G Love Kristin Brodie Jeff Colton Colin Galbraith Bushra Makiya Tiffany Santos.

12
G Love Kristin Brodie Jeff Colton Colin Galbraith Bushra Makiya Tiffany Santos

Transcript of G Love Kristin Brodie Jeff Colton Colin Galbraith Bushra Makiya Tiffany Santos.

Page 1: G Love Kristin Brodie Jeff Colton Colin Galbraith Bushra Makiya Tiffany Santos.

G Love

Kristin BrodieJeff Colton

Colin GalbraithBushra MakiyaTiffany Santos

Page 2: G Love Kristin Brodie Jeff Colton Colin Galbraith Bushra Makiya Tiffany Santos.

Fabrication of Microspheres

Used protocol learned at beginning of semester to fabricate PLGA microspheres

Homogenizer speed: Paraffin: 3.5, 5 Octadecane: 4, 5

Pipette used to separate water and paraffin

Filter used for octadecane (0.22m)

Page 3: G Love Kristin Brodie Jeff Colton Colin Galbraith Bushra Makiya Tiffany Santos.

SEM of Microspheres

Paraffin Wax Homogenizer speed

5 Average size:

150m Range: 50 – 300m

Page 4: G Love Kristin Brodie Jeff Colton Colin Galbraith Bushra Makiya Tiffany Santos.

SEM of Microspheres (2)

Paraffin Wax Homogenizer speed

3.5 Average size: 200m Range: 50 – 400m

Page 5: G Love Kristin Brodie Jeff Colton Colin Galbraith Bushra Makiya Tiffany Santos.

DSC for Octadecane and PEG

Octadecane PEG

Page 6: G Love Kristin Brodie Jeff Colton Colin Galbraith Bushra Makiya Tiffany Santos.

Heat Flow Model for a Finger Finger assumed to be a cylinder Power = 2rLq = 2L(T1-T3)/R

R = Fabric Resistance + BL Resistance FR = 1/kc * ln (rc/rw) BLR = 1/(rc*h)

h = 1.22*(T/D)^(1/4) for a horizontal pipe Approximating values:

h~10 W/m2K Power~2.5 W

A hand can be assumed to be a cylinder rhand = 2*rfinger

Page 7: G Love Kristin Brodie Jeff Colton Colin Galbraith Bushra Makiya Tiffany Santos.

Heat Transfer Through Gloves

Heating element in the glove (73cm)

Thermistor in and out of the glove

Power: 3.6V Current: 0.55A Weight to reduce air

flow into glove

Page 8: G Love Kristin Brodie Jeff Colton Colin Galbraith Bushra Makiya Tiffany Santos.

Heat Flow Results

I*V/A = h (T[in] – T[out]) I = 0.55A V = 3.6V A = 0.05m2

T[in] = 317.42K T[out] = 294.98K

h = 1.765 W/m2K

Event

T [in] T [out]

1 109.9 71.5

2 112.4 71.9

3 112.6 71.6

4 112.5 71.1

5 112.2 71.6

6 112.1 71.7

Avg 111.95

71.57

Page 9: G Love Kristin Brodie Jeff Colton Colin Galbraith Bushra Makiya Tiffany Santos.

Data for Heating Element Wires

Ni:Cr 80:20wt%

Ni:Cr:Fe 60:16:24 wt%

Stainless Steel Fe:Cr:Ni 70:19:11 wt%

Starting Diameter (mm)

0.41 0.40 0.375

Area of Wire (in2) 0.00807 1.192e-4 1.7e-4

Suggested Stress (kpsi)

120 74-130 ~95

Length of Graph (in) 19.5 21.7 35

Extension (in) 1.95 2.17 3.5

Max Load (lbs) 24.2 21 17.5

Calculated Stress (kpsi)

121 107.8 102.2

Page 10: G Love Kristin Brodie Jeff Colton Colin Galbraith Bushra Makiya Tiffany Santos.

Curve for Ni:Cr 80:20wt%

Ni:Cr 80:20wt%

0

5

10

15

20

25

30

1 3 5 7 9 11 13 15 17 19 21 23 25 27

Distance (inch)

Lo

ad

(lb

s.)

Page 11: G Love Kristin Brodie Jeff Colton Colin Galbraith Bushra Makiya Tiffany Santos.

Results Ni:Cr 80:20wt% chosen for large elastic

region Octadecane preferred over PEG for Heat

of crystallization properties Experimental thermal coefficient is

similar to theoretical value

Page 12: G Love Kristin Brodie Jeff Colton Colin Galbraith Bushra Makiya Tiffany Santos.

What Will We Do Next? Phase Change Material

Test integrity of PVA Fabricate microspheres of PEG Incorporation of phase change material into fabric DSC of microspheres

Heating Elements Test battery with Prof Ceder Incorporation of thermal switch Choose a fabric to get specific thermal properties