeV)

Page 12: Hermann Nicolai MPI fu¨r Gravitationsphysik, Potsdam ...planckscale/lectures/1-Monday/3-Nicolai.pdfConformal Standard Model and the Planck Scale Hermann Nicolai MPI fu¨r Gravitationsphysik,

Minimally Extended Standard Model

• Start from conformally invariant (and therefore renor-malizable) Lagrangian L = Lkin + L′ with:

L′ :=(

LiΦY Eij Ej + QiǫΦ∗Y D

ij Dj + QiǫΦ∗Y Uij U j +

+LiǫΦ∗Y νijν

jR + φνiT

R CY Mij νj

R + h.c.)

−λ1

4(Φ†Φ)2−λ2

2(φ†φ)(Φ†Φ) − λ3

4(φ†φ)2

[See also Shaposhnikov, Tkachev, PLB639(2006)104: the ‘νMSM’]

• Besides usual SU (2) doublet Φ: new scalar field φ(x)

φ(x) = ϕ(x) exp

(

ia(x)√2µ

)

a(x) ≡ ‘Majoron’

• No mass terms, all coupling constants dimensionless

• Y Uij , Y E

ij , Y Mij real and diagonal; Y D

ij , Y νij complex

Page 13: Hermann Nicolai MPI fu¨r Gravitationsphysik, Potsdam ...planckscale/lectures/1-Monday/3-Nicolai.pdfConformal Standard Model and the Planck Scale Hermann Nicolai MPI fu¨r Gravitationsphysik,

Effective potential at one loop

Veff(H, ϕ) =λ1H

4

4+

λ2H2ϕ2

2+

λ3ϕ4

4+

9

16π2α2

wH4 ln

[

H2

v2

]

+3

256π2(λ1H

2 + λ2ϕ2)2ln

[

λ1H2 + λ2ϕ

2

v2

]

+1

256π2(λ2H

2 + λ3ϕ2)2ln

[

λ2H2 + λ3ϕ

2

v2

]

+1

64π2F 2

+ln

[

F+

v2

]

+1

64π2F 2−ln

[

F−v2

]

− 6

32π2g4

t H4 ln

[

H2

v2

]

− 1

32π2Y 4

Mϕ4 ln

[

ϕ2

v2

]

with H2 ≡ Φ†Φ and ϕ2 ≡ φ†φ

F±(H, ϕ) ≡ 3λ1 + λ2

4H2 +

3λ3 + λ2

4ϕ2 ±

[

3λ1 − λ2

4H2 − 3λ3 − λ2

4ϕ2

]2

+ λ2

2ϕ2H2

Page 14: Hermann Nicolai MPI fu¨r Gravitationsphysik, Potsdam ...planckscale/lectures/1-Monday/3-Nicolai.pdfConformal Standard Model and the Planck Scale Hermann Nicolai MPI fu¨r Gravitationsphysik,

Numerical analysis

Choice of parameters strongly constrained by experi-mental data and RGE analysis → ‘trial and error’ →

λ1 = 3.77 , λ2 = 3.72 , λ3 = 3.73 , gt = 1 , Y 2M = 0.4

Minimum lies at

〈H〉 = 2.74 · 10−5 v , 〈ϕ〉 = 1.51 · 10−4 v

Normalize this by setting 〈H〉 = 174 GeV ⇒H ′ = H cos β + ϕ sin β , ϕ′ = −H sin β + ϕ cos β

mH ′ = 207 GeV, mϕ′ = 477 GeV; sin β = 0.179

‘Higgs mixing’: only the components along H of themass eigenstates couple to the usual SM particles.

Neutrino mass eigenvalues: with |Yν| < 10−5 we get

m(1)ν =

(Yν〈H〉)2YM〈ϕ〉 < 1 eV , m(2)

ν = YM〈ϕ〉 ∼ 440 GeV

Page 15: Hermann Nicolai MPI fu¨r Gravitationsphysik, Potsdam ...planckscale/lectures/1-Monday/3-Nicolai.pdfConformal Standard Model and the Planck Scale Hermann Nicolai MPI fu¨r Gravitationsphysik,

