(Grand Challenges of Energy Science)Grand Challenges of ...Apr 13, 2017  · (Grand Challenges of...

19
Grand Challenges of Energy Science (Grand Challenges of Energy Science) Disordered Cathode Materials for Li-Ion Batteries Alexander Urban, Dong-Hwa Seo, Jinhyuk Lee, Aziz Abdellahi, and Gerbrand Ceder Department of Materials Science and Engineering, University of California, Berkeley. [email protected] Berkeley, CA, April 13, 2017

Transcript of (Grand Challenges of Energy Science)Grand Challenges of ...Apr 13, 2017  · (Grand Challenges of...

Page 1: (Grand Challenges of Energy Science)Grand Challenges of ...Apr 13, 2017  · (Grand Challenges of Energy Science)Grand Challenges of Energy Science Disordered Cathode Materials for

Grand Challenges of Energy Science (Grand Challenges of Energy Science) Disordered Cathode Materials for Li-Ion Batteries

Alexander Urban, Dong-Hwa Seo, Jinhyuk Lee,

Aziz Abdellahi, and Gerbrand Ceder

Department of Materials Science and Engineering,

University of California, Berkeley.

[email protected]

Berkeley, CA, April 13, 2017

Page 2: (Grand Challenges of Energy Science)Grand Challenges of ...Apr 13, 2017  · (Grand Challenges of Energy Science)Grand Challenges of Energy Science Disordered Cathode Materials for

Li-ion batteries have enabled a technological revolution

Apr. 13, 2017 Alex Urban - ALS Theory & Experiment 2

Li-ion batteries made possible

• Modern portable electronics

• Electric vehicles

Huge demand for better LIBs

• Make smartphones last longer/more powerful

• Increase range of EVs

Page 3: (Grand Challenges of Energy Science)Grand Challenges of ...Apr 13, 2017  · (Grand Challenges of Energy Science)Grand Challenges of Energy Science Disordered Cathode Materials for

Li-ion batteries function by shuttling Li ions

Apr. 13, 2017 Alex Urban - ALS Theory & Experiment 3

Li+ Li Li Li Li Li

Li+ Li Li Li Li Li

e‾ e‾

Negative Electrode Positive Electrode Electrolyte

Anode and cathode are conventionally named following the discharge direction.

discharge e‾

e‾ charge

charge

Page 4: (Grand Challenges of Energy Science)Grand Challenges of ...Apr 13, 2017  · (Grand Challenges of Energy Science)Grand Challenges of Energy Science Disordered Cathode Materials for

Figures of merit – criteria for improved LIBs

Apr. 13, 2017 Alex Urban - ALS Theory & Experiment 4

Amount of electrons (= Li) per mass or volume that can utilized

Voltage

Potential difference between electrodes.

Capacity

Cathode material (positive electrode) is current bottleneck for capacity & voltage.

Capacity × Voltage = Energy Density

Page 5: (Grand Challenges of Energy Science)Grand Challenges of ...Apr 13, 2017  · (Grand Challenges of Energy Science)Grand Challenges of Energy Science Disordered Cathode Materials for

Cathode research has focused on ordered TM oxides

Apr. 13, 2017 Alex Urban - ALS Theory & Experiment 5

O3-type layered LiCoO2-structure

Close-packed O framework Alternating Li and TM layers

High density

O

TM

Li

LCO (Co) NCA (Ni, Co, Al) NCM (Ni, Co, Mn)

Limitations

• Limited chemistry (Co, Ni, Mn, Al)

• Not entire Li content usable

• Limited capacity: 140-200 mAh/g

Page 6: (Grand Challenges of Energy Science)Grand Challenges of ...Apr 13, 2017  · (Grand Challenges of Energy Science)Grand Challenges of Energy Science Disordered Cathode Materials for

Energy densities of layered cathodes

Apr. 13, 2017 Alex Urban - ALS Theory & Experiment 6

Data from: Nitta et al., Materials Today 18 (2015) 252-264.

