Fundamentals of Engineering Heat and Mass Transfer_R. C. Sachdeva

download Fundamentals of Engineering Heat and Mass Transfer_R. C. Sachdeva

of 71

Transcript of Fundamentals of Engineering Heat and Mass Transfer_R. C. Sachdeva

  • 8/20/2019 Fundamentals of Engineering Heat and Mass Transfer_R. C. Sachdeva

    1/213

    Scilab Textbook Companion for

    Fundamentals Of Engineering Heat And Mass

    Transfer

    by R. C. Sachdeva1

    Created byNittala Venkata Krishna

    B.TECHMechanical Engineering

    SASTRA UNIVERSITY

    College TeacherDr. Anjan Kumar Dash

    Cross-Checked byLavitha Pereira

    August 31, 2013

    1Funded by a grant from the National Mission on Education through ICT,http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilabcodes written in it can be downloaded from the ”Textbook Companion Project”section at the website http://scilab.in

  • 8/20/2019 Fundamentals of Engineering Heat and Mass Transfer_R. C. Sachdeva

    2/213

    Book Description

    Title:  Fundamentals Of Engineering Heat And Mass Transfer

    Author:  R. C. Sachdeva

    Publisher:  New Age Science Ltd., New Delhi

    Edition:   4

    Year:   2009

    ISBN:   9781906574123

    1

  • 8/20/2019 Fundamentals of Engineering Heat and Mass Transfer_R. C. Sachdeva

    3/213

    Scilab numbering policy used in this document and the relation to theabove book.

    Exa  Example (Solved example)

    Eqn  Equation (Particular equation of the above book)

    AP  Appendix to Example(Scilab Code that is an Appednix to a particularExample of the above book)

    For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 meansa scilab code whose theory is explained in Section 2.3 of the book.

    2

  • 8/20/2019 Fundamentals of Engineering Heat and Mass Transfer_R. C. Sachdeva

    4/213

    Contents

    List of Scilab Codes   4

    1 Basic Concepts   10

    3 OneDimensional Steady State Heat Conduction   16

    5 Transient Heat Conduction   51

    6 Fundamentals of convective heat transfer   77

    7 Forced Convection Systems   82

    8 Natural Convection   111

    9 Thermal radiation basic relations   128

    10 Radiative Heat exchange between surfaces   136

    11 Boiling and Condensation   158

    12 Heat Exchangers   169

    13 Diffusion Mass Transfer   192

    14 Convective Mass Transfer   202

    3

  • 8/20/2019 Fundamentals of Engineering Heat and Mass Transfer_R. C. Sachdeva

    5/213

    List of Scilab Codes

    Exa 1.1 Rate of heat transfer   . . . . . . . . . . . . . . . . . . . 10Exa 1.2 Rate of heat transfer   . . . . . . . . . . . . . . . . . . . 11Exa 1.3 Rate of radiant heat   . . . . . . . . . . . . . . . . . . . 11Exa 1.5 Overall heat transfer coefficient  . . . . . . . . . . . . . 12Exa 1.6 Heat loss per unit length   . . . . . . . . . . . . . . . . 13Exa 1.7 Surface temperature   . . . . . . . . . . . . . . . . . . . 14Exa 3.1 Rate of heat loss and interior temperature   . . . . . . . 16Exa 3.2 Tempertaure and heat flow   . . . . . . . . . . . . . . . 17Exa 3.3 Heat flow and teperature   . . . . . . . . . . . . . . . . 18Exa 3.4 Heat loss per square meter surface area   . . . . . . . . 19Exa 3.5 Rate of heat flow   . . . . . . . . . . . . . . . . . . . . . 20Exa 3.6 Heat loss per unit length   . . . . . . . . . . . . . . . . 20Exa 3.8 Thickness of insulation . . . . . . . . . . . . . . . . . . 21

    Exa 3.9 Rate of heat leaking   . . . . . . . . . . . . . . . . . . . 22Exa 3.10 Heat transfer through the composite wall   . . . . . . . 23Exa 3.11 Surface temperature and convective conductance   . . . 24Exa 3.12 Heat loss and thickness of insulation   . . . . . . . . . . 26Exa 3.13 Heat loss from the pipe   . . . . . . . . . . . . . . . . . 27Exa 3.14 Heat loss per meter length of pipe   . . . . . . . . . . . 28Exa 3.15 Change in heat loss   . . . . . . . . . . . . . . . . . . . 29Exa 3.16 Mass of steam condensed   . . . . . . . . . . . . . . . . 30Exa 3.17 Rate of heat flow   . . . . . . . . . . . . . . . . . . . . . 31Exa 3.18 Heat loss and surface temperature   . . . . . . . . . . . 32Exa 3.19 Effect of insulation on the current carrying conductor   33

    Exa 3.20 Surface temperature and maximum temperature in thewall   . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

    Exa 3.21 Surface temperature   . . . . . . . . . . . . . . . . . . . 36Exa 3.22 Heat transfer coefficient and maximum temperature   . 37

    4

  • 8/20/2019 Fundamentals of Engineering Heat and Mass Transfer_R. C. Sachdeva

    6/213

    Exa 3.23 Diameter of wire and rate of current flow   . . . . . . . 38

    Exa 3.24 Temperature drop   . . . . . . . . . . . . . . . . . . . . 39Exa 3.25 Temperature at the centre of orange   . . . . . . . . . . 40Exa 3.26 Total heat dissipated . . . . . . . . . . . . . . . . . . . 40Exa 3.27 Thermal conductivity   . . . . . . . . . . . . . . . . . . 41Exa 3.28 Temperature distribution and rate of heat flow   . . . . 42Exa 3.29 Rate of heat transfer and temperature   . . . . . . . . . 43Exa 3.31 Rate of heat flow   . . . . . . . . . . . . . . . . . . . . . 44Exa 3.32 Efficiency of the plate   . . . . . . . . . . . . . . . . . . 46Exa 3.33 Heat transfer coefficient   . . . . . . . . . . . . . . . . . 47Exa 3.34 Insulation of fin   . . . . . . . . . . . . . . . . . . . . . 48Exa 3.35 Measurement error in temperature   . . . . . . . . . . . 49

    Exa 5.1 Heat transfer and temperature   . . . . . . . . . . . . . 51Exa 5.2 Time taken   . . . . . . . . . . . . . . . . . . . . . . . 52Exa 5.3 Time taken   . . . . . . . . . . . . . . . . . . . . . . . . 53Exa 5.4 Time required to cool aluminium   . . . . . . . . . . . . 55Exa 5.5 Heat transfer coefficient   . . . . . . . . . . . . . . . . . 56Exa 5.6 Time constant and time period   . . . . . . . . . . . . . 57Exa 5.8 Temperature and total heat   . . . . . . . . . . . . . . . 57Exa 5.9 Time taken to cool  . . . . . . . . . . . . . . . . . . . . 59Exa 5.10 Temperature   . . . . . . . . . . . . . . . . . . . . . . . 60Exa 5.11 Time required and depth   . . . . . . . . . . . . . . . . 60

    Exa 5.12 Temperature and total thermal energy   . . . . . . . . . 61Exa 5.13 Temperature   . . . . . . . . . . . . . . . . . . . . . . . 63Exa 5.14 Time required for cooling   . . . . . . . . . . . . . . . . 64Exa 5.15 Temperature   . . . . . . . . . . . . . . . . . . . . . . . 65Exa 5.16 Centreline temperature   . . . . . . . . . . . . . . . . . 66Exa 5.17 Temperature   . . . . . . . . . . . . . . . . . . . . . . . 67Exa 5.18 Surface temperature   . . . . . . . . . . . . . . . . . . . 69Exa 5.19 Time elapsed   . . . . . . . . . . . . . . . . . . . . . . . 70Exa 5.20 Temperature   . . . . . . . . . . . . . . . . . . . . . . . 71Exa 5.21 Amplitude of temperature and time lag   . . . . . . . . 72Exa 5.22 Time lag and heat flow   . . . . . . . . . . . . . . . . . 73

    Exa 5.23 Depth of penetration . . . . . . . . . . . . . . . . . . . 74Exa 5.24 Instantaneous heat removal rate   . . . . . . . . . . . . 75Exa 6.2 Type of flow   . . . . . . . . . . . . . . . . . . . . . . . 77Exa 6.6 Maximum temperature rise and heat flux   . . . . . . . 78Exa 6.7 Type of flow and entry length  . . . . . . . . . . . . . . 79

    5

  • 8/20/2019 Fundamentals of Engineering Heat and Mass Transfer_R. C. Sachdeva

    7/213

    Exa 6.8 Head loss and power required   . . . . . . . . . . . . . . 80

    Exa 6.9 Pressure drop . . . . . . . . . . . . . . . . . . . . . . . 81Exa 7.1 Thickness of hydrodynamic boundary layer and skinfriction coefficient   . . . . . . . . . . . . . . . . . . . . 82

    Exa 7.2 Local heat transfer coefficient  . . . . . . . . . . . . . . 83Exa 7.3 Boundary layer thickness and total drag force   . . . . . 84Exa 7.4 Rate of heat to be removed   . . . . . . . . . . . . . . . 85Exa 7.5 Drag force   . . . . . . . . . . . . . . . . . . . . . . . . 86Exa 7.6 Thickness of boundary layer and heat transfer coefficient   88Exa 7.7 Friction coefficient and heat transfer coefficient   . . . . 89Exa 7.8 Heat loss   . . . . . . . . . . . . . . . . . . . . . . . . . 90Exa 7.9 Heat transfer rate and percentage of power lost   . . . . 91

    Exa 7.10 Heat transfer coefficient and current intensity   . . . . . 92Exa 7.11 Rate of heat transfer  . . . . . . . . . . . . . . . . . . . 93Exa 7.12 Heat transfer coefficient and pressure drop . . . . . . . 94Exa 7.13 Convection coefficient   . . . . . . . . . . . . . . . . . . 96Exa 7.14 Convective heat transfer coefficient  . . . . . . . . . . . 97Exa 7.15 Average temperature of the fluid   . . . . . . . . . . . . 98Exa 7.16 Length and heat transfer coefficient   . . . . . . . . . . 99Exa 7.17 Heat transfer coefficient and heat transfer rate   . . . . 100Exa 7.18 Heat transfer coefficient and length of the tube   . . . . 100Exa 5.19 Nusselt number . . . . . . . . . . . . . . . . . . . . . . 101

    Exa 7.20 Heat transfer coefficient   . . . . . . . . . . . . . . . . . 103Exa 7.21 Heat transfer coefficient and heat transfer rate   . . . . 104Exa 7.22 Heat transfer coefficient   . . . . . . . . . . . . . . . . . 105Exa 7.23 Heat transfer coefficient   . . . . . . . . . . . . . . . . . 106Exa 7.24 Heat leakage   . . . . . . . . . . . . . . . . . . . . . . . 107Exa 7.25 Heat transfer coefficient   . . . . . . . . . . . . . . . . . 108Exa 7.26 Minimum length of the tube   . . . . . . . . . . . . . . 109Exa 8.1 Boundary layer thickness   . . . . . . . . . . . . . . . . 111Exa 8.2 Heat transfer coefficient   . . . . . . . . . . . . . . . . . 112Exa 8.3 Heat transfer coefficient and rate of heat transfer   . . . 113Exa 8.4 Convective heat loss   . . . . . . . . . . . . . . . . . . . 114

    Exa 8.5 Rate of heat input   . . . . . . . . . . . . . . . . . . . . 115Exa 8.6 Heat gained by the duct  . . . . . . . . . . . . . . . . . 116Exa 8.7 Coefficient of heat transfer   . . . . . . . . . . . . . . . 118Exa 8.8 Rate of heat loss   . . . . . . . . . . . . . . . . . . . . . 119Exa 8.9 Rate of heat loss   . . . . . . . . . . . . . . . . . . . . . 120

    6

  • 8/20/2019 Fundamentals of Engineering Heat and Mass Transfer_R. C. Sachdeva

    8/213

    Exa 8.10 Coefficient of heat transfer and current intensity   . . . 121

    Exa 8.11 Rate of convective heat loss   . . . . . . . . . . . . . . . 122Exa 8.12 Rate of heat loss   . . . . . . . . . . . . . . . . . . . . . 123Exa 8.13 Thermal conductivity and heat flow   . . . . . . . . . . 123Exa 8.14 Free convection heat transfer   . . . . . . . . . . . . . . 124Exa 8.15 Convective heat transfer coefficient  . . . . . . . . . . . 125Exa 8.16 Heat transfer   . . . . . . . . . . . . . . . . . . . . . . . 126Exa 9.1 Rate of solar radiation  . . . . . . . . . . . . . . . . . . 128Exa 9.2 Fraction of thermal radiation emmitted by the surafce   129Exa 9.3 Hemispherical transmittivity   . . . . . . . . . . . . . . 130Exa 9.4 Surface temperature and emmisive power   . . . . . . . 130Exa 9.5 Emmissivity and wave length   . . . . . . . . . . . . . . 131