Renormalization Group Equations

With

y1 =λeff

1

4π2, y2 =

λeff2

4π2, y3 =

λeff3

4π2, x =

g2t

4π2, u =

Y 2M

4π2, z3 =

αs

π, z2 =

αw

π

we get

µdy1

dµ=

3

2y2

1 +1

8y2

2 − 6x2 +9

8z2

2 ,

µdy2

dµ=

3

8y2

(

2y1 + y3 +4

3y2

)

,

µdy3

dµ=

9

8y2

3 +1

2y2

2 − u2, µdu

dµ=

3

4u2

µdx

dµ=

9

4x2 − 4xz3, µ

dz3

dµ= −7

2z2

3, µdz2

dµ= −19

12z2

2

Start running at µ0 for which λeff ∼ λ(µ0) ↔ µ0 ∼ 〈H〉.

Page 16: Hermann Nicolai MPI fu¨r Gravitationsphysik, Potsdam ...planckscale/lectures/1-Monday/3-Nicolai.pdfConformal Standard Model and the Planck Scale Hermann Nicolai MPI fu¨r Gravitationsphysik,

RG Evolution of Coupling Constants

lambda1/4/Pi^2

0

0.01

0.02

0.03

0.04

2 4 6 8 10 12 14 16 18

log10(E/GeV)

lambda2/4/Pi^2

0

0.005

0.01

0.015

0.02

0.025

2 4 6 8 10 12 14 16 18

log10(E/GeV)

lambda3/4/Pi^2

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

2 4 6 8 10 12 14 16 18

log10(E/GeV)

g_t^2/4/Pi^2

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

2 4 6 8 10 12 14 16 18

log10(E/GeV)

YM^2/4/Pi^2

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

2 4 6 8 10 12 14 16 18

log10(E/GeV)

alpha_s/Pi

0

0.01

0.02

0.03

0.04

0.05

2 4 6 8 10 12 14 16 18

log10(E/GeV)

Page 17: Hermann Nicolai MPI fu¨r Gravitationsphysik, Potsdam ...planckscale/lectures/1-Monday/3-Nicolai.pdfConformal Standard Model and the Planck Scale Hermann Nicolai MPI fu¨r Gravitationsphysik,

Discussion

• All couplings stay bounded up to O(1020 GeV)

• Thus: model may remain viable up to Planck scale

• Caveats: Numerics? Higher order corrections?Expect better estimates from RG improvement

• If we identify axion = Majoron we get (at two loops)

fa =2π2m2

W

αwαemmνYM∼ O(1015 GeV)

and analogous result for gluonic couplings of a(x).⇒ smallness of axionic couplings to SM particlesexplained by neutrino mixing and smallness of mν.

Page 18: Hermann Nicolai MPI fu¨r Gravitationsphysik, Potsdam ...planckscale/lectures/1-Monday/3-Nicolai.pdfConformal Standard Model and the Planck Scale Hermann Nicolai MPI fu¨r Gravitationsphysik,

Neutrinos and Axions

eL

eL

aq

W

νL/νR

νL/νR

γ

γ

p2

p1

eL = aee

Axion-photon-photon effective vertex

uL

uL

aq

W

W

dL

νL/νR

νL/νR

g

g

p2

p1

uL eL

Axion-gluon-gluon effective vertex

Page 19: Hermann Nicolai MPI fu¨r Gravitationsphysik, Potsdam ...planckscale/lectures/1-Monday/3-Nicolai.pdfConformal Standard Model and the Planck Scale Hermann Nicolai MPI fu¨r Gravitationsphysik,

Discussion

• All couplings stay bounded up to O(1020 GeV)

• Thus: model may remain viable up to Planck scale

• Caveats: Numerics? Higher order corrections?Expect better estimates from RG improvement

• If we identify axion = Majoron we get (at two loops)

fa =2π2m2

W

αwαemmνYM∼ O(1015 GeV)

and analogous result for gluonic couplings of a(x).⇒ smallness of axionic couplings to SM particlesexplained by neutrino mixing and smallness of mν.

• Key question: do the observed values of couplingsfor (minimally extended) SM conspire to make thiswork? Could become an experimental question....

Page 20: Hermann Nicolai MPI fu¨r Gravitationsphysik, Potsdam ...planckscale/lectures/1-Monday/3-Nicolai.pdfConformal Standard Model and the Planck Scale Hermann Nicolai MPI fu¨r Gravitationsphysik,

An unmistakable signature?