Greater specific capacities

needed

Energy Density (Wh/kg)

Page 7: (Grand Challenges of Energy Science)Grand Challenges of ...Apr 13, 2017  · (Grand Challenges of Energy Science)Grand Challenges of Energy Science Disordered Cathode Materials for

Cation-Disordered Cathode Materials for Li-Ion Batteries

Apr. 13, 2017 Alex Urban - ALS Theory & Experiment 7

Page 8: (Grand Challenges of Energy Science)Grand Challenges of ...Apr 13, 2017  · (Grand Challenges of Energy Science)Grand Challenges of Energy Science Disordered Cathode Materials for

Apr. 13, 2017 Alex Urban - ALS Theory & Experiment 8

layered O3

disordered rocksalt

J. Lee, A. Urban, X. Li, D. Su, G. Hautier, G. Ceder, Science 343 (2014) 519-522.

(34-52%)

Jinhyuk Lee Xin Li

Cation-disordered Li1.211Mo0.467Cr0.3O2

(LMCO)

well-separated Li and TM layers

intense cation mixing

Page 9: (Grand Challenges of Energy Science)Grand Challenges of ...Apr 13, 2017  · (Grand Challenges of Energy Science)Grand Challenges of Energy Science Disordered Cathode Materials for

Cation-disordered LMCO has a remarkable capacity

Apr. 13, 2017 Alex Urban - ALS Theory & Experiment 9

1 Li per LiMO2

J. Lee, A. Urban, X. Li, D. Su, G. Hautier, G. Ceder, Science 343 (2014) 519-522.

~1 Li atom per LiMO2 formula unit can be reversibly cycled

LiCoO2

Page 10: (Grand Challenges of Energy Science)Grand Challenges of ...Apr 13, 2017  · (Grand Challenges of Energy Science)Grand Challenges of Energy Science Disordered Cathode Materials for

Cation-disorder creates fast 0-TM diffusion channels

Apr. 13, 2017 Alex Urban - ALS Theory & Experiment 10

0-TM

1+

1+

2-TM

3+/4+

3+/4+

1-TM

1+

3+/4+

? ?

Cation disordered

Layered

3+/4+

Page 11: (Grand Challenges of Energy Science)Grand Challenges of ...Apr 13, 2017  · (Grand Challenges of Energy Science)Grand Challenges of Energy Science Disordered Cathode Materials for

Only 0-TM channels are active when disordered

Apr. 13, 2017 Alex Urban - ALS Theory & Experiment 11

disordered structures

Distribution of diffusion barriers calculated with DFT (PBE) and NEB

1-TM

0-TM

both channels active

1-TM

0-TM

only 0-TM active

J. Lee, A. Urban, X. Li, D. Su, G. Hautier, G. Ceder, Science 343 (2014) 519-522.

Page 12: (Grand Challenges of Energy Science)Grand Challenges of ...Apr 13, 2017  · (Grand Challenges of Energy Science)Grand Challenges of Energy Science Disordered Cathode Materials for

Apr. 13, 2017 Alex Urban - ALS Theory & Experiment 12

Layered

Disordered

Percolation threshold

A. Urban, J. Lee, and G. Ceder, Adv. Energy Mater. 4 (2014) 1400478.

One Li 0-TM cyclable at

~25 % Li excess

Li1.211Mo0.467Cr0.3O2

Around 10% Li excess enables 0-TM percolation

Page 13: (Grand Challenges of Energy Science)Grand Challenges of ...Apr 13, 2017  · (Grand Challenges of Energy Science)Grand Challenges of Energy Science Disordered Cathode Materials for

Impact on Li-ion battery cathode research 1991: Li3V2O5 = Li1.2V0.8O2

C. Delmas, S. Brèthes and M. Ménétrier ω-LixV2O5, J. Power Sources 34 (1991) 113-118.

1998: LiMO2 (M=Ti, Mn, Fe, Co, Ni) by mechanochemical synthesis (ball-milling)

M. Obrovac, O. Mao, and J. Dahn, Solid State Ionics 112 (1998) 9-19.

2014: Li1.211Mo0.467Cr0.3O2

J. Lee, A. Urban, X. Li, D. Su, G. Hautier, and G. Ceder, Science 343 (2014) 519-522.

Apr. 13, 2017 Alex Urban - ALS Theory & Experiment 13

2015: Li2VO2F = Li1.333V0.666O1.333F0.666

R. Chen, S. Ren, M. Knapp, D. Wang, R. Witter, M. Fichtner, and H. Hahn, Adv. Energy Mater. 5 (2015) 1401814.

2015: Li1.3NbxM0.7-xO2 (M = Mn, Fe, Co, Ni)

N. Yabuuchi, M. Takeuchi, M. Nakayama, H. Shiiba, M. Ogawa, K. Nakayama, T. Ohta, D. Endo, T. Ozaki, T. Inamasu, K.

Sato, and S. Komaba, Proc. Natl. Acad. Sci. USA 112 (2015) 7650–7655.