    Exa 9.6 True temperature of the body . . . . . . . . . . . . . . 132Exa 9.7 Rate of absorbption and emmission . . . . . . . . . . . 133Exa 9.8 Energy absorbed and transmitted . . . . . . . . . . . . 134Exa 10.1 Surface temperature   . . . . . . . . . . . . . . . . . . . 136Exa 10.4 Net exchange of energy   . . . . . . . . . . . . . . . . . 137Exa 10.5 Shape factor   . . . . . . . . . . . . . . . . . . . . . . . 138Exa 10.8 Net heat exchange   . . . . . . . . . . . . . . . . . . . . 138Exa 10.14 Net heat exchange and equilibrium temperature . . . . 139Exa 10.15 Radiant heat exchange . . . . . . . . . . . . . . . . . . 140Exa 10.16 Radiant heat exchange . . . . . . . . . . . . . . . . . . 141

    Exa 10.17 Reduction in heat loss   . . . . . . . . . . . . . . . . . . 142Exa 10.18 Loss of heat . . . . . . . . . . . . . . . . . . . . . . . . 143Exa 10.19 Radiation heat transfer   . . . . . . . . . . . . . . . . . 144Exa 10.20 Net radiant heat exchange . . . . . . . . . . . . . . . . 145Exa 10.21 Loss of heat . . . . . . . . . . . . . . . . . . . . . . . . 146Exa 10.22 Net heat transfer  . . . . . . . . . . . . . . . . . . . . . 147Exa 10.23 Percentage reduction in heat transfer and temperature

    of the shield   . . . . . . . . . . . . . . . . . . . . . . . 148Exa 10.24 Number of screens   . . . . . . . . . . . . . . . . . . . . 149Exa 10.25 Loss of heat and reduction in heat   . . . . . . . . . . . 150Exa 10.26 Error in temperature . . . . . . . . . . . . . . . . . . . 151

    Exa 10.27 Rate of heat loss   . . . . . . . . . . . . . . . . . . . . . 152Exa 10.28 Heat transfer coefficient   . . . . . . . . . . . . . . . . . 153Exa 10.29 Extinction coefficient for radiation   . . . . . . . . . . . 154Exa 10.30 Emmissivity of the mixture   . . . . . . . . . . . . . . . 155Exa 10.31 Net radiation exchange and coefficient of heat transfer   156

    7

  • 8/20/2019 Fundamentals of Engineering Heat and Mass Transfer_R. C. Sachdeva

    9/213

    Exa 11.1 Temperature of the surface   . . . . . . . . . . . . . . . 158

    Exa 11.2 Burnout heat flux   . . . . . . . . . . . . . . . . . . . . 159Exa 11.3 Heat transfer coefficient and power dissipation   . . . . 160Exa 11.4 Heat transfer coefficient   . . . . . . . . . . . . . . . . . 161Exa 11.5 Heat transfer   . . . . . . . . . . . . . . . . . . . . . . . 162Exa 11.6 Thickness of condensate film   . . . . . . . . . . . . . . 163Exa 11.7 Rate of heat transfer and condensate mass flow rate   . 164Exa 11.8 Heat transfer rate   . . . . . . . . . . . . . . . . . . . . 165Exa 11.9 Rate of formation of condensate   . . . . . . . . . . . . 166Exa 11.10 Condensation rate   . . . . . . . . . . . . . . . . . . . . 167Exa 12.1 Overall heat transfer coefficient  . . . . . . . . . . . . . 169Exa 12.2 Overall heat transfer coefficient  . . . . . . . . . . . . . 170

    Exa 12.3 Heat exchanger area   . . . . . . . . . . . . . . . . . . . 171Exa 12.4 Heat exchanger area   . . . . . . . . . . . . . . . . . . . 172Exa 12.5 Length of heat exchanger   . . . . . . . . . . . . . . . . 174Exa 12.6 Surface area and rate of condensation of steam   . . . . 175Exa 12.7 Effective log mean temperature difference   . . . . . . . 176Exa 12.8 Area of heat exchanger   . . . . . . . . . . . . . . . . . 177Exa 12.9 Area of heat exchanger   . . . . . . . . . . . . . . . . . 178Exa 12.10 Surface area   . . . . . . . . . . . . . . . . . . . . . . . 179Exa 12.11 Number of tube passes and number of tubes per pass . 181Exa 12.12 Surface area and temperature  . . . . . . . . . . . . . . 182

    Exa 12.13 Total heat transfer and surface temperature   . . . . . . 184Exa 12.14 Parameters of heat exchanger  . . . . . . . . . . . . . . 185Exa 12.15 Exit temperature . . . . . . . . . . . . . . . . . . . . . 187Exa 12.16 Outlet temperature   . . . . . . . . . . . . . . . . . . . 188Exa 12.17 Outlet temperature   . . . . . . . . . . . . . . . . . . . 189Exa 12.18 Diameter and length of heat exchanger . . . . . . . . . 190Exa 13.1 Average molecular weight   . . . . . . . . . . . . . . . . 192Exa 13.2 Mass and molar average velocities and flux   . . . . . . 193Exa 13.3 Diffusion flux   . . . . . . . . . . . . . . . . . . . . . . . 194Exa 13.4 Initial rate of leakage   . . . . . . . . . . . . . . . . . . 195Exa 13.5 Loss of oxygen by diffusion   . . . . . . . . . . . . . . . 196

    Exa 13.6 Mass transfer rate   . . . . . . . . . . . . . . . . . . . . 197Exa 13.7 Diffusion rate   . . . . . . . . . . . . . . . . . . . . . . 198Exa 13.8 Diffusion coefficient   . . . . . . . . . . . . . . . . . . . 199Exa 13.9 Time required   . . . . . . . . . . . . . . . . . . . . . . 200Exa 14.1 Convection mass transfer coefficient   . . . . . . . . . . 202

    8

  • 8/20/2019 Fundamentals of Engineering Heat and Mass Transfer_R. C. Sachdeva

    10/213

    Exa 14.2 Local Mass transfer coefficient   . . . . . . . . . . . . . 203

    Exa 14.3 Mass Transfer coefficient . . . . . . . . . . . . . . . . . 204Exa 14.4 Mass transfer coefficient   . . . . . . . . . . . . . . . . . 205Exa 14.5 Average mass transfer coefficient   . . . . . . . . . . . . 206Exa 14.6 Mass transfer coefficient   . . . . . . . . . . . . . . . . . 206Exa 14.7 Steady state temperature   . . . . . . . . . . . . . . . . 207Exa 14.8 True air temperature . . . . . . . . . . . . . . . . . . . 208Exa 14.9 Relative humidity   . . . . . . . . . . . . . . . . . . . . 209Exa 14.10 Specific humidity  . . . . . . . . . . . . . . . . . . . . . 210Exa 14.11 Rate of evaporation   . . . . . . . . . . . . . . . . . . . 211

    9

  • 8/20/2019 Fundamentals of Engineering Heat and Mass Transfer_R. C. Sachdeva

    11/213

    Chapter 1

    Basic Concepts

    Scilab code Exa 1.1  Rate of heat transfer

    1   //C hapt e r −1 , Exa mpl e 1 . 1 , Pa ge 92   //

    ============================================================

    3   clc

    4   clear

    56   //INPUT DATA7   L = 0 . 0 2 ; // T h ic ne s s o f s t a i n l e s s s t e e l p l at e i n m8   T = [ 5 5 0 , 5 0 ] ; // T em pe ra tu re s a t b ot h t he f a c e s i n

    d e g r e e C9   k = 1 9 . 1 ; // Thermal C on du ct iv it y o f s t a i n l e s s s t e e l a t

    3 0 0 d e g r e e C i n W/m .K10

    11   //CALC9ULATIONS12   q = ( ( k * ( T ( 1 ) - T ( 2 ) ) ) / ( L * 1 0 0 0 ) ) ; // H eat t r a n s f e r e d p er

    u n i a r e a i n kW/mˆ 21314   //OUTPUT15   mprintf ( ’ The h ea t t r a n s f e r e d t hr ou gh t he m a t e r i a l

    p e r u n i t a r e a i s %3 . 1 f kW/mˆ 2 ’ ,q )

    10

  • 8/20/2019 Fundamentals of Engineering Heat and Mass Transfer_R. C. Sachdeva

    12/213

    16

    17   //=================================END OF PROGRAM==============================

    Scilab code Exa 1.2  Rate of heat transfer

    1   //C hapt e r −1 , Exa mpl e 1 . 2 , Pa ge 1 12   //

    ============================================================

    3   clc

    4   clear

    5

    6   //INPUT DATA7   L = 1 ; // Length o f t h e f l a t p l a t e i n m8   w = 0 . 5 ; // Width o f t he f l a t p l a te i n m9   T = 3 0 ; // A i r s tr ea m t em p er a tu re i n d e g re e C

    10   h = 3 0 ; / / C o n v e c t i v e h e a t t r a n s f e r c o e f f i c i e n t i n W/mˆ 2 . K

    11   T s = 3 0 0 ; // T em pe ra tu re o f t he p l a t e i n d e gr e e C

    1213   //CALCULATIONS14   A = ( L * w ) ; // Area o f t he p l a t e i n mˆ215   Q = ( h * A * ( T s - T ) / ( 1 0 0 0 ) ) ; // H eat t r a n s f e r i n kW16

    17   //OUTPUT18   mprintf ( ’ H eat t r a n s f e r r a t e i s %3 . 2 f kW ’ ,Q )19

    20   //=================================END OF PROGRAM==============================

    Scilab code Exa 1.3  Rate of radiant heat

    11

  • 8/20/2019 Fundamentals of Engineering Heat and Mass Transfer_R. C. Sachdeva

    13/213

    1   //C hapt e r −1 , Exa mpl e 1 . 3 , Pa ge 1 1

    2   // ============================================================

    3   clc

    4   clear

    5

    6   //INPUT DATA7   T = 5 5 ; // S u r f a ce t em p er at u re i n d e g re e C8

    9   //CALCULATIONS10   q = ( 5 . 6 6 9 7 * 1 0 ^ - 8 * ( 2 7 3 + T ) ^ 4 ) / 1 0 0 0 ; // The r a t e a t wh ic h

    t h e r a d i a t o r e mi ts r a di a nt h ea t p er u ni t a re a i f  i t b e ha v es a s a b l a c k body i n kW/mˆ 2

    11

    12   //OUTPUT13   mprintf ( ’ The r a t e a t which t he r a d i a t o r e mi ts

    r a d i a n t h e at p e r u n i t a r e a i s %3 . 2 f kW/mˆ 2 ’ ,q )14

    15   //=================================END OF PROGRAM==============================

    Scilab code Exa 1.5  Overall heat transfer coefficient

    1   //C hapt e r −1 , Exa mpl e 1 . 5 , Pa ge 2 02   //

    ============================================================

    3   clc

    4   clear

    56   //INPUT DATA7   k = 0 . 1 4 5 ; / / Therma l c o n d u c t i v i t y o f F i r e b r i c k i n W/m. K8   e = 0 . 8 5 ; / / E m i s s i v i t y9   L = 0 . 1 4 5 ; // T hi ck ne ss o f t he w a ll i n m

    12

  • 8/20/2019 Fundamentals of Engineering Heat and Mass Transfer_R. C. Sachdeva

    14/213

    10   T g = 8 0 0 ; // Gas t e m pe r a tu r e i n d e g r e e C

    11   T w g = 7 9 8 ; // Wall t em pe ra tu re i o n g as s i d e i n d e g r ee C12   h g = 4 0 ; / / F il m c o n d u ct a n c e on g a s s i d e i n W/mˆ 2 . K13   h c = 1 0 ; / / Fi lm c o nd u ct a nc e on c o o l a n t s i d e i n W/mˆ 2 .K14   F = 1 ; // R a d i at i o n Sh ap e f a c t o r b et we en w a l l and g a s15

    16   //CALCULATIONS17   R 1 = ( ( ( e * 5 . 6 7 * 1 0 ^ - 8 * F * ( ( T g + 2 7 3 ) ^ 4 - ( T w g + 2 7 3 ) ^ 4 ) ) / ( T g -

    T w g ) ) + ( 1 / h g ) ) ; // Thermal r e s i s t a n c e i n v e r s e18   R 2 = ( L / k ) ; // T herm al r e s i s t a n c e19   R 3 = ( 1 / h c ) ; / / Th erma l r e s i s t a n c e20   U = 1 / ( ( 1 / R 1 ) + R 2 + R 3 ) ; // O v er a l l h ea t t r a n s f e r

    c o e f f i c i e n t i n W/mˆ 2 .K21

    22   //OUTPUT23   mprintf (  ’ O v e r a l l h e a t t r a n s f e r c o e f f i c i e n t i s %3 . 3 f  

    W/mˆ2.K’ ,U )

    Scilab code Exa 1.6  Heat loss per unit length

    1   //C hapt e r −1 , Exa mpl e 1 . 6 , Pa ge 2 12   //

    ============================================================

    3   clc

    4   clear

    5

    6   //INPUT DATA7   D = 0 . 0 5 ; // O ut si de d i am et er o f t he p i pe i n m8   e = 0 . 8 ; / / E m m i s s i v i t y

    9   T = 3 0 ; / /Room T e mp e ra t ur e i n d e g r e e C10   T s = 2 5 0 ; // S u r f a ce t em p er at u re i n d e gr e e C11   h = 1 0 ; / / C o n v e c t i v e h e a t t r a n s f e r c o e f f i c i e n t i n W/m