New scalar ϕ = ‘fat twin brother’ of SM Higgs!

H

b Z0

b Z0

H ϕ H

b Z0

b Z0

a) b)

Resonant production for mH ′ > 2mZ and mϕ′ > 2mZ

Identical branching ratios: ‘shadow Higgs’

Decay widths ΓH ′ ∝ cos2 β and Γϕ′ ∝ sin2 β ⇒for large mϕ′ second resonance narrow if β small.

Thus: ‘twin peaks’ at unusual mass values > 200 GeV!

Cf.: ‘Veltman’s window’ for SM: mH ∼ O(190GeV) ; MSSM: mH < O(135GeV)

Page 21: Hermann Nicolai MPI fu¨r Gravitationsphysik, Potsdam ...planckscale/lectures/1-Monday/3-Nicolai.pdfConformal Standard Model and the Planck Scale Hermann Nicolai MPI fu¨r Gravitationsphysik,

Conformal invariance from gravity?

Here not from scale (Weyl) invariant gravity, but:

N = 4 supergravity 1[2] ⊕ 4[32] ⊕ 6[1] ⊕ 4[1

2] ⊕ 2[0]

coupled to n vector multiplets n × {1[1] ⊕ 4[12] ⊕ 6[0]}Gauged N = 4 SUGRA: [Bergshoeff,Koh,Sezgin; de Roo,Wagemans (1985)]

• Scalars φ(x) = exp(LIAT I

A) ∈ SO(6, n)/SO(6) × SO(n)

• YM gauge group GYM ⊂ SO(6, n) with dim GYM = n + 6

[Example inspired by ‘Groningen derivation’ of conformal M2

brane (‘Bagger-Lambert’) theories from gauged D = 3 SUGRAs]

Although this theory is not conformally invariant, theconformally invariant N = 4 SUSY YM theory nev-ertheless emerges as a κ → 0 limit, which ‘flattens’spacetime (with gµν = ηµν + κhµν) and coset space

SO(6, n)/((SO(6) × SO(n)) −→ R6n ∋ φ[ij] a(x)

Page 22: Hermann Nicolai MPI fu¨r Gravitationsphysik, Potsdam ...planckscale/lectures/1-Monday/3-Nicolai.pdfConformal Standard Model and the Planck Scale Hermann Nicolai MPI fu¨r Gravitationsphysik,

Exemplify this claim for scalar potential: with

Caij = κ2fabcφ[ik]

bφ[jk] c + O(κ3) , Cij = κ3fabcφ[ik]aφb [kl]φ[lj]

c + O(κ4)

potential of gauged theory is (m, n = 1, . . . , 6; κ|z| < 1)

V (φ) =1

κ4

(1 − κz)(1 − κz∗)

1 − κ2zz∗

(

CaijCai

j −4

9C ijCij

)

= Tr [Xm, Xn]2 + O(κ)

Idem for all other terms in Lagrangian! Unfortunately

• N = 4 SYM is quantum mechanically conformal theory

→ no conformal anomaly → no symmetry breaking!

• Thus need non-supersymmetric vacuum with Λ = 0

⇒ must look for a better theory with above features!

But there remain several conceptual puzzles:

• Origin of anomalies in UV finite quantum gravity?

• Metamorphosis of CW mechanism: from UV to IR?

Page 23: Hermann Nicolai MPI fu¨r Gravitationsphysik, Potsdam ...planckscale/lectures/1-Monday/3-Nicolai.pdfConformal Standard Model and the Planck Scale Hermann Nicolai MPI fu¨r Gravitationsphysik,

Outlook

• Scheme is consistent with all available data andseems more economical than MSSM-type models

• New features (for classically conformal theories):– an unsuspected link between weak scale and ΛQCD

– symmetry breaking becomes mandatory for ΛIR > 0

• Conformal invariance may still be the ‘best’ expla-nation why we live in D = 4 space-time dimensions.

• Main role of SUSY might be at MPl in renderingquantum gravity (perturbatively) consistent.

• Emergence of conformally invariant theory fromgravity (which is not conformally invariant)?

• ‘Grand desert’ may possibly provide us with anunobstructed view of Planck scale physics!