GRAVITATIONAL REDSHIFTS

39
GRAVITATIONAL REDSHIFTS versus convective blueshifts, and wavelength variations across stellar disks Dainis Dravins Lund Observatory, Sweden KVA IAU Comm.30, IAU XXVIII GA Beijing, August 2012

description

IAU Comm.30, IAU XXVIII GA Beijing, August 2012. KVA. GRAVITATIONAL REDSHIFTS versus convective blueshifts , and wavelength variations across stellar disks Dainis Dravins – Lund Observatory , Sweden www.astro.lu.se /~ dainis. 100 years ago… . Predicted effects by gravity on light. - PowerPoint PPT Presentation

Transcript of GRAVITATIONAL REDSHIFTS

Page 1: GRAVITATIONAL REDSHIFTS

GRAVITATIONAL REDSHIFTS versus convective blueshifts, and

wavelength variations across stellar disks

Dainis Dravins – Lund Observatory, Swedenwww.astro.lu.se/~dainis

KVA

IAU Comm.30, IAU XXVIII GA Beijing, August 2012

Page 2: GRAVITATIONAL REDSHIFTS

100 years ago…

Page 3: GRAVITATIONAL REDSHIFTS

A.Einstein, Annalen der Physik 340, 848 (1911)

Predicted effects by gravity on light

Page 4: GRAVITATIONAL REDSHIFTS

Klaus Hentschel: Erwin Finlay Freundlich and Testing Einstein’s Theory of Relativity, Archive for History of Exact Sciences 47, 243 (1994)

Freundlich’s attempts to verify relativity theory (I)

Erwin Finlay Freundlich (1885-1964) worked to experimentally verify the predictions from Einstein’s theory of relativity and the effects of gravity on light.

Page 5: GRAVITATIONAL REDSHIFTS

Freundlich’s attempts to verify relativity theory (II)

Klaus Hentschel: Erwin Finlay Freundlich and Testing Einstein’s Theory of Relativity, Archive for History of Exact Sciences 47, 243 (1994)

Einsteinturm, Potsdam-Telegrafenberg

Page 6: GRAVITATIONAL REDSHIFTS

Gravitational redshift in white dwarfs

Page 7: GRAVITATIONAL REDSHIFTS

Gravitational redshift in “normal”

stars?

Page 8: GRAVITATIONAL REDSHIFTS

Expected gravitation

al redshifts

D. DravinsIAU Symp. 210

Page 9: GRAVITATIONAL REDSHIFTS

R.F.Griffin: Spectroscopic Binaries near the North Galactic Pole. Paper 6: BD 33° 2206, J.Astrophys.Astron. 3, 383 (1982)

Expected gravitational redshifts

Page 10: GRAVITATIONAL REDSHIFTS

Radial velocities without

spectroscopy

Page 11: GRAVITATIONAL REDSHIFTS

Astrometric radial velocities

Dravins, Lindegren & Madsen, A&A 348, 1040

Page 12: GRAVITATIONAL REDSHIFTS

Pleiades from Hipparcos Proper motions over 120,000 years

Page 13: GRAVITATIONAL REDSHIFTS

Hyades lineshifts Madsen, Dravins & Lindegren, A&A 381, 446

Page 14: GRAVITATIONAL REDSHIFTS

S.Madsen, D.Dravins, H.-G.Ludwig, L.Lindegren: Intrinsic spectral blueshifts in rapidly rotating stars?, A&A 411, 581

Apparent radial velocity vs. rotation?

Page 15: GRAVITATIONAL REDSHIFTS

Differential velocities within

open clusters

Page 16: GRAVITATIONAL REDSHIFTS

B.Nordström, J.Andersen, M.I.Andersen: Critical tests of stellar evolution in open clusters II. Membership, duplicity, and stellar and dynamical evolution in NGC 3680, Astron. Astrophys. 322, 460

Different “velocities” ─ giants vs. dwarfs?