    ˆ 2 . K12

    13

  • 8/20/2019 Fundamentals of Engineering Heat and Mass Transfer_R. C. Sachdeva

    15/213

    13   //CALCULATIONS

    14   q = ( ( h * 3 . 1 4 * D * ( T s - T ) ) + ( e * 3 . 1 4 * D * 5 . 6 7 * 1 0 ^ - 8 * ( ( T s + 4 7 3 )^ 4 - ( T + 2 7 3 ) ^ 4 ) ) ) ; // Heat l o s s p er u n i t l e n g t h o f  p i p e i n W/m

    15

    16   //OUTPUT17   mprintf ( ’ H eat l o s s p er u n i t l e n g t h o f p ip e i s %3 . 1 f  

    W/m ’ ,q )18

    19   //=================================END OF PROGRAM==============================

    Scilab code Exa 1.7   Surface temperature

    1   //C hapt e r −1 , Exa mpl e 1 . 7 , Pa ge 2 12   //

    ============================================================

    3   clc

    4   clear

    56   //INPUT DATA7   A = 0 . 1 ; // S u r f ac e a r ea o f w at er h e a t er i n mˆ28   Q = 1 0 0 0 ; // Heat t r a n s f e r r a t e i n W9   T w a t e r = 4 0 ; // T em pe ra tu re o f w at er i n d e g re e C

    10   h 1 = 3 0 0 ; //H e at t r a n s f e r c o e f f i c i e n t i n W/mˆ2. K11   T a i r = 4 0 ; // T em per at ure o f a i r i n d e gr e e C12   h 2 = 9 ; //H e at t r a n s f e r c o e f f i c i e n t i n W/mˆ2. K13

    14   //CALCULATIONS

    15   T s w = ( Q / ( h 1 * A ) ) + T w a t e r ; / / T e m pe r at u re when u s e d i nw at er i n d e g r ee C16   T s a = ( Q / ( h 2 * A ) ) + T a i r ; / / T em pe ra tu re when u s ed i n a i r

    i n d eg re e C17

    14

  • 8/20/2019 Fundamentals of Engineering Heat and Mass Transfer_R. C. Sachdeva

    16/213

    18   //OUTPUT

    19   mprintf ( ’ T em pe ra tu re when u s ed i n w a te r i s %3 . 1 f  d e g r e e C   \n T em pe ra tu re when u se d i n a i r i s %id e g r e e C ’ , T s w , T s a )

    20

    21   //=================================END OF PROGRAM==============================

    15

  • 8/20/2019 Fundamentals of Engineering Heat and Mass Transfer_R. C. Sachdeva

    17/213

    Chapter 3

    OneDimensional Steady State

    Heat Conduction

    Scilab code Exa 3.1  Rate of heat loss and interior temperature

    1   //C hapt e r −3 , Exa mpl e 3 . 1 , Pa ge 4 52   //

    ============================================================

    3   clc

    4   clear

    5

    6   //INPUT DATA7   l = 5 ; // L ength o f t he w a ll i n m8   h = 4 ; // H ei gh t o f t h e w al l i n m9   L = 0 . 2 5 ; // T hi ck ne ss o f t he w a ll i n m

    10   T = [ 1 1 0 , 4 0 ] ; / / Te mp er at ur e on t h e i n n e r and o u t e rs u r f a c e i n d eg r e e C

    11   k = 0 . 7 ; / / T he rm al c o n d u c t i v i t y i n W/m .K

    12   x = 0 . 2 0 ; // D i st an c e from t he i n n er w a ll i n m1314   //CALCULATIONS15   A = l * h ; // A re a r o f t he w a ll i n mˆ216   Q = ( k * A * ( T ( 1 ) - T ( 2 ) ) ) / L ; // Heat t r a n s f e r r a te i n W

    16

  • 8/20/2019 Fundamentals of Engineering Heat and Mass Transfer_R. C. Sachdeva

    18/213

    17   T = ( ( ( T ( 2 ) - T ( 1 ) ) * x ) / L ) + T ( 1 ) ; // T em pe ra tu re a t i n t e r i o r

    p o in t o f t he w al l , 20 cm d i s t a n t from t he i n n erw al l i n d eg re e C18

    19   //OUTPUT20   mprintf ( ’ a ) Heat t r a n s f e r r a t e i s %i W   \n b )

    T empe r atu re a t i n t e r i o r p o in t o f t he w al l , 20 cmd i s t a n t from t he i n ne r w al l i s %i d eg r e e C ’ , Q , T )

    21

    22   //=================================END OF PROGRAM==============================

    Scilab code Exa 3.2  Tempertaure and heat flow

    1   //C hapt e r −3 , Exa mpl e 3 . 2 , Pa ge 4 82   //

    ============================================================

    3   clc

    4   clear

    56   D i = 0 . 0 5 ; // I nn e r d i a me te r o f h ol lo w c y l i n d e r i n m7   D o = 0 . 1 ; // O uter d ia me te r o f h ol lo w c y l i n d e r i n m8   T = [ 2 0 0 , 1 0 0 ] ; // I n n er and o u t er s u r f a c e t em p er a tu re i n

    d e g r e e C9   k = 7 0 ; / / T he rm al c o n d u c t i v i t y i n W/m .K

    10

    11   //CALCULATIONS12   r o = ( D o / 2 ) ; // Outer r a di u s o f h ol lo w c y l i n d e r i n m13   r i = ( D i / 2 ) ; // I nn er r a di u s o f h ol lo w c y l i n d e r i n m

    14   Q = ( ( 2 * 3 . 1 4 * k * ( T ( 1 ) - T ( 2 ) ) ) / ( log ( r o / r i ) ) ) ; //H e att r a n s f e r r a t e i n W15   r 1 = ( r o + r i ) / 2 ; // R ad iu s a t h al fw ay b et we en r o and r i

    i n m16   T 1 = T ( 1 ) - ( ( T ( 1 ) - T ( 2 ) ) * ( log ( r 1 / r i ) / ( log ( r o / r i ) ) ) ) ; //

    17

  • 8/20/2019 Fundamentals of Engineering Heat and Mass Transfer_R. C. Sachdeva

    19/213

    T em pe ra tu re o f t h e p o i n t h a l fw a y b et we en t h e

    i n n e r and o ut er s u r f a c e i n d eg re e C1718   //OUTPUT19   mprintf ( ’ H eat t r a n s f e r r a t e i s %3 . 1 f W /m\n

    T em pe ra tu re o f t h e p o i n t h a l fw a y b et we en t h ei n n er and o u te r s u r f a c e i s %3 . 1 f d e g r e e C ’ , Q , T 1 )

    20

    21   //=================================END OF PROGRAM==============================

    Scilab code Exa 3.3  Heat flow and teperature

    1   //C hapt e r −3 , Exa mpl e 3 . 3 , Pa ge 5 12   //

    ============================================================

    3   clc

    4   clear

    5

    6   D i = 0 . 1 ; // I n ne r d ia me te r o f h ol lo w s p he r e i n m7   D o = 0 . 3 ; // O uter d ia me te r o f h ol lo w s p he r e i n m8   k = 5 0 ; / / T he rm al c o n d u c t i v i t y i n W/m .K9   T = [ 3 0 0 , 1 0 0 ] ; // I n n er and o u t er s u r f a c e t em p er a tu re i n

    d e g r e e C10

    11   //CALCULATIONS12   r o = ( D o / 2 ) ; // O uter r a d i us o f h ol lo w s ph e r e i n m13   r i = ( D i / 2 ) ; // I n ne r r a d i us o f h ol lo w s ph e r e i n m14   Q = ( ( 4 * 3 . 1 4 * r o * r i * k * ( T ( 1 ) - T ( 2 ) ) ) / ( r o - r i ) ) / 1 0 0 0 ; //H e at

    t r a n s f e r r a t e i n W15   r = r i + ( 0 . 2 5 * ( r o - r i ) ) ; / /The v a l u e a t one−f o u r t h way o f  t e i n n e r and o ut er s u r f a c e s i n m

    16   T = ( ( r o * ( r - r i ) * ( T ( 2 ) - T ( 1 ) ) ) / ( r * ( r o - r i ) ) ) + T ( 1 ) ; //T em pe ra tu re a t a p o i nt a q u a r t er o f t he way

    18

  • 8/20/2019 Fundamentals of Engineering Heat and Mass Transfer_R. C. Sachdeva

    20/213

    bet w ee n t he i n n er and o u te r s u r f a c e s i n d e g r e e C

    1718   //OUTPUT19   mprintf ( ’ H eat f l o w r a t e t hr ou gh t he s p he r e i s %3 . 2 f  

    kW   \n Tem per atu re a t a p o i nt a q u a r t er o f t he waybet w ee n t he i n n er and o u te r s u r f a c e s i s %i d e g r ee

    C ’ , Q , T )20

    21   //=================================END OF PROGRAM==============================

    Scilab code Exa 3.4  Heat loss per square meter surface area

    1   //C hapt e r −3 , Exa mpl e 3 . 4 , Pa ge 5 52   //

    ============================================================

    3   clc

    4   clear

    5

    6   //INPUT DATA7   L = 0 . 4 ; // T hi ck ne ss o f t he f u rn a c e i n m8   T = [ 3 0 0 , 5 0 ] ; // S u r f ac e t e mp e ra t ur e s i n d e gr e e C9   //k = 0. 005T−5∗10ˆ−6Tˆ2

    10

    11   //CALCULATIONS12   q = ( ( 1 / L ) * ( ( ( 0 . 0 0 5 / 2 ) * ( T ( 1 ) ^ 2 - T ( 2 ) ^ 2 ) ) - ( ( 5* 1 0 ^ - 6 * ( T

    ( 1 ) ^ 3 - T ( 2 ) ^ 3 ) ) / 3 ) ) ) ; // H eat l o s s p er s q ua r e m et ers u r f a c e a r e a i n W/mˆ 2

    13

    14   //OUTPUT15   mprintf ( ’ H eat l o s s p er s qu ar e me t e r s u r f a c e a re a i s%3 . 0 f W/mˆ2 ’ ,q )

    16

    17   //=================================END OF PROGRAM

    19

  • 8/20/2019 Fundamentals of Engineering Heat and Mass Transfer_R. C. Sachdeva

    21/213

    ==============================

    Scilab code Exa 3.5  Rate of heat flow

    1   //C hapt e r −3 , Exa mpl e 3 . 5 , Pa ge 5 52   //

    ============================================================

    3   clc

    4   clear5

    6   //INPUT DATA7   L = 0 . 2 ; // T hi ck ne ss o f t he w a ll i n m8   T = [ 1 0 0 0 , 2 0 0 ] ; // S u r f ac e t e mp e ra t ur e s i n d e gr e e C9   k o = 0 . 8 1 3 ; // V al ue o f t he rm al c o n d u c t i v i t y a t T=0 i n W

    /m.K10   b = 0 . 0 0 0 7 1 5 8 ; // T e mpe r at ur e c o e f f i c i e n t of t he r mal

    c o n d u ct i v i t y i n 1/K11

    12   //CALCULATIONS

    13   k m = k o * ( 1 + ( ( b * ( T ( 1 ) + T ( 2 ) ) ) / 2 ) ) ; / / C o n st a nt t h e r ma lc o n d u c t i v i t y i n W/m. K

    14   q = ( ( k m * ( T ( 1 ) - T ( 2 ) ) ) / L ) ; / / R at e o f h e a t f l o w i n W/mˆ 215

    16   //OUTPUT17   mprintf ( ’ R at e o f h e a t f l o w i s %3 . 0 f W/mˆ 2 ’ ,q )18

    19   //=================================END OF PROGRAM==============================

    Scilab code Exa 3.6  Heat loss per unit length

    1   //C hapt e r −3 , Exa mpl e 3 . 6 , Pa ge 5 8

    20

  • 8/20/2019 Fundamentals of Engineering Heat and Mass Transfer_R. C. Sachdeva

    22/213

    2   //

    ============================================================

    3   clc

    4   clear

    5

    6   //INPUT DATA7   r = [ 0 . 0 1 , 0 . 0 2 ] ; // I n ne r and o u te r r a d i u s o f a c op pe r

    c y l i n d e r i n m8   T = [ 3 1 0 , 2 9 0 ] ; // I n n e r and Ou te r s u r f a c e t e m pe r a tu r e i n

    d e g r e e C9   k o = 3 7 1 . 9 ; // V al ue o f t he rm al c o n d u c t i v i t y a t T=0 i n W

    /m.K10   b = ( 9 . 2 5 * 1 0 ^ - 5 ) ; // T e mpe r at ur e c o e f f i c i e n t of t he r mal

    c o n d u ct i v i t y i n 1/K11

    12   //CALCULATIONS13   Tm=(( T(1) -150)+(T(2) -150))/2; / / Mean t e m p e r a t u r e i n

    d e g r e e C14   k m = k o * ( 1 - ( b * T m ) ) ; // C o ns ta nt t he rm al c o n d u c t i v i t y i n

    W/m.K15   q = ( ( 2 * 3 . 1 4 * k m * ( T ( 1 ) - T ( 2 ) ) ) / log ( r ( 2 ) / r ( 1 ) ) ) / 1 0 0 0 ; //