2015: Li1.25Nb0.25Mn0.5O2

R. Wang, X. Li, L. Liu, J. Lee, D.-H. Seo, S.-H. Bo, A. Urban, G. Ceder, Electrochem. Commun. 60 (2015) 70–73.

2015: Li1.2Ni0.333Ti0.333Mo0.133O2

J. Lee, D.-H. Seo, M. Balasubramanian, N. Twu, X. Li and G. Ceder, Energy Environ. Sci. 8 (2015) 3255–3265.

2015: Li1+xTi2xFe1-3xO2

S. L. Glazier, J. Li, J. Zhou, T. Bond and J. R. Dahn, Chem. Mater. 27 (2015) 7751–7756.

2016: Li1.333Ni0.333Mo0.333O2

N. Yabuuchi, Y. Tahara, S. Komaba, S. Kitada and Y. Kajiya, Chem. Mater. 28 (2016) 416-419.

2016: Li1.3Nb0.3V0.4O2

N. Yabuuchi, M. Takeuchi, S. Komaba, S. Ichikawa, T. Ozaki, and T. Inamasu, Chem. Commun. 52 (2016) 2051-2054.

Page 14: (Grand Challenges of Energy Science)Grand Challenges of ...Apr 13, 2017  · (Grand Challenges of Energy Science)Grand Challenges of Energy Science Disordered Cathode Materials for

The new materials have high energy densities

Apr. 13, 2017 Alex Urban - ALS Theory & Experiment 14

LCO, NMC, NCA data from: Nitta et al., Materials Today 18 (2015) 252-264.

Energy Density (Wh/kg)

Page 15: (Grand Challenges of Energy Science)Grand Challenges of ...Apr 13, 2017  · (Grand Challenges of Energy Science)Grand Challenges of Energy Science Disordered Cathode Materials for

Can disordered materials achieve high voltages?

Apr. 13, 2017 Alex Urban - ALS Theory & Experiment 15

LCO, NMC, NCA data from: Nitta et al., Materials Today 18 (2015) 252-264.

Higher voltage desirable

Energy Density (Wh/kg)

Page 16: (Grand Challenges of Energy Science)Grand Challenges of ...Apr 13, 2017  · (Grand Challenges of Energy Science)Grand Challenges of Energy Science Disordered Cathode Materials for

Figures of merit – criteria for improved LIBs

Apr. 13, 2017 Alex Urban - ALS Theory & Experiment 16

Amount of electrons (= Li) per mass or volume that can utilized

Voltage

Potential difference between electrodes.

Capacity

Page 17: (Grand Challenges of Energy Science)Grand Challenges of ...Apr 13, 2017  · (Grand Challenges of Energy Science)Grand Challenges of Energy Science Disordered Cathode Materials for

Effect of disorder on redox & voltage

Apr. 13, 2017 Alex Urban - ALS Theory & Experiment 17

A. Abdellahi†, A. Urban†, S. Dacek, and G. Ceder, Chem. Mater. 28 (2016) 5659-3665.

Vo

ltag

e (

V)

Transition Metal

A. Abdellahi, A. Urban, S. Dacek, and G. Ceder, Chem. Mater. 28 (2016) 5373-5383.

Energ

y (e

V)

D.-H. Seo, J. Lee, A. Urban, R. Malik, S. Kang, and G. Ceder, Nat. Chem. 8 (2016) 692-697

Aziz Abdellahi Dong-Hwa Seo Jinhyuk Lee

Page 18: (Grand Challenges of Energy Science)Grand Challenges of ...Apr 13, 2017  · (Grand Challenges of Energy Science)Grand Challenges of Energy Science Disordered Cathode Materials for

Current understanding of cation disorder

1. Cation order does (almost) not matter for capacity

• Cation mixing does not affect practical capacity for compositions with more than 15% Li excess

2. Cation disorder may increase structural stability

• Increased structural stability (lattice parameters)

3. Disorder affects the voltage

• Average voltage & voltage profile (slope)

• Redox mechanism, oxygen redox Dong-Hwa Seo

Apr. 13, 2017 Alex Urban - ALS Theory & Experiment 18

A. Urban, J. Lee, and G. Ceder, Adv. Energy Mater. 4 (2014) 1400478.

J. Lee, A. Urban, X. Li, D. Su, G. Hautier, G. Ceder, Science 343 (2014) 519-522.

Page 19: (Grand Challenges of Energy Science)Grand Challenges of ...Apr 13, 2017  · (Grand Challenges of Energy Science)Grand Challenges of Energy Science Disordered Cathode Materials for

Acknowledgments

Apr. 13, 2017 Alex Urban - ALS Theory & Experiment 19

Jinhyuk Lee Xin Li (now Harvard U)

Aziz Abdellahi (now at A123)

Gerd Ceder Dong-Hwa Seo