Generation Requirements Shape Funct

34
Shape Function Generation and Requirements

Transcript of Generation Requirements Shape Funct

Page 1: Generation Requirements Shape Funct

Shape Function Generation and Requirements

Page 2: Generation Requirements Shape Funct

Requirements

Page 3: Generation Requirements Shape Funct

Requirements

(A) Interpolation condition. Takes a unit value at node i , and is zero at all other nodes.

Page 4: Generation Requirements Shape Funct

Requirements

(B) Local support condition. Vanishes over any element boundary (a side in 2D, a face in 3D) that does not include node i .(C) Interelement compatibility condition. Satisfies C0 continuity between adjacent elements over any element boundary that includes node i .(D) Completeness condition. The interpolation is able to represent exactly any displacement field which is a linear polynomial in x and y; in particular, a constant value.If (C) and (D) are considered together,this case can be called CONSISTENCY.

Page 5: Generation Requirements Shape Funct
Page 6: Generation Requirements Shape Funct

RequirementsWhat are the minimum requirements that the finite element shape functions must show so that convergence is assured. Two have been accepted for a long time:

Page 7: Generation Requirements Shape Funct

Continuity (which is the toughest to meet!)

A structure is sub-divided into sub-regions or elements. The overall deformationof the structure is built-up from the values of the displacements at the nodes thatform the net or grid and the shape functions within elements.

Page 8: Generation Requirements Shape Funct
Page 9: Generation Requirements Shape Funct
Page 10: Generation Requirements Shape Funct

Completeness

In the finite element method, or for that matter,in any approximate method, weare trying to replace an unknown function Ø(x), which is the exact solution to a boundary value problem over a domain enclosed by a boundary by an approximate function Ø(x ) which is constituted from a set of shape or basisfunctions.

Page 11: Generation Requirements Shape Funct

Generation of Shape FunctionsGeneration of shape functions is the most fundamental task in any finite

element implementation.How isoparametric shape functions can be directly constructed by geometric

considerations;

Traditional interpolation takes the following steps

1. Choose a interpolation function2. Evaluate interpolation function at known points3. Solve equations to determine unknown constants

Ø=[X] {a} Øe=[A] {a}

Page 12: Generation Requirements Shape Funct

φ(ξ) =α1 +α 2ξ

φ 1φ 2

⎝ ⎜ ⎞

⎠ ⎟ =

1 −11 1

⎣ ⎢ ⎤

⎦ ⎥ α1

α2

⎛ ⎝ ⎜ ⎞

⎠ ⎟

α1

α2

⎛ ⎝ ⎜ ⎞

⎠ ⎟ =

12

1 1−1 1

⎣ ⎢ ⎤

⎦ ⎥ φ 1φ 2

⎝ ⎜ ⎞

⎠ ⎟

φ(ξ) =φ 1 + φ 2

2+

−φ 1 + φ 22

ξ

φ(ξ) =1−ξ

2φ 1 +

1+ξ2

φ 2

Page 13: Generation Requirements Shape Funct

φ(ξ) =1−ξ

2φ 1 +

1+ξ2

φ 2

φ(ξ) = N (1)(ξ)φ 1 + N (2)(ξ)φ 2

N (1)(ξ) =1−ξ

2, N (2)(ξ) =

1+ξ2

ξ (1) = −1ξ (2) =1

N (n)(ξ) =1+ ξ (n)ξ

2, n =1,2

Page 14: Generation Requirements Shape Funct

4 Node Bilinear Quadrilateral 9 Node Biquadratic Quadrilateral

Page 15: Generation Requirements Shape Funct

Quadrilateral ElementsHigher Order Rectangular Elements

More nodes; still 2 translational d.o.f. per node. “Higher order” ⇒ higher degree of complete polynomial contained in displacement approximations.Two general “families” of such elements:

Serendipity Lagrangian

Page 16: Generation Requirements Shape Funct

Quadrilateral Elements

Lagrangian Elements:Order n element has (n+1)2 nodes arranged in square‐symmetric pattern – requires internal nodes. 