    Heat l o s s p er u n i t l e n g th i n kW/m1617   //OUTPUT18   mprintf ( ’ H eat l o s s p er u n i t l e n g th i s %3 . 2 f kW/m ’ ,q )

    Scilab code Exa 3.8   Thickness of insulation

    1   //C hapt e r −3 , Exa mpl e 3 . 8 , Pa ge 6 3

    2   // ============================================================

    3   clc

    4   clear

    21

  • 8/20/2019 Fundamentals of Engineering Heat and Mass Transfer_R. C. Sachdeva

    23/213

    5

    6   //INPUT DATA7   L 1 = 0 . 5 ; // T hi ck ne ss o f t he w a ll i n m8   k 1 = 1 . 4 ; / / T he rm al c o n d u c t i v i t y i n W/m .K9   k 2 = 0 . 3 5 ; // Thermal c o n d uc t i v i t y o f i n s u l a t i n g

    m a t e r i a l i n W/m .K10   q = 1 4 5 0 ; // Heat l o s s p er s qu ar e me t r e i n W11   T = [ 1 2 0 0 , 1 5 ] ; // I n n er and o u t er s u r f a c e t e mp e ra t ur e s

    i n d eg re e C12

    13   //CALCULATIONS14   L 2 = ( ( ( T ( 1 ) - T ( 2 ) ) / q ) - ( L 1 / k 1 ) ) * k 2 ; ; / / T h i ck n e ss o f t h e

    i n s u l a t i o n r e q u i r e d i n m15

    16   //OUTPUT17   mprintf ( ’ T hi ck ne ss o f t h e i n s u l a t i o n r e q u i r e d i s %3

    . 3 f m ’ , L 2 )18

    19   //=================================END OF PROGRAM==============================

    Scilab code Exa 3.9  Rate of heat leaking

    1   //C hapt e r −3 , Exa mpl e 3 . 9 , Pa ge 6 42   //

    ============================================================

    3   clc

    4   clear

    5

    6   L 1 = 0 . 0 0 6 ; // T hi ck ne ss o f e a ch g l a s s s h e e t i n m7   L 2 = 0 . 0 0 2 ; // T hi ck ne ss o f a i r gap i n m8   T b = - 2 0 ; // T empe ra tur e o f t he a i r i n s i d e t he room i n

    d e g r e e C9   T a = 3 0 ; // Ambient t em p er a tu re o f a i r i n d e g re e C

    22

  • 8/20/2019 Fundamentals of Engineering Heat and Mass Transfer_R. C. Sachdeva

    24/213

    10   h a = 2 3 . 2 6 ; / / H ea t t r a n s f e r c o e f f i c i e n t b e tw e en g l a s s

    a nd a i r i n W/mˆ 2 . K11   k g l a s s = 0 . 7 5 ; // T herm al c o n d u c t i v i t y o f g l a s s i n W/m. K12   k a i r = 0 . 0 2 ; / / Th erma l c o n d u c t i v i t y o f a i r i n W/m. K13

    14   //CALCULATIONS15   q = ( ( T a - T b ) / ( ( 1 / h a ) + ( L 1 / k g l a s s ) + ( L 2 / k a i r ) + ( L 1 / k g l a s s )

    + ( 1 / h a ) ) ) ; // Rate o f h ea t l e a k i n g i n t o t he roomp er u n i t a r ea o f t he d oo r i n W/mˆ2

    16

    17   //OUTPUT18   mprintf ( ’ R ate o f h ea t l e a k i n g i n t o t he room p er u n it

    a r e a o f t h e d o o r i s %3 . 1 f W/mˆ 2 ’ ,q )19

    20   //=================================END OF PROGRAM==============================

    Scilab code Exa 3.10  Heat transfer through the composite wall

    1   //C hapt e r −3 , Exa mpl e 3 . 1 0 , P ag e 6 5

    2   //============================================================

    3   clc

    4   clear

    5

    6   //INPUT DATA7   L A = 0 . 0 5 ; // L ength o f s e c t i o n A i n m8   L B = 0 . 1 ; // L engt h o f s e c t i o n A i n m9   L C = 0 . 1 ; // L engt h o f s e c t i o n A i n m

    10   L D = 0 . 0 5 ; // L ength o f s e c t i o n A i n m11   L E = 0 . 0 5 ; // L ength o f s e c t i o n A i n m12   k A = 5 0 ; / / Therma l c o n d u c t i v i t y o f s e c t i o n A i n W/m. K13   k B = 1 0 ; / / Therma l c o n d u c t i v i t y o f s e c t i o n B i n W/m. K14   k C = 6 . 6 7 ; / / Therma l c o n d u c t i v i t y o f s e c t i o n C i n W/m. K

    23

  • 8/20/2019 Fundamentals of Engineering Heat and Mass Transfer_R. C. Sachdeva

    25/213

    15   k D = 2 0 ; / / Therma l c o n d u c t i v i t y o f s e c t i o n D i n W/m. K

    16   k E = 3 0 ; / / Therma l c o n d u c t i v i t y o f s e c t i o n E i n W/m. K17   A a = 1 ; // Area o f s e c t i o n A i n mˆ218   A b = 0 . 5 ; // Area o f s e c t i o n B i n mˆ219   A c = 0 . 5 ; // Area o f s e c t i o n C i n mˆ220   A d = 1 ; // Area o f s e c t i o n D i n mˆ221   A e = 1 ; // Area o f s e c t i o n E i n mˆ222   T = [ 8 0 0 , 1 0 0 ] ; // T em pe ra tu re a t i n l e t and o u t l e t

    t e mp e ra t u re s i n d e g re e C23

    24   //CALCULATIONS25   R a = ( L A / ( k A * A a ) ) ; // Thermal R e s is t a nc e o f s e c t i o n A i n

    K/W26   R b = ( L B / ( k B * A b ) ) ; // Thermal R e s is t a nc e o f s e c t i o n B i n

    K/W27   R c = ( L C / ( k C * A c ) ) ; // Thermal R e s is t a nc e o f s e c t i o n C i n

    K/W28   R d = ( L D / ( k D * A d ) ) ; // Thermal R e s is t a nc e o f s e c t i o n D i n

    K/W29   R e = ( L E / ( k E * A e ) ) ; // Thermal R e s is t a nc e o f s e c t i o n E i n

    K/W30   R f = ( ( R b * R c ) / ( R b + R c ) ) ; // E q u i v a le nt r e s i s t a n c e o f  

    s e c t i o n B and s e c t i o n C i n K/W31   R = R a + R f + R d + R e ; // E qu i v al en t r e s i s t a n c e o f a l ls e c t i o n s i n K/W

    32   Q = ( ( T ( 1 ) - T ( 2 ) ) / R ) / 1 0 0 0 ; // Heat t r a n s f e r t hr ou gh t hec o m po s i te w a l l i n kW

    33

    34   //OUTPUT35   mprintf ( ’ H eat t r a n s f e r t hr ou gh t he c om po si te w a ll i s

    %3. 1 f kW’ ,Q )36

    37   //=================================END OF PROGRAM

    ==============================

    24

  • 8/20/2019 Fundamentals of Engineering Heat and Mass Transfer_R. C. Sachdeva

    26/213

    Scilab code Exa 3.11  Surface temperature and convective conductance

    1   //C hapt e r −3 , Exa mpl e 3 . 1 1 , P ag e 6 62   //

    ============================================================

    3   clc

    4   clear

    5

    6   //INPUT DATA7   T 1 = 2 0 0 0 ; // T em per at ure o f h ot g as i n d e g re e C8   T a = 4 5 ; / /Room a i r t e mp e r at u r e i n d e g r e e C

    9   Q r 1 = 2 3 . 2 6 0 ; // Heat f l o w by r a d i a t i o n from g a s es t oi n s i d e s u r f a c e o f t he w a l l i n kW/mˆ2

    10   h = 1 1 . 6 3 ; / / C o n v e c t i v e h e a t t r a n s f e r c o e f f i c i e n t i n W/m ˆ 2 .

    11   C = 5 8 ; / / Th er ma l c o n d u ct a n c e o f t h e w a l l i n W/mˆ 2 . K12   Q = 9 . 3 ; // Heat f l o w by r a d i a t i o n from e x t e r n a l s u r f a c e

    t o t h e s u r r o u n d i n g i n kW .mˆ 213   T 2 = 1 0 0 0 ; // I n t e r i o r w a ll t em pe ra tu re i n d e g r e e C14

    15   //CALCULATIONS16   q r 1 = Q r 1 ;

    / / Ha et by r a d i a t i o n i n kW/mˆ 217   q c 1 = h * ( ( T 1 - T 2 ) / 1 0 0 0 ) ; / / H e a t b y c o n d u c t i o n i n kW/mˆ 218   q = q c 1 + q r 1 ; / / T o ta l h e at e n t e r i n g t h e w a l l i n kW/mˆ 219   R = ( 1 / C ) ; / / Th er ma l r e s i s t a n c e i n mˆ 2 . K/W20   T 3 = T 2 - ( q * R * 1 0 0 0 ) ; // E x t e rn a l w a l l t e m pe r a tu r e i n

    d e g r e e C21   Q l = q - Q ; / / He at l o s s d ue t o c o n v e c t i o n kW/mˆ 222   h 4 = ( Q l * 1 0 0 0 ) / ( T 3 - T a ) ; / / C o n v e c t i v e c o n d u c t a n c e i n W/m

    ˆ 2 . K23

    24   mprintf ( ’ The s u r f a c e t em pe ra tu re i s %i d e g r e e C   \

    nThe c o n v e c t i v e c o n d u ct a n c e i s %3 . 1 f W/mˆ 2 . K ’ , T 3 ,h4 )

    25

    26   //=================================END OF PROGRAM==============================

    25

  • 8/20/2019 Fundamentals of Engineering Heat and Mass Transfer_R. C. Sachdeva

    27/213

    Scilab code Exa 3.12  Heat loss and thickness of insulation

    1   //C hapt e r −3 , Exa mpl e 3 . 1 2 , P ag e 6 72   //

    ============================================================

    3   clc

    4   clear

    56   //INPUT DATA7   L 1 = 0 . 1 2 5 ; // T hi ck ne ss o f f i r e c l a y l a y e r i n m8   L 2 = 0 . 5 ; // T hi ck ne ss o f r ed b r i c k l a y e r i n m9   T = [ 1 1 0 0 , 5 0 ] ; // T e mp er at ur es a t i n s i d e and o u t s i d e t he

    f u rn a c e s i n d eg re e C10   k 1 = 0 . 5 3 3 ; // Thermal c o n d u c t i v i t y o f f i r e c l a y i n W/m. K11   k 2 = 0 . 7 ; // T herm al c o n d u c t i v i t y o f r ed b r i c k i n W/m. K12

    13   //CALCULATIONS14   R 1 = ( L 1 / k 1 ) ; // R e s i s t a n c e o f f i r e c l a y p e r u ni t a re a i n

    K/W15   R 2 = ( L 2 / k 2 ) ; // R e s is t a nc e o f r ed b r i c k p er u n it a re a

    i n K/W16   R = R 1 + R 2 ; / / T o ta l r e s i s t a n c e i n K/W17   q = ( T ( 1 ) - T ( 2 ) ) / R ; / / H ea t t r a n s f e r i n W/mˆ 218   T 2 = T ( 1 ) - ( q * R1 ) ; / / Te mp er at ur e i n d e g r e e C19   T 3 = T ( 2 ) + ( q * R 2 * 0 . 5 ) ; // T em per at ur e a t t he i n t e r f a c e

    bet w ee n t he two l a y e r s i n d e g r ee C20   k m = 0 . 1 1 3 + ( 0 . 0 0 0 2 3 * ( ( T 2 + T 3 ) / 2 ) ) ; //Mean t he r mal

    c o n d u c t i v i t y i n W/m. K

    21   x = ( ( T 2 - T 3 ) / q ) * k m ; // T hi c kn e ss o f d i a t o mi t e i n m22

    23   //OUTPUT24   mprintf ( ’ Amount o f h e a t l o s s i s %3 . 1 f W/mˆ 2   \n

    T hi ck ne ss o f d i at o mi t e i s %3 . 4 f m ’ ,q , x )

    26

  • 8/20/2019 Fundamentals of Engineering Heat and Mass Transfer_R. C. Sachdeva

    28/213

    25

    26   //=================================END OF PROGRAM==============================

    Scilab code Exa 3.13  Heat loss from the pipe

    1   //C hapt e r −3 , Exa mpl e 3 . 1 3 , P ag e 7 02   //

    ============================================================

    3   clc

    4   clear

    5

    6   //INPUT DATA7   D i = 0 . 1 ; // I . D o f t he p i p e i n m8   L = 0 . 0 1 ; // T hi ck ne ss o f t he w a ll i n m9   L 1 = 0 . 0 3 ; // T hi ck ne ss o f i n s u l a t i o n i n m

    10   T a = 8 5 ; // T emper at ur e o f h ot l i q u i d i n d e g r e e C11   T b = 2 5 ; // T em per at ur e o f s u r ro u n d i ng s i n d e gr e e C12   k 1 = 5 8 ; / / Therma l c o n d u c t i v i t y o f s t e e l i n W/m. K