Page 17: GRAVITATIONAL REDSHIFTS

Dean Jacobsen, astrophoto.net

M 67

Page 18: GRAVITATIONAL REDSHIFTS

L.Pasquini, C.Melo, C.Chavero, D.Dravins, H.-G.Ludwig, P.Bonifacio, R.De La Reza:Gravitational redshifts in main-sequence and giant stars, A&A 526, A127 (2011)

Searching for gravitational redshifts in M67

M67 (NGC 2682) open cluster in Cancer contains some 500 stars;

age about 2.6 Gy, distance 850 pc.

M67 color–magnitude diagram with well-developed giant branch.

Filled squares denote single stars.

Dean Jacobsen, astrophoto.net

Page 19: GRAVITATIONAL REDSHIFTS

Searching for gravitational redshifts in M67

Radial velocities in M67 with a superposed Gaussian centered on

Vr = 33.73, σ = 0.83 km s−1

Radial velocities in M67: No difference seen between giants

(red) and dwarfs (dashed)L.Pasquini, C.Melo, C.Chavero, D.Dravins, H.-G.Ludwig, P.Bonifacio, R.De La Reza:

Gravitational redshifts in main-sequence and giant stars, A&A 526, A127 (2011)

Page 20: GRAVITATIONAL REDSHIFTS

Real line formation

Page 21: GRAVITATIONAL REDSHIFTS

Solar diskJune 12, 2009GONG/Teide

AN ”IDEAL” STAR ?

Page 22: GRAVITATIONAL REDSHIFTS

Solar Optical Telescope on board HINODE (Solar-B)G-band (430nm) & Ca II H (397nm) movies

Page 23: GRAVITATIONAL REDSHIFTS

Spectral scanacross the solar surface.

Left: H-alpha line

Right: Slit-jaw image

Big Bear Solar Observatory

Page 24: GRAVITATIONAL REDSHIFTS

“Wiggly” spectral lines of stellar

granulation

(modeled)

Disk-center Fe I profiles from 3-D hydrodynamic model of the metal-poor star HD 140283 in NLTE and LTE.Top: Synthetic “wiggly-line” spectra across stellar surface. Curves show equivalent widths W along the slit.

Bottom: Spatially resolved profiles; average is red-dotted. N.G.Shchukina, J.Trujillo Bueno, M.Asplund, Astrophys.J. 618, 939 (2005)

Page 25: GRAVITATIONAL REDSHIFTS

SPECTRAL LINES FROM 3-D HYDRODYNAMIC SIMULATIONS

(Models by Hans-Günter Ludwig, Landessternwarte Heidelberg)

Spatially averagedline profiles from20 timesteps, andtemporal averages.

= 620 nm = 3 eV5 line strengths

GIANT STAR

Teff= 5000 Klog g [cgs] = 2.5(approx. K0 III)

Page 26: GRAVITATIONAL REDSHIFTS

SPECTRAL LINES FROM 3-D HYDRODYNAMIC SIMULATIONS

(Models by Hans-Günter Ludwig, Landessternwarte Heidelberg)

Spatially andtemporallyaveragedline profiles.

= 620 nm = 1, 3, 5 eV5 line strengths

GIANT STAR

Teff= 5000 Klog g [cgs] = 2.5(approx. K0 III)

Stellar disk center;µ = cos = 1.0

Page 27: GRAVITATIONAL REDSHIFTS

SPECTRAL LINES FROM 3-D HYDRODYNAMIC SIMULATIONS

(Models by Hans-Günter Ludwig, Landessternwarte Heidelberg)

Spatially andtemporallyaveragedline profiles.

= 620 nm = 1, 3, 5 eV5 line strengths

GIANT STAR

Teff= 5000 Klog g [cgs] = 2.5(approx. K0 III)

Off stellar disk center;µ = cos = 0.59

Page 28: GRAVITATIONAL REDSHIFTS

SPECTRAL LINES FROM 3-D HYDRODYNAMIC SIMULATIONS

(Models by Hans-Günter Ludwig, Landessternwarte Heidelberg)

Spatially andtemporallyaveragedline profiles.

