From Confocal Microscopy to Molecular Imagineering Dr. Michael L. Norton Department of Chemistry...

41
From Confocal Microscopy to Molecular Imagineering Dr. Michael L. Norton Department of Chemistry Marshall University 1:30 p.m.

Transcript of From Confocal Microscopy to Molecular Imagineering Dr. Michael L. Norton Department of Chemistry...

Page 1: From Confocal Microscopy to Molecular Imagineering Dr. Michael L. Norton Department of Chemistry Marshall University 1:30 p.m.

From Confocal Microscopy to Molecular Imagineering   

Dr. Michael L. Norton   Department of Chemistry

Marshall University

1:30 p.m.

Page 2: From Confocal Microscopy to Molecular Imagineering Dr. Michael L. Norton Department of Chemistry Marshall University 1:30 p.m.

Outline:

Applications:•Molecular and Biological Imaging Center •Leica Two-Photon Microscope

•Molecular Models/Mechanical Engineering•DNA Origami•Molecular Lego Parts•Enzymes, Structural