    13   k 2 = 0 . 2 ; // Thermal c o n d u ct i v i t y o f i n s u l a t i n g m a t e r i a lin W/m.K

    14   h a = 7 2 0 ; / / I n s i d e h e a t t r a n s f e r c o e f f i c i e n t i n W/mˆ 2 . K15   h b = 9 ; / / O u t s i d e h e a t t r a n s f e r c o e f f i c i e n t i n W/m ˆ 2 . K16   D 2 = 0 . 1 2 ; / / I n n e r d i a m et e r i n m17   r 3 = 0 . 0 9 ; / / R ad iu s i n m18

    19   //CALCULATIONS20   q = ( ( 2 * 3 . 1 4 * ( T a - T b ) ) / ( ( 1 / ( h a * ( D i / 2 ) ) ) + ( 1 / ( h b * r 3 ) ) + (

    log ( D 2 / D i ) / k 1 ) + ( log ( r 3 / ( D 2 / 2 ) ) / k 2 ) ) ) ; // H eat l o s s

    f r o an i n s u l a t e d p i p e i n W/m2122   //OUTPUT23   mprintf ( ’ H eat l o s s f r o an i n s u l a t e d p ip e i s %3 . 2 f W/

    m ’ ,q )

    27

  • 8/20/2019 Fundamentals of Engineering Heat and Mass Transfer_R. C. Sachdeva

    29/213

    24

    25   //=================================END OF PROGRAM==============================

    Scilab code Exa 3.14  Heat loss per meter length of pipe

    1   //C hapt e r −3 , Exa mpl e 3 . 1 4 , P ag e 7 12   //

    ============================================================

    3   clc

    4   clear

    5

    6   //INPUT DATA7   D i = 0 . 1 ; // I . D o f t he p i p e i n m8   D o = 0 . 1 1 ; //O. D o f t he p ip e i n m9   L = 0 . 0 0 5 ; // T hi ck ne ss o f t he w a ll i n m

    10   k 1 = 5 0 ; // Thermal c o n d u c t i v i t y o f s t e e l p ip e l i n e i n W/m.K

    11   k 2 = 0 . 0 6 ; // Thermal c o n d u c t i v i t y o f f i r s t i n s u l a t i n g

    m a t e r i a l i n W/m .K12   k 3 = 0 . 1 2 ; // Thermal c o n d u c t i v i t y o f s ec on d i n s u l a t i n g

    m a t e r i a l i n W/m .K13   T = [ 2 5 0 , 5 0 ] ; // T em per at ur e a t i n s i d e t ub e s u r f a c e and

    o u t s i d e s u r f a c e o f i n s u l a t i o n i n d eg re e C14   r 3 = 0 . 1 0 5 ; // R adi u s o f r 3 i n m a s shown i n f i g . 3 . 1 4 on

    p a ge no . 7 115   r 4 = 0 . 1 5 5 ; // R adi u s o f r 4 i n m a s shown i n f i g . 3 . 1 4 on

    p a ge no . 7 116

    17   //CALCULATIONS18   r 1 = ( D i / 2 ) ; // R adi us o f t he p ip e i n m19   r 2 = ( D o / 2 ) ; // R adi us o f t he p ip e i n m20   q = ( ( 2 * 3 . 1 4 * ( T ( 1 ) - T ( 2 ) ) ) / ( ( ( log ( r 2 / r 1 ) ) / k 1 ) + ( ( log ( r 3 /

    r 2 ) ) / k 2 ) + ( ( log ( r 4 / r 3 ) ) / k 3 ) ) ) ; // L os s o f h ea t p er

    28

  • 8/20/2019 Fundamentals of Engineering Heat and Mass Transfer_R. C. Sachdeva

    30/213

    m et re l e n g t h o f p i p e i n W/m

    21   T 3 = ( ( q * log ( r 4 / r 3 ) ) / ( 2 * 3 . 1 4 * k 3 ) ) + T ( 2 ) ; // I n t e r f a c et em p er a tu r e i n d e gr e e C22

    23   //OUTPUT24   mprintf ( ’ L o ss o f h ea t p er m et r e l e n g t h o f p ip e i s %3

    . 1 f W/m   \n I n t e r f a c e t em pe ra tu re i s %3 . 1 f d e g r e eC ’ , q , T 3 )

    25

    26   //=================================END OF PROGRAM==============================

    Scilab code Exa 3.15  Change in heat loss

    1   //C hapt e r −3 , Exa mpl e 3 . 1 5 , P ag e 7 22   //

    ============================================================

    3   clc

    4   clear

    56   //INPUT DATA7   D i = 0 . 1 ; // I . D o f t he p i p e i n m8   D o = 0 . 1 1 ; //O. D o f t he p ip e i n m9   L = 0 . 0 0 5 ; // T hi ck ne ss o f t he w a ll i n m

    10   k 1 = 5 0 ; // Thermal c o n d u c t i v i t y o f s t e e l p ip e l i n e i n W/m.K

    11   k 3 = 0 . 0 6 ; // Thermal c o n d u c t i v i t y o f f i r s t i n s u l a t i n gm a t e r i a l i n W/m .K

    12   k 2 = 0 . 1 2 ; // Thermal c o n d u c t i v i t y o f s ec on d i n s u l a t i n g

    m a t e r i a l i n W/m .K13   T = [ 2 5 0 , 5 0 ] ; // T em per at ur e a t i n s i d e t ub e s u r f a c e ando u t s i d e s u r f a c e o f i n s u l a t i o n i n d eg re e C

    14   r 3 = 0 . 1 0 5 ; // R adi u s o f r 3 i n m a s shown i n f i g . 3 . 1 4 onp a ge no . 7 1

    29

  • 8/20/2019 Fundamentals of Engineering Heat and Mass Transfer_R. C. Sachdeva

    31/213

    15   r 4 = 0 . 1 5 5 ; // R adi u s o f r 4 i n m a s shown i n f i g . 3 . 1 4 on

    p a ge no . 7 11617   //CALCULATIONS18   r 1 = ( D i / 2 ) ; // R adi us o f t he p ip e i n m19   r 2 = ( D o / 2 ) ; // R adi us o f t he p ip e i n m20   q = ( ( 2 * 3 . 1 4 * ( T ( 1 ) - T ( 2 ) ) ) / ( ( ( log ( r 2 / r 1 ) ) / k 1 ) + ( ( log ( r 3 /

    r 2 ) ) / k 2 ) + ( ( log ( r 4 / r 3 ) ) / k 3 ) ) ) ; // L os s o f h ea t p erm et re l e n g t h o f p i p e i n W/m

    21

    22   //OUTPUT23   mprintf ( ’ L o ss o f h ea t p er m et r e l e n g t h o f p ip e i s %3

    . 2 f W/m ’ ,q )24   // Comparing t he r e s u l t w it h t he p r e v i o us ex am ple Ex

    . 3 . 1 4 , i t i s s e e n t h a t t h e l o s s o f h e a t i si n c r e as e d by ab ou t 1 8 .1 1%. S i nc e t he p ur po se o f  i n s u l a t i o n i s t o r e d u c e t h e l o s s o f hea t , i t i sa lw a ys b e t t e r t o p ro v i de t he i n s u l a t i n g m a t e r i a lw i th low t he rm al c o n d u ct i v i t y on t he s u r f a c e o f  t h e t u b e f i r s t

    25

    26   //=================================END OF PROGRAM

    ==============================

    Scilab code Exa 3.16  Mass of steam condensed

    1   //C hapt e r −3 , Exa mpl e 3 . 1 6 , P ag e 7 32   //

    ============================================================

    3   clc4   clear

    5

    6   //INPUT DATA7   D 1 = 0 . 1 ; //O. D o f t he p i p e i n m

    30

  • 8/20/2019 Fundamentals of Engineering Heat and Mass Transfer_R. C. Sachdeva

    32/213

    8   P = 1 3 7 3 ; // P r e s su r e o f s a t u r a t ed s team i n kPa

    9   D 2 = 0 . 2 ; // D i am et er o f m ag ne si a i n m10   k 1 = 0 . 0 7 ; / / Th er ma l c o n d u c t i v i t y o f m a gn e si a i n W/m. K11   k 2 = 0 . 0 8 ; / / Therma l c o n d u c t i v i t y o f a s b e s t o s i n W/m. K12   D 3 = 0 . 2 5 ; // D ia me t er o f a s b e s t o s i n m13   T 3 = 2 0 ; / / T em er at ur e u nd er t h e c an v as i n d e g r e e C14   t = 1 2 ; // Time f o r c o n de n s at i o n i n h ou rs15   l = 1 5 0 ; / / Lemgth o f p i p e i n m16   T 1 = 1 9 4 . 1 4 ; / / S a t u r a t i o n t e m pe r a tu r e o f s te am i n

    d e g r e e C f r om T ab l e A . 6 ( A pp en di x A) a t 1 3 73 kPaon p ag e no . 6 43

    17   h f g = 1 9 6 3 . 1 5 ; // L a te n t h e at o f s te am i n kJ / kg f ro m

    T ab l e A . 6 ( A pp en di x A ) a t 1 37 3 kPa on p ag e no .643

    18

    19   //CALCULATIONS20   r 1 = ( D 1 / 2 ) ; // R adi us o f t he p ip e i n m21   r 2 = ( D 2 / 2 ) ; // R ad iu s o f m ag ne si a i n m22   r 3 = ( D 3 / 2 ) ; // R adi us o f a s b e s t o s i n m23   Q = ( ( ( 2 * 3 . 1 4 * l * ( T 1 - T 3 ) ) / ( ( log ( r 2 / r 1 ) / k 1 ) + ( log ( r 3 / r 2 ) /

    k 2 ) ) ) * ( 3 6 0 0 / 1 0 0 0 ) ) ; // Heat t r a n s f e r r a t e i n k J/h24   m = ( Q / h f g ) ; / / Mass o f s tea m c o nd en s ed p e r h ou r25   m 1 = ( m * t ) ;

    // Mass o f s te am c o nd e ns e d i n 1 2 h o ur s2627   //OUTPUT28   mprintf ( ’ Mass o f stea m c on de ns ed i n 12 h ou rs i s %3 . 2

    f kg ’ , m 1 )29

    30   //=================================END OF PROGRAM==============================

    Scilab code Exa 3.17  Rate of heat flow

    1   //C hapt e r −3 , Exa mpl e 3 . 1 7 , P ag e 7 42   //

    31

  • 8/20/2019 Fundamentals of Engineering Heat and Mass Transfer_R. C. Sachdeva

    33/213

    ============================================================

    3   clc

    4   clear

    5

    6   //INPUT DATA7   D 1 = 0 . 1 ; // I . D o f t h e f i r s t p i p e i n m8   D 2 = 0 . 3 ; //O .D o f t h e f i r s t p i p e i n m9   k 1 = 7 0 ; / / Therma l c o n d u c t i v i t y o f f i r s t m a t e r i a l i n W/

    m. K10   D 3 = 0 . 4 ; //O. D o f t he s ec on d p i p e i n m11   k 2 = 1 5 ; // Thermal c o n d u c t i v i t y o f s ec on d m a t e r i a l i n W

    /m.K12   T = [ 3 0 0 , 3 0 ] ; // I n s i d e and o u t s i d e t e mp e ra t u re s i n

    d e g r e e C13

    14   //CALCULATIONS15   r 1 = ( D 1 / 2 ) ; / / I n n e r R ad iu s o f f i r s t p i p e i n m16   r 2 = ( D 2 / 2 ) ; / / Ou te r R ad iu s o f f i r s t p i p e i n m17   r 3 = ( D 3 / 2 ) ; // R adi us o f s ec on d p i p e i n m18   Q = ( ( 4 * 3 . 1 4 * ( T ( 1 ) - T ( 2 ) ) ) / ( ( ( r 2 - r 1 ) / ( k 1 * r 1 * r 2 ) ) + ( ( r 3 -

    r 2 ) / ( k 2 * r 2 * r 3 ) ) ) ) / 1 0 0 0 ; // Rate o f h ea t f l ow

    t hr ou gh t he s p h er e i n kW1920   //OUTPUT21   mprintf ( ’ R ate o f h ea t f l o w t hr ou gh t he s p he r e i s %3

    . 2 f kW’ ,Q )22

    23   //=================================END OF PROGRAM==============================

    Scilab code Exa 3.18  Heat loss and surface temperature

    1   //C hapt e r −3 , Exa mpl e 3 . 1 8 , P ag e 7 72   //

    32

  • 8/20/2019 Fundamentals of Engineering Heat and Mass Transfer_R. C. Sachdeva

    34/213

    ============================================================

    3   clc

    4   clear

    5

    6   //INPUT DATA7   D i = 0 . 1 ; // I . D o f a s team p i pe i n m8   D o = 0 . 2 5 ; // I . D o f a stea m p i pe i n m9   k = 1 ; // Thermal c o n d u ct i v i t y o f i n s u l a t i n g m a t e r i a l i n

    W/m.K10   T = [ 2 0 0 , 2 0 ] ; / / S tea m t e m p e r a t u r e a nd a m bi e n t

    t e mp e ra t u re s i n d e g re e C

    11   h = 8 ; / / C o n v e c t i v e h e a t t r a n s f e r c o e f f i c i e n t b e tw e ent he i n s u l a t i o n s u r f a c e and a i r i n W/mˆ 2 .K