Shape functions are products of nth order polynomials in each direction. (“biquadratic”, “bicubic”, …)Bilinear quad is a Lagrangian element of order n = 1.

Page 17: Generation Requirements Shape Funct

Quadrilateral ElementsLagrangian Shape Functions:Uses a procedure that automatically satisfies the Kronecker delta property for shape functions.

Consider 1D example of 6 points; want function = 1 at           and function = 0 at other designated points:

( ) ( )( )( )( )( )( )( )( )( )( )

0 1 2 4 5(5)3

3 0 3 1 3 2 3 4 3 5

.Lξ ξ ξ ξ ξ ξ ξ ξ ξ ξ

ξξ ξ ξ ξ ξ ξ ξ ξ ξ ξ

− − − − −=

− − − − −

0

1

2

3

4

5

1;.75;.2;

.3;

.6;1.

ξξξξξξ

= −= −= −===

3 0.3ξ =

Page 18: Generation Requirements Shape Funct

Quadrilateral ElementsLagrangian Shape Functions:Can perform this for any number of points at anydesignated locations.

( ) ( )( ) ( )( ) ( )( )( ) ( )( ) ( )

( )( )

0 1 1 1( )

00 1 1 1

.m

k k m imk

ik k k k k k k m k ii k

Lξ ξ ξ ξ ξ ξ ξ ξ ξ ξ ξ ξ

ξξ ξ ξ ξ ξ ξ ξ ξ ξ ξ ξ ξ

− +

=− +≠

− − − − − −= =

− − − − − −∏L LL L

No ξ-ξk term! Lagrange polynomial of order m at node k

Page 19: Generation Requirements Shape Funct

Quadrilateral Elements

Notes on Lagrangian Elements:Once shape functions have been identified, there are noprocedural differences in the formulation of higher order quadrilateral elements and the bilinear quad. Pascal’s triangle for the Lagrangian quadrilateral elements:

3 x 3 n x n

Page 20: Generation Requirements Shape Funct

Quadrilateral ElementsSerendipity Elements:In general, only boundary nodes – avoids internal ones.

Not as accurate as Lagrangian elements.However, more efficient than Lagrangian elements and avoids certain types of instabilities.

Page 21: Generation Requirements Shape Funct

Quadrilateral ElementsSerendipity Shape Functions:Shape functions for mid‐side nodes are products of an nth order polynomial parallel to side and a linear function perpendicular to the side. 

E.g., quadratic serendipity element:

( )( ) ( )( )2 21 16 72 21 1 ; 1 1 .N Nξ η ξ η= + − = − +

Page 22: Generation Requirements Shape Funct

Quadrilateral ElementsShape functions for corner nodes are modifications of the shape functions of the bilinear quad. 

Step #1: start with appropriate bilinear quad shape function,    .Step #2: subtract out mid‐side shape function N5 with appropriate weightStep #3: repeat Step #2 using mid‐side shape function N8 and weight  

1N̂

( ) 11 2

ˆ node #5N =( ) 1

1 2ˆ node #8N =

( )( )( )14 1 1 1 ; 1,2,3,4.k k k k kN kξ ξ η η ξ ξ η η= + + + − =

Page 23: Generation Requirements Shape Funct

Quadrilateral Elements

Notes on Serendipity Elements:Once shape functions have been identified, there are noprocedural differences in the formulation of higher order quadrilateral elements and the bilinear quad. Pascal’s triangle for the serendipity quadrilateral elements:

3 x 3 m x m

Page 24: Generation Requirements Shape Funct

φ(ξ ,η) =α1 +α 2ξ +α 3η + α4ξη

1D ShapeFunction

φ(ξ) =α1 +α 2ξ

Page 25: Generation Requirements Shape Funct

φ(ξ ,η) =α1 +α 2ξ +α 3η + α4ξη

φ 1φ 2φ 3φ 4

⎜ ⎜ ⎜

⎟ ⎟ ⎟

=

1 −1 −1 11 1 −1 −11 1 1 11 −1 1 −1

⎢ ⎢ ⎢

⎥ ⎥ ⎥

α1

α2

α3

α4

⎜ ⎜ ⎜

⎟ ⎟ ⎟

α1

α 2

α 3

α4

⎜ ⎜ ⎜

⎟ ⎟ ⎟

=14

1 1 1 11 −1 −1 1

−1 −1 1 1−1 1 −1 1

⎢ ⎢ ⎢

⎥ ⎥ ⎥

φ 1φ 2φ 3φ 4

⎜ ⎜ ⎜

⎟ ⎟ ⎟

Page 26: Generation Requirements Shape Funct

φ(ξ ,η) =α1 +α 2ξ +α 3η + α4ξη

α1

α 2

α 3

α4

⎜ ⎜ ⎜

⎟ ⎟ ⎟

=14

1 1 1 1−1 1 1 −1−1 −1 1 11 −1 1 −1

⎢ ⎢ ⎢

⎥ ⎥ ⎥

φ 1φ 2φ 3φ 4

⎜ ⎜ ⎜

⎟ ⎟ ⎟

φ(ξ ,η) =φ 1 + φ 2 + φ 3 + φ 4

4+

−φ 1 + φ 2 + φ 3 − φ 44

ξ +−φ 1 − φ 2 + φ 3 + φ 4

4η +

φ 1 −φ 2 + φ 3 −φ 44

ξη

φ(ξ ,η) =1−ξ −η +ξη

4⎛ ⎝

⎞ ⎠ φ 1 +

1+ ξ −η −ξη4

⎛ ⎝

⎞ ⎠ φ 2 +

1+ξ + η + ξη4

⎛ ⎝

⎞ ⎠ φ 3 +

1−ξ + η −ξη4

⎛ ⎝

⎞ ⎠ φ 4

Page 27: Generation Requirements Shape Funct

φ(ξ ,η) = N (1)φ 1 + N (2)φ 2 + N (3)φ 3 + N (4 )φ 4

N (n)(ξ,η) =14

(1+ ξ (n)ξ)(1+ η (n )η)

N (1) =14

(1−ξ)(1−η)

N (2) = 14

(1+ ξ)(1−η)

N (3) = 14

(1+ ξ)(1+η)

N (4) =14

(1−ξ)(1+η)

φ(ξ ,η) =1−ξ −η +ξη

4⎛ ⎝

⎞ ⎠ φ 1 +

1+ ξ −η −ξη4

⎛ ⎝

⎞ ⎠ φ 2 +

1+ξ + η + ξη4

⎛ ⎝

⎞ ⎠ φ 3 +

1−ξ + η −ξη4

⎛ ⎝

⎞ ⎠ φ 4

Page 28: Generation Requirements Shape Funct

N (1) =14

(1−ξ)(1−η)

N (2) = 14

(1+ ξ)(1−η)

N (3) = 14

(1+ ξ)(1+η)

N (4) =14

(1−ξ)(1+η)

Page 29: Generation Requirements Shape Funct

9 Node Biquadratic Quadrilateral ShapeFunction Plots

Page 30: Generation Requirements Shape Funct

Triangular Elements

Isoparametric Representation for TriangularElements

Page 31: Generation Requirements Shape Funct

Triangular ElementsFrom the diagram below, it is easy to see that points near nodes 2 and 3 will not move as far as points near node 1 when the triangle deforms. We will assume the deformation is linear and we will compute it with areas. The area of a triangle is;

Page 32: Generation Requirements Shape Funct

Triangular ElementsThe interior point divides the triangle into 3 regions. All 3 nodal points may move and the motion of the interior point is some combination of their displacement. Let A1, A2, and A3 be the areas of each of triangular regions and A the total area of the element. We can see from the diagram that;

We can derive shape functions;

Page 33: Generation Requirements Shape Funct

Triangular Elements

The shape functions are not independent of one another because:

Knowing two of the shape functions makes it possible to compute the third.Because of this we can let

Page 34: Generation Requirements Shape Funct

Triangular Elements6 Node Triangle:Shape Function Plots