= 620 nm = 1, 3, 5 eV5 line strengths

SOLAR MODEL

Teff= 5700 Klog g [cgs] = 4.4(G2 V)

Solar disk center;µ = cos = 1.0

Page 29: GRAVITATIONAL REDSHIFTS

SPECTRAL LINES FROM 3-D HYDRODYNAMIC SIMULATIONS

(Models by Hans-Günter Ludwig, Landessternwarte Heidelberg)

Spatially andtemporallyaveragedline profiles.

= 620 nm = 1, 3, 5 eV5 line strengths

SOLAR MODEL

Teff= 5700 Klog g [cgs] = 4.4(G2 V)

Off solar disk center;µ = cos = 0.59

Page 30: GRAVITATIONAL REDSHIFTS

Cool-star granulation

causes convective lineshifts on order

300 m/s

Page 31: GRAVITATIONAL REDSHIFTS

Bisectors of the same

spectral line in

different stars

Adapted from Dravins & Nordlund,

A&A 228, 203

From left: Procyon (F5 IV-V),Beta Hyi (G2 IV),

Alpha Cen A (G2 V),Alpha Cen B (K1 V).

Velocity [m/s]

In stars with “corrugated”

surfaces, convective blueshifts increase

towards the stellar limb

F5 G2

IV

G2

V

K1

Page 32: GRAVITATIONAL REDSHIFTS

L.Pasquini, C.Melo, C.Chavero, D.Dravins, H.-G.Ludwig, P.Bonifacio, R.De La Reza:Gravitational redshifts in main-sequence and giant stars, A&A 526, A127 (2011)

Searching for gravitational redshifts in M67

Gravitational redshift predictionsvs. mass/radius ratio (M/R) (dashed red) do not agree with observations.

Calculated convective wavelength shifts for Fe I lines in dwarf (red

crosses) and giant models (squares).

Page 33: GRAVITATIONAL REDSHIFTS

H.M.Cegla, C.A.Watson, T.R.Marsh, S.Shelyag, V.Moulds, S.Littlefair, M.Mathioudakis, D.Pollacco, X.BonfilsStellar jitter from variable gravitational redshift: Implications for radial velocity confirmation of habitable exoplanetsMNRAS 421, L54 (2012)

Variable gravitational redshift in variable stars?

Stellar radius changes required to induce a δVgrav equivalent to an Earth-twin RV signal. Circles represent (right to left) spectral types: F0, F5, G0, G2, G5, K0, K5 and

M0.Dashed curves represent stellar radius variations of 50, 100 and 300 km

Page 34: GRAVITATIONAL REDSHIFTS

Spatially resolved spectroscopy across stellar

surfaces

Page 35: GRAVITATIONAL REDSHIFTS

Exoplanet transit

Selecting a small portion of the stellar disk

(Hiva Pazira, Lund Observatory)

Page 36: GRAVITATIONAL REDSHIFTS

Spatially resolved stellar spectroscopy

Left: Integrated line profilesVrot = 2, 40, 120 km/s

Right: Line behind planetTop: Noise-freeBottom: S/N = 300, R=300,000

(Hiva Pazira, Lund Observatory)

Page 37: GRAVITATIONAL REDSHIFTS

Synthetic line profilesacross stellar disksExamples of synthetic line profiles from hydrodynamic 3-D stellar atmospheres.

Curves are profiles for different positionson the stellar disk, at some instant in time.

Black curves are at disk-center;lower intensities of other curvesreflect the limb darkening.

Top: Solar model; Fe I, 620 nm, 1 eV.Bottom: Giant model; Fe I, 620 nm, 3 eV.

Disk locations cos = µ = 1, 0.87, 0.59, 0.21.

Simulation by Hans-Günter Ludwig (Landessternwarte Heidelberg)

Spatially resolved stellar spectroscopy

Page 38: GRAVITATIONAL REDSHIFTS

Hiva Pazira (Lund Observatory)

Spatially resolved spectroscopy with ELTs

Left: Hydrodynamic simulation of the supergiant Betelgeuse (B.Freytag)Right: Betelgeuse imaged with ESO’s 8.2 m VLT (Kervella et al., A&A, 504, 115)

Top right: 40-m E-ELT diffraction limits at 550 nm & 1.04 μm..

Page 39: GRAVITATIONAL REDSHIFTS