    12

    13   //CALCULATIONS14   r i = ( D i / 2 ) ; // I n n er R ad iu s o f s team p i pe i n m15   r o = ( D o / 2 ) ; // O uter R ad iu s o f s team p i pe i n m16   r c = ( k / h ) * 1 0 0 ; // C r i t i c a l r a d i u s o f i n s u l a t i o n i n cm17   q = ( ( T ( 1 ) - T ( 2 ) ) / ( ( log ( r o / r i ) / ( 2 * 3 . 1 4 * k ) ) + ( 1 / ( 2 * 3 . 1 4 *

    r o * h ) ) ) ) ; // Heat l o s s p e r me t r e o f p ip e a tc r i t i c a l ra di u s in W/m

    18   R o = ( q / ( 2 * 3 . 1 4 * r o * h ) ) + T ( 2 ) ;/ / Ou te r s u r f a c et em p er a tu r e i n d e gr e e C

    19

    20   //OUTPUT21   mprintf ( ’ H eat l o s s p e r m et re o f p i p e a t c r i t i c a l

    r a d i u s i s %i W/m   \n Outer s u r f a c e t em pe ra tu re i s%3 . 2 f d e g r e e C ’ , q , R o )

    22

    23   //=================================END OF PROGRAM==============================

    Scilab code Exa 3.19  Effect of insulation on the current carrying conduc-tor

    33

  • 8/20/2019 Fundamentals of Engineering Heat and Mass Transfer_R. C. Sachdeva

    35/213

    1   //C hapt e r −3 , Exa mpl e 3 . 1 9 , P ag e 7 8

    2   // ============================================================

    3   clc

    4   clear

    5

    6   //INPUT DATA7   D i = 0 . 0 0 1 ; // D i am et er o f c op pe r w i re i n m8   t = 0 . 0 0 1 ; // T hi ck ne ss o f i n s u l a t i o n i n m;9   T o = 2 0 ; // T em per at ur e o f s u r r o n d i ng s i n d e g re e C

    10   T i = 8 0 ; / /Maximum t e m p e ra t u re o f t h e p l a s t i c i n d e g r e e

    C11   k c o p p e r = 4 0 0 ; / / Th er ma l c o n d u c t i v i t y o f c o p p er i n W/m.

    K12   k p l a s t i c = 0 . 5 ; // Thermal c o n d u c t i v i t y o f p l a s t i c i n W/

    m. K13   h = 8 ; //H e at t r a n s f e r c o e f f i c i e n t i n W/mˆ2. K14   p = ( 3 * 1 0 ^ - 8 ) ; // S p e c i f i c e l e c t r i c r e s i s t a n c e o f c o pp e r

    i n Ohm.m15

    16   //CAlCULATIONS17   r = ( D i / 2 ) ;

    // R ad iu s o f c op pe r t ub e i n m18   r o = ( r + t ) ; // R a di us i n m19   R = ( p / ( 3 . 1 4 * r * r * 0 . 0 1 ) ) ; // E l e c t r i c a l r e s i s t a n c e p er

    m et er l e n g t h i n ohm/m20   R t h = ( ( 1 / ( 2 * 3 . 1 4 * r o * h ) ) + ( log ( r o / r ) / ( 2 * 3 . 1 4 * k p l a s t i c ) )

    ) ; // Thermal r e s i s t a n c e o f c o nv e ct i on f i l mi n s u l a t i o n p er me t r e l e ng t h

    21   Q = ( ( T i - T o ) / R t h ) ; // Heat t r a n s f e r i n W22   I = sqrt ( Q / R ) ; // Maximum s a f e c u r r e n t l i m i t i n A23   r c = ( ( k p l a s t i c * 1 0 0 ) / h ) ; // C r i t i c a l r a di u s i n cm24

    25   //OUTPUT26   mprintf ( ’ The maximum s a f e c u r r e n t l i m i t i s %3 . 3 f A   \

    n As t he c r i t i c a l r a d i u s o f i n s u l a t i o n i s muchg r e a t e r t ha n t h at p r ov i de d i n t he pro blem , t hec u r r e nt c a r r y i n g c a pa c i ty o f t he c on du ct or can be

    34

  • 8/20/2019 Fundamentals of Engineering Heat and Mass Transfer_R. C. Sachdeva

    36/213

    r a i s e d c o n s i d e r a b l y i n i n c r e a s i n g t h e r a d i u s o f  

    p l a s t i c c o v e r i ng u pt o %3 . 1 f cm .\ n T h i s mayhowe ve r l e ad t o t he pr obl e m o f h av in g t oo h ig h at em pe ra tu re a t t he c a b le c e n tr e i f t het em pe r at ur e i n s i d e t h e p l a s t i c c o at i ng ha s t o b ek ep t w i t hi n t he g i v e n l i m i t s ’ , I , r c )

    27

    28   //=================================END OF PROGRAM==============================

    Scilab code Exa 3.20   Surface temperature and maximum temperature inthe wall

    1   //C hapt e r −3 , Exa mpl e 3 . 2 0 , P ag e 8 32   //

    ============================================================

    3   clc

    4   clear

    5

    6   //INPUT DATA7   L = 0 . 1 ; // T hi ck ne ss o f t he w a ll i n m8   Q = ( 4 * 1 0 ^ 4 ) ; / / Hea t t a n s f e r r a t e i n W/mˆ 39   h = 5 0 ; / / C o n v e c t i v e h e a t t r a n s f e r c o e f f i c i e n t i n W/m

    ˆ 2 . K10   T = 2 0 ; / / Ambient a i r t e mp e ra t u re i n d e g r e e C11   k = 1 5 ; / / Th erma l c o n d u c t i v i t y o f t h e m a t e r i a l i n W/m. K12

    13   //CALCULATIONS14   T w = ( T + ( ( Q * L ) / ( 2 * h ) ) ) ; / / S u r f a c e t e m pe r a tu r e i n d e g r e e

    C15   T m a x = ( T w + ( ( Q * L * L ) / ( 8 * k ) ) ) ; //Maximum t e m pe r at u r e i nt h e w al l i n d eg re e C

    16

    17   //OUTPUT

    35

  • 8/20/2019 Fundamentals of Engineering Heat and Mass Transfer_R. C. Sachdeva

    37/213

    18   mprintf ( ’ S u r f a ce t em p er a tu r e i s %i d e g re e C   \n

    Maximum t e mp e r at u r e i n t h e w a l l i s %3 . 3 f d e g r e e C’ , T w , T m a x )19

    20   //=================================END OF PROGRAM==============================

    Scilab code Exa 3.21   Surface temperature

    1   //C hapt e r −3 , Exa mpl e 3 . 2 1 , P ag e 8 52   //

    ============================================================

    3   clc

    4   clear

    5

    6   //INPUT DATA7   D o = 0 . 0 0 6 ; // O uter d ia me te r o f h al l o w c y l i n d e r i n m8   D i = 0 . 0 0 4 ; // I nn e r d ia me te r o f h al l o w c y l i n d e r i n m9   I = 1 0 0 0 ; // C u rr en t i n A

    10   T = 3 0 ; // T em pe ra tu re o f w at er i n d e g re e C11   h = 3 5 0 0 0 ; //H e at t r a n s f e r c o e f f i c i e n t i n W/mˆ2. K12   k = 1 8 ; / / Th erma l c o n d u c t i v i t y o f t h e m a t e r i a l i n W/m. K13   R = 0 . 1 ; / / E l e c t r i c a l r e i s i t i v i t y o f t h e m a t e r i a l i n

    ohm .mmˆ2 /m14

    15   //CALCULATIONS16   r o = ( D o / 2 ) ; // Outer r a di u s o f h al lo w c y l i n d e r i n m17   r i = ( D i / 2 ) ; // I nn er r a di u s o f h al lo w c y l i n d e r i n m18   V = ( ( 3 . 1 4 * ( r o ^ 2 - r i ^ 2 ) ) ) ; // V ol . o f w i re i n mˆ2

    19   R t h = ( R / ( 3 . 1 4 * ( r o ^ 2 - r i ^ 2 ) * 1 0 ^ 6 ) ) ; // R e s i s t i v i t y i n ohm/mmˆ220   q = ( ( I * I * R t h ) / V ) ; / / Hea t t r a n s f e r r a t e i n W/mˆ 321   T o = T + ( ( ( q * r i * r i ) / ( 4 * k ) ) * ( ( ( ( 2 * k ) / ( h * r i ) ) - 1 ) * ( ( r o / r i )

    ^ 2 - 1 ) + ( 2 * ( r o / r i ) ^ 2 * log ( r o / r i ) ) ) ) ; / / T e m pe r at u re a t

    36

  • 8/20/2019 Fundamentals of Engineering Heat and Mass Transfer_R. C. Sachdeva

    38/213

    t h e o ut er s u r f a c e i n d eg re e C

    2223   //OUTPUT24   mprintf ( ’ T em pe ra tu re a t t he o u t er s u r f a c e i s %3 . 2 f  

    d e g r e e C ’ , T o )25

    26   //=================================END OF PROGRAM==============================

    Scilab code Exa 3.22  Heat transfer coefficient and maximum temperature

    1   //C hapt e r −3 , Exa mpl e 3 . 2 2 , P ag e 8 82   //

    ============================================================

    3   clc

    4   clear

    5

    6   //INPUT DATA7   D = 0 . 0 2 5 ; // D ia me te r o f a n ne al e d c op pe r w i re i n m

    8   I = 2 0 0 ; // C u rr en t i n A9   R = ( 0 . 4 * 1 0 ^ - 4 ) ; / / R e s i s t a n c e i n ohm/ cm

    10   T = [ 2 0 0 , 1 0 ] ; / / S u r f a c e t e m p e r a tu r e and a mb i en tt em p er a tu r e i n d e gr e e C

    11   k = 1 6 0 ; / / T he rm al c o n d u c t i v i t y i n W/m .K12

    13   //CALCULATIONS14   r = ( D / 2 ) ; // R ad ius o f a nn ea le d c op pe r w ir e i n m15   Q = ( I * I * R * 1 0 0 ) ; // H eat t r a n s f e r r a t e i n W/m16   V = ( 3 . 1 4 * r * r ) ; // V ol . o f w i re i n mˆ2

    17   q = ( Q / V ) ; / / Hea t l o s s i n c o n du c to r i n W/mˆ218   T c = T ( 1 ) + ( ( q * r * r ) / ( 4 * k ) ) ; / / Maximum t e m p e r a t u r e i n t h ew ir e i n d eg r e e C

    19   h = ( ( r * q ) / ( 2 * ( T ( 1 ) - T ( 2 ) ) ) ) ; // H eat t r a n s f e rc o e f f i c i e n t i n W/mˆ 2 .K

    37

  • 8/20/2019 Fundamentals of Engineering Heat and Mass Transfer_R. C. Sachdeva

    39/213

    20

    21   //OUTPUT22   mprintf ( ’ Maximum t e m p e r at u r e i n t h e w i r e i s %3 . 2 f  d e g r e e C   \n H ea t t r a n s f e r c o e f f i c i e n t i s %3 . 2 f W/

    m ˆ 2 . K ’ , T c , h )23

    24   //=================================END OF PROGRAM==============================

    Scilab code Exa 3.23  Diameter of wire and rate of current flow

    1   //C hapt e r −3 , Exa mpl e 3 . 2 3 , P ag e 8 92   //

    ============================================================

    3   clc

    4   clear

    5

    6   //INPUT DATA7   p = 1 0 0 ; // R e s i s t i v i t y o f ni c h r o m e i n ohm−cm

    8   Q = 1 0 0 0 0 ; // Heat i np ut o f a h e at e r i n W9   T = 1 2 2 0 ; // S u r f a ce t em p er at u re o f n ic hr om e i n d e gr e e C

    10   T a = 2 0 ; // T em per at ur e o f s u rr o u nd i n g a i r i n d e gr e e C11   h = 1 1 5 0 ; // O u ts i de s u r f a c e c o e f f i e n t i n W/mˆ 2 . K12   k = 1 7 ; / / Th er ma l c o n d u c t i v i t y o f n i ch r om e i n W/m. K13   L = 1 ; // L ength o f h e at e r i n m14

    15   //CALCULATIONS16   d = ( Q / ( ( T - T a ) * 3 . 1 4 * h ) ) * 1 0 0 0 ; / / D i am et er o f n i ch r om e

    w i r e i n mm

    17   A = ( 3 . 1 4 * d * d ) / 4 ; // Area o f t he w i re i n mˆ218   R = ( ( p * 1 0 ^ - 8 * L ) / A ) ; // R e s i s t a n ce o f t he w i re i n ohm19   I = sqrt ( Q / R ) / 1 0 0 0 ; // Rate o f c u r r e n t f lo w i n A20

    21   //OUTPUT

    38

  • 8/20/2019 Fundamentals of Engineering Heat and Mass Transfer_R. C. Sachdeva

    40/213

    22   mprintf ( ’ D i am et er o f n i ch r om e w i r e i s %3 . 4 f mm   \n

    Rate o f c u r r e n t f lo w i s %i A ’ , d , I )2324   //=================================END OF PROGRAM

    ==============================

    Scilab code Exa 3.24  Temperature drop

    1   //C hapt e r −3 , Exa mpl e 3 . 2 4 , P ag e 9 3

    2   // ============================================================

    3   clc

    4   clear

    5

    6   //INPUT DATA7   D o = 0 . 0 2 5 ; //O. D o f t he r o d i n m8   k = 2 0 ; / / T he rm al c o n d u c t i v i t y i n W/m .K9   Q = ( 2 . 5 * 1 0 ^ 6 ) ; / / R a te o f h e a t r e m o va l i n W/mˆ 2

    10

    11   //CALCULATIONS12   r o = ( D o / 2 ) ; // Outer r a di u s o f t h e r o d i n m13   q = ( ( 4 * Q ) / ( r o ) ) ; / / Hea t t r a n s f e r r a t e i n W/mˆ314   T = ( ( - 3 * q * r o ^ 2 ) / ( 1 6 * k ) ) ; / / T em p er at ur e d ro p f ro m t h e

    c e n t r e l i n e t o t h e s u r f a c e i n d eg re e C15

    16   //OUTPUT17   mprintf ( ’ T em pe ra tu re d ro p fro m t he c e n t r e l i n e t o

    t h e s u r f a c e i s %3 . 3 f d eg r e e C ’ ,T )18

    19   //=================================END OF PROGRAM==============================

    39

  • 8/20/2019 Fundamentals of Engineering Heat and Mass Transfer_R. C. Sachdeva

    41/213

    Scilab code Exa 3.25  Temperature at the centre of orange

    1   //C hapt e r −3 , Exa mpl e 3 . 2 5 , P ag e 9 52   //

    ============================================================

    3   clc

    4   clear

    5

    6   //INPUT DATA7   Q = 3 0 0 ; / / He at p r od u ce d by t h e o r a n g e s i n W/mˆ 28   s = 0 . 0 8 ; // S i z e o f t he o ra ng e i n m

    9   k = 0 . 1 5 ; // T herm al c o n d u c t i v i t y o f t h e s p h e r e i n W/m. K10

    11   //CALCULATIONS12   q = ( 3 * Q ) / ( s / 2 ) ; / / H e at f l u x i n W/mˆ 213   T c = 1 0 + ( ( q * ( s / 2 ) ^ 2 ) / ( 6 * k ) ) ; / / T em pe ra tu re a t t h e

    c e n t r e o f t he s ph er e i n d eg r e e C14

    15   //OUTPUT16   mprintf ( ’ T em pe ra tu re a t t he c e n t r e o f t he o ra ng e i s

    %i d e gr e e C ’ , T c )17

    18   //=================================END OF PROGRAM==============================

    Scilab code Exa 3.26  Total heat dissipated

    1   //C hapt e r −3 , Exa mpl e 3 . 2 6 , P ag e 1 022   //

    ============================================================

    3   clc

    4   clear

    5

    40

  • 8/20/2019 Fundamentals of Engineering Heat and Mass Transfer_R. C. Sachdeva

    42/213

    6   //INPUT DATA

    7   T o = 1 4 0 ; // T em pe ra tu re a t t he j u n c t i o n i n d e g re e C8   T i = 1 5 ; // T em per at ur e o f a i r i n t he room i n d e gr e e C9   D = 0 . 0 0 3 ; // D ia me t er o f t he r o d i n m

    10   h = 3 0 0 ; //H e at t r a n s f e r c o e f f i c i e n t i n W/mˆ2. K11   k = 1 5 0 ; / / T he rm al c o n d u c t i v i t y i n W/m .K12

    13   //CALCULATIONS14   P = ( 3 . 1 4 * D ) ; // P er i me t er o f t he r od i n m15   A = ( 3 . 1 4 * D ^ 2 ) / 4 ; // Area o f t he r od i n mˆ216   Q = sqrt ( h * P * k * A ) * ( T o - T i ) ; // T ot al h ea t d i s s i p a t e d by

    t h e r od i n W

    1718   //OUTPUT19   mprintf ( ’ T ot al h ea t d i s s i p a t e d by t he r od i s %3 . 3 f W

    ’ ,Q )20

    21   //=================================END OF PROGRAM==============================

    Scilab code Exa 3.27  Thermal conductivity

    1   //C hapt e r −3 , Exa mpl e 3 . 2 7 , P ag e 1 032   //

    ============================================================

    3   clc

    4   clear

    5

    6   //INPUT DATA

    7   D = 0 . 0 2 5 // D iam et e r o f t he r o d i n m8   T i = 2 2 ; // T em per at ur e o f a i r i n t he room i n d e gr e e C9   x = 0 . 1 ; // D i st a n ce b et wee n t he p o i n t s i n m

    10   T = [ 1 1 0 , 8 5 ] ; // T em per at ur e s a t two p o i n t s i n d e g re e C11   h = 2 8 . 4 ; //H e at t r a n s f e r c o e f f i c i e n t i n W/mˆ2. K

    41

  • 8/20/2019 Fundamentals of Engineering Heat and Mass Transfer_R. C. Sachdeva

    43/213

    12

    13   //CALCULATIONS14   m = - log ( ( T ( 2 ) - T i ) / ( T ( 1 ) - T i ) ) / x ; // C a l c ul a t i on o f m f o ro b t ai n i ng k

    15   P = ( 3 . 1 4 * D ) ; // P er i me t er o f t he r od i n m16   A = ( 3 . 1 4 * D ^ 2 ) / 4 ; // Area o f t he r od i n mˆ217   k = ( ( h * P ) / ( ( m ) ^ 2 * A ) ) ; // Thermal c o n d u c t i v i t y o f t he

    r o d m a t e r i a l i n W/m. K18

    19   //OUTPUT20   mprintf ( ’ T hermal c o n d u c t i v i ty o f t he r o d m a t e r i a l i s

    %3 . 1 f W/m.K ’ ,k )

    2122   //=================================END OF PROGRAM

    ==============================

    Scilab code Exa 3.28  Temperature distribution and rate of heat flow

    1   //C hapt e r −3 , Exa mpl e 3 . 2 8 , P ag e 1 032   //

    ============================================================

    3   clc

    4   clear

    5

    6   //INPUT DATA7   L = 0 . 0 6 ; // L engt h o f t he t u r bi n e b la de i n m8   A = ( 4 . 6 5 * 1 0 ^ - 4 ) ; // C ro ss s e c t i o n a l a r ea i n mˆ29   P = 0 . 1 2 ; // P e r im e t er i n m

    10   k = 2 3 . 3 ; // Thermal c o n d u c t i v i t y o f s t a i n l e s s s t e e l i n

    W/m.K11   T o = 5 0 0 ; // T em pe ra tu re a t t he r o o t i n d e g re e C12   T i = 8 7 0 ; // T em pe ra tu re o f t he h ot g as i n d e gr e e C13   h = 4 4 2 ; //H e at t r a n s f e r c o e f f i c i e n t i n W/mˆ2. K14

    42

  • 8/20/2019 Fundamentals of Engineering Heat and Mass Transfer_R. C. Sachdeva

    44/213

    15   //CALCULATIONS

    16   m = sqrt ( ( h * P ) / ( k * A ) ) ; // C a l c ul a t i on o f m f o rc a l c u l a t i n g h e a t t r a n s f e r r a t e17   X = ( T o - T i ) / cosh ( m * L ) ; //X f o r c a l c u l a t i n g t em pe ta ru re

    d i s t r i b u t i o n18   Q = sqrt ( h * P * k * A ) * ( T o - T i ) * tanh ( m * L ) ; // H eat t r a n s f e r

    r a t e i n W19

    20   //OUTPUT21   mprintf ( ’ T empe ra tur e d i s t r i b u t i o n i s g i ve n by : T−Ti

    = %i c osh [ %3. 2 f ( %3. 2 f  −x ) ]   \n

    −−−−−−−−−−−−−−−−−−−−\n

    co sh [ %3. 2 f (%3. 2 f ) ]   \n Heat t r a n s f e r r a te i s %3 . 1 f  W’ ,( T o - T i ) , m , L , m , L , Q )

    22

    23   //=================================END OF PROGRAM==============================

    Scilab code Exa 3.29  Rate of heat transfer and temperature

    1   //C hapt e r −3 , Exa mpl e 3 . 2 9 , P ag e 1 042   //

    ============================================================

    3   clc

    4   clear

    5

    6   //INPUT DATA

    7   W = 1 ; // Length o f t h e c y l i n d e r i n m8   D = 0 . 0 5 ; // D iam et e r o f t he c y l i n d e r i n m9   T a = 4 5 ; / / Ambient t e m pe r a tu r e i n d e g r e e C

    10   n = 1 0 ; / /Number o f f i n s11   k = 1 2 0 ; // Thermal c o n d u ct i v i t y o f t he f i n m a t e r i a l i n

    43

  • 8/20/2019 Fundamentals of Engineering Heat and Mass Transfer_R. C. Sachdeva

    45/213

    W/m.K

    12   t = 0 . 0 0 0 7 6 ; // T hi ck ne ss o f f i n i n m13   L = 0 . 0 1 2 7 ; // H ei g h t o f f i n i n m14   h = 1 7 ; //H e at t r a n s f e r c o e f f i c i e n t i n W/mˆ2. K15   T s = 1 5 0 ; // S u r f a ce t em pe ra tu re o f c y l i n d e r i n m16

    17   //CALCULATIONS18   P = ( 2 * W ) ; // P er i m et er o f c y l i n d e r i n m19   A = ( W * t ) ; // S u r f ac e a r ea o f c y i n de r i n mˆ220   m = sqrt ( ( h * P ) / ( k * A ) ) ; // C a l c ul a t i on o f m f o r

    d e t er mi n in g h ea t t r a n s f e r r a t e21   Qfin=( sqrt ( h * P * k * A ) * ( T s - T a ) * ( ( tanh ( m * L ) + ( h / ( m * k ) ) )

    / ( 1 + ( ( h / ( m * k ) ) * tanh ( m * L ) ) ) ) ) ; // H eat t r a n s f e rt hr ou gh t he f i n i n kW

    22   Q b = h * ( ( 3 . 1 4 * D ) - ( n * t ) ) * W * ( T s - T a ) ; / / He at f ro m u n f i n n e d( b as e ) s u r f a c e i n W

    23   Q = ( ( Q f i n * 1 0 ) + Q b ) ; // T ot al h ea t t r a n s f e r i n W24   T i = ( ( T s - T a ) / ( cosh ( m * L ) + ( ( h * sinh ( m * L ) ) / ( m * k ) ) ) ) ; / / T i

    t o c a l c u l a t e t em pe ra tu re a t t h e e nd o f t h e f i n i nd e g r e e C

    25   T = ( T i + T a ) ; // T empe r atu re a t t he end o f t he f i n i nd e g r e e C

    26

    27   //OUTPUT28   mprintf ( ’ R ate o f h ea t t r a n s f e r i s %3 . 2 f W\

    n Te mp er atu re a t t he end o f t he f i n i s %3 . 2 f  d e g r e e C ’ ,Q , T )

    29

    30   //=================================END OF PROGRAM==============================

    Scilab code Exa 3.31  Rate of heat flow

    1   //C hapt e r −3 , Exa mpl e 3 . 3 1 , P ag e 1 092   //

    44

  • 8/20/2019 Fundamentals of Engineering Heat and Mass Transfer_R. C. Sachdeva

    46/213

    ============================================================

    3   clc

    4   clear

    5

    6   //INPUT DATA7   t = 0 . 0 2 5 ; // T hi ck ne ss o f f i n i n m8   L = 0 . 1 ; // Length o f f i n i n m9   k = 1 7 . 7 ; // Thermal c o n d u ct i v i t y o f t he f i n m a t e r i a l i n

    W/m.K10   p = 7 8 5 0 ; / / D e n s i t y i n k g /mˆ 311   T w = 6 0 0 ; // T em pe ra tu re o f t he w a l l i n d e g re e C

    12   T a = 4 0 ; // T emper at ur e o f t he a i r i n d e gr e e C13   h = 2 0 ; //H e at t r a n s f e r c o e f f i c i e n t i n W/mˆ2. K14   I 0 ( 1 . 9 ) = 2 . 1 7 8 2 ; // I o v al ue t ak en from t a b l e 3 . 2 on

    p a g e n o . 1 0 815   I 1 ( 1 . 9 ) = 1 . 4 8 8 7 1 ; // I 1 v al ue t ak en from t a b l e 3 . 2 on

    p ag e no . 1 0816

    17   //CALCULATIONS18   B = sqrt ( ( 2 * L * h ) / ( k * t ) ) ; // C a l c u l a t i on o f B f o r

    d e te r mi n i ng t em pe ra t ur e d i s t r i b u t i o n19   X = ( ( T w - T a ) / I 0 ( 2 * B * sqrt ( 0 . 1 ) ) ) ;

    // C a l c ul a t i on o f X f o rd e te r mi n i ng t em p er at u re d i s t r i b u t i o n20   Y = ( 2 * B ) ; // C a l c ul a t i on o f Y f o r d e t e r mi ni n g

    t em pe ra tu re d i s t r i b u t i o n21   Q =( sqrt ( 2 * h * k * t ) * ( T w - T a ) * ( ( I 1 ( 2 * B * sqrt ( 0 . 1 ) ) ) / ( I 0 ( 2 *

    B * sqrt ( 0 . 1 ) ) ) ) ) ;

    22   m = ( ( p * t * L ) / 2 ) ; // Mass o f t he f i n p er m et e r o f w i dt hi n k g /m

    23   q = ( Q / m ) ; // R ate o f h ea t f l o w p er u n i t mass i n W/ kg24

    25   //OUTPUT

    26   mprintf ( ’ T e m p er a t u re d i s t r i b u t i o n i s T=% i+%3 . 1 f ( %3 . 4f x ) \nRate o f h ea t f l o w p er u n i t mass o f t he

    f i n i s %3 . 2 f W/ kg ’ , T a , X , Y , q )27

    28   //=================================END OF PROGRAM

    45

  • 8/20/2019 Fundamentals of Engineering Heat and Mass Transfer_R. C. Sachdeva

    47/213

    ==============================

    Scilab code Exa 3.32  Efficiency of the plate

    1   //C hapt e r −3 , Exa mpl e 3 . 3 2 , P ag e 1 162   //

    ============================================================

    3   clc

    4   clear5

    6   //INPUT DATA7   t = 0 . 0 0 2 ; // T hi ck ne ss o f f i n i n m8   L = 0 . 0 1 5 ; // Length o f f i n i n m9   k 1 = 2 1 0 ; / / Th er ma l c o n d u c t i v i t y o f a lu mi ni um i n W/m. K

    10   h 1 = 2 8 5 ; / / H ea t t r a n s f e r c o e f f i c i e n t o f a l um i ni u m i n W/mˆ2.K

    11   k 2 = 4 0 ; / / Therma l c o n d u c t i v i t y o f s t e e l i n W/m. K12   h 2 = 5 1 0 ; / / He at t r a n s f e r c o e f f i c i e n t o f s t e e l i n W/m

    ˆ 2 . K

    1314   //CALCULATIONS15   L c = ( L + ( t / 2 ) ) ; // C or re ct ed l e ng t h o f f i n i n m16   m L c 1 = L c * sqrt ( ( 2 * h 1 ) / ( k 1 * t ) ) ; // C a l c u l a t i o n o f mLc f o r

    e f f i c i e n c y17   n1 = tanh ( m L c 1 ) / m L c 1 ; // E f f i c i e n c y o f f i n when

    a lu mi ni um i s u se d18   m L c 2 = L c * sqrt ( ( 2 * h 2 ) / ( k 2 * t ) ) ; // C a l c u l a t i o n o f mLc f o r

    e f f i c i e n c y19   n2 = tanh ( m L c 2 ) / m L c 2 ; // E f f i c i e n c y o f f i n when s t e e l i s

    use d2021   //OUTPUT22   mprintf ( ’ E f f i c i e n c y o f f i n when al umini um i s u se d i s

    %3. 4 f   \ n E f f i c i e n c y o f f i n when s t e e l i s u s e d i s

    46

  • 8/20/2019 Fundamentals of Engineering Heat and Mass Transfer_R. C. Sachdeva

    48/213

    %3. 3 f ’ , n 1 , n 2 )

    2324   //=================================END OF PROGRAM

    ==============================

    Scilab code Exa 3.33   Heat transfer coefficient

    1   //C hapt e r −3 , Exa mpl e 3 . 3 3 , P ag e 1 172   //

    ============================================================

    3   clc

    4   clear

    5

    6   //INPUT DATA7   k = 2 0 0 ; / / Th er ma l c o n d u c t i v i t y o f a lu mi ni um i n W/m. K8   t = 0 . 0 0 1 ; // T hi ck ne ss o f f i n i n m9   L = 0 . 0 1 5 ; // Width o f f i n i n m

    10   D = 0 . 0 2 5 ; // D ia me te r o f t he t ub e i n m11   T b = 1 7 0 ; // F in b as e t em p er a tu re i n d e g re e C

    12   T a = 2 5 ; // Ambient f l u i d t em p er a tu r e i n d e gr e e C13   h = 1 3 0 ; //H e at t r a n s f e r c o e f f i c i e n t i n W/mˆ2. K14

    15   //CALCULATIONS16   L c = ( L + ( t / 2 ) ) ; // C or re ct ed l e ng t h o f f i n i n m17   r 1 = ( D / 2 ) ; // R adi u s o f t u be i n m18   r 2 c = ( r 1 + L c ) ; // C o rr e ct e d r a d i u s i n m19   A m = t * ( r 2 c - r 1 ) ; / / C o r r e c t e d a r e a i n mˆ 220   x = L c ^ ( 3 / 2 ) * sqrt ( h / ( k * A m ) ) ; // x f o r c a l c u l a t i n g

    e f f i c i e n c y

    21   n = 0 . 8 2 ; // From f i g . 3 . 18 on pag e no . 112 e f f i c i e n c yi s 0 .8 222   q m a x = ( 2 * 3 . 1 4 * ( r 2 c ^ 2 - r 1 ^ 2 ) * h * ( T b - T a ) ) ; //Maximum he at

    t r a n s f e r i n W23   q a c t u a l = ( n * q m a x ) ; // A ct u al h ea t t r a n s f e r i n W

    47

  • 8/20/2019 Fundamentals of Engineering Heat and Mass Transfer_R. C. Sachdeva

    49/213

    24

    25   //OUTPUT26   mprintf ( ’ H eat l o s s p er f i n i s %3 . 2 f W’ , q a c t u a l )27

    28   //=================================END OF PROGRAM==============================

    Scilab code Exa 3.34  Insulation of fin

    1   //C hapt e r −3 , Exa mpl e 3 . 3 4 , P ag e 1 172   //

    ============================================================

    3   clc

    4   clear

    5

    6   //INPUT DATA7   k = 1 6 ; / / Th erma l c o n d u c t i v i t y o f f i n i n W/m. K8   L = 0 . 1 ; // Length o f f i n i n m9   D = 0 . 0 1 ; // D iam et e r o f f i n i n m

    10   h = 5 0 0 0 ; //H e at t r a n s f e r c o e f f i c i e n t i n W/mˆ2. K11

    12   //CALCULATIONS13   P = ( 3 . 1 4 * D ) ; // P er i m et er o f f i n i n m14   A = ( 3 . 1 4 * D ^ 2 ) / 4 ; // Area o f f i n i n mˆ215   m = sqrt ( ( h * P ) / ( k * A ) ) ; // C a l c ul a t i on o f m f o r

    d e t er mi n in g h ea t t r a n s f e r r a t e16   n = tanh ( m * L ) / sqrt ( ( h * A ) / ( k * P ) ) ; // C a l c ul a t i on o f n f o r

    c he ck in g w he t he r i n s t a l l a t i o n o f f i n i sd e s i r a b l e o r n o t

    17   x = ( n - 1 ) * 1 0 0 ; // C o n ve r si o n i n t o p e r c e n t a g e1819   //OUTPUT20   mprintf ( ’ T h i s l a r g e f i n o nl y p ro du ce s an i n c r e a s e o f  

    %i p e r ce nt i n h ea t d i s s i p a t i o n , s o n a t u r a l l y

    48

  • 8/20/2019 Fundamentals of Engineering Heat and Mass Transfer_R. C. Sachdeva

    50/213

    t h i s c o n f i g u r a t i o n i s u n de s i r a b l e ’ ,x )

    2122   //=================================END OF PROGRAM

    ==============================

    Scilab code Exa 3.35   Measurement error in temperature

    1   //C hapt e r −3 , Exa mpl e 3 . 3 5 , P ag e 1 192   //

    ============================================================

    3   clc

    4   clear

    5

    6   //INPUT DATA7   k = 5 5 . 8 ; // T herm al c o n d u c t i v i t y o f s t e e l i n W/m. K8   t = 0 . 0 0 1 5 ; // T hi ck ne ss o f s t e e l t ub e i n m9   L = 0 . 1 2 ; // L engt h o f s t e e l t u b e i n m

    10   h = 2 3 . 3 ; //H e at t r a n s f e r c o e f f i c i e n t i n W/mˆ2. K11   T l = 8 4 ; / / T em pe ra tu re r e c o r d e d by t h e t h er mo m et er i n

    d e g r e e C12   T b = 4 0 ; // T emper at ur e a t t he b as e o f t he w e l l i n

    d e g r e e C13

    14   //CALCULATIONS15   m = sqrt ( h / ( k * t ) ) ; // C a l c u l a t i o n o f m f o r d e te r mi n i ng

    t he t em pe ra tu re d i s t r i b u t i o n16   x = 1 / cosh ( m * L ) ; // C a l c u l a t i o n o f x f o r d e t er mi n in g t he

    t em pe ra tu re d i s t r i b u t i o n17   T i = ( ( T l - ( x * T b ) ) / ( 1 - x ) ) ; // T em per at ure d i s t r i b u t i o n i n

    d e g r e e C18   T = ( T i - T l ) ; / / Mea su rem ent e r r o r i n d e g r e e C19

    20   //OUTPUT21   mprintf ( ’ M ea su rem ent e r r o r i s %3 . 0 f d e g r e e C ’ ,T )

    49

  • 8/20/2019 Fundamentals of Engineering Heat and Mass Transfer_R. C. Sachdeva

    51/213

    22

    23   //=================================END OF PROGRAM==============================

    50

  • 8/20/2019 Fundamentals of Engineering Heat and Mass Transfer_R. C. Sachdeva

    52/213

    Chapter 5

    Transient Heat Conduction

    Scilab code Exa 5.1   Heat transfer and temperature

    1   //C hapt e r −5 , Exa mpl e 5 . 1 , Pa ge 1 592   //

    ============================================================

    3   clc

    4   clear

    56   //INPUT DATA7   t = 0 . 5 ; // T hi ck ne ss o f s l a b i n m8   A = 5 ; // A rea o f s l a b i n mˆ29   k = 1 . 2 ; / / T he rm al c o n d u c t i v i t y i n W/m .K

    10   a = 0 . 0 0 1 7 7 ; // Thermal d i f f u s i v i t y in mˆ2/ h11   / / R em pe ra ru re d i s t r i b u t i o n a s T=60−50x+12xˆ2+20x

    ˆ3−15xˆ412

    13   //CALCULATIONS

    14   // P a r t i a l d e r i v a t i v e o f T w. r . t x i s T’=−50+24x+60xˆ2−60xˆ315   // P a r t i a l d e r i v a t i v e o f T ’ w . r . t x i s T’ ’ =24 +1 20 x

    +180xˆ216   // P a r t i a l d e r i v a t i v e o f T ’ w . r . t x i s T’ ’ ’ =120 −3 6 0 x

    51

  • 8/20/2019 Fundamentals of Engineering Heat and Mass Transfer_R. C. Sachdeva

    53/213

    17   x = 0 ;

    18   y = - 5 0 + (2 4 * x ) + ( 6 0 * x ^ 2 ) - ( 60 * x ^ 3 ) ; / / T e m p e r a t ur e when x=019   Q o = ( - k * A * y ) ; // Heat e n t e r i n g t he s l a b i n W20   x = 0 . 5 ;

    21   y = - 5 0 + (2 4 * x ) + ( 6 0 * x ^ 2 ) - ( 60 * x ^ 3 ) ; / / T e m p e r a t ur e when x=0.5

    22   Q L = ( - k * A * y ) ; // Heat l e a v i n g t he s l ab i n W23   R = ( Q o - Q L ) ; // Rate o f h ea t s t o r a ge i n W24   x = 0 ;

    25   z 1 = 2 4 + ( 1 2 0 * x ) - ( 1 8 0 * x ^ 2 ) ; //T ’ w he n x=026   p 1 = ( a * z 1 ) ; // Rate o f t em p er at u re c ha ng e a t on e s i d e

    o f s l ab i n d eg r e e C/h27   x = 0 . 5 ;

    28   z 2 = 2 4 + ( 1 2 0 * x ) - ( 1 8 0 * x ^ 2 ) ; / /T ’ when x = 0 . 529   p 2 = ( a * z 2 ) ; // Rate o f t em p er at u re c ha ng e a t on e s i d e

    o f s l ab i n d eg r e e C/h30   / / For t he r a t e o f h e a ti n g o r c o o l i n g t o be maximum ,

    T’ ’ ’= 031   x = ( 1 2 0 / 3 6 0 ) ;

    32

    33   //OUTPUT34   mprintf (

     ’ a ) i ) H eat e n t e r i n g t he s l a b i s %i W\n i i )Heat l e a v i n g t he s l ab i s %i W\nb ) R at e o f h e a ts t o r a g e i s %i W\n c ) i ) R at e o f t e m p e r a tu r e c h an g ea t one s i d e o f s l ab i s %3 . 4 f d eg r e e C/h\n i i ) R at e

    o f t em pe ra tu re c h a ng e a t o t h e r s i d e o f s l ab i s%3 . 4 f d e g r e e C/ h\nd ) For t h e r a t e o f h e a t i n g o rc o o l i n g t o b e maximum x= %3 . 2 f ’ , Q o , Q L , R , p 1 , p 2 , x )

    35

    36   //=================================END OF PROGRAM==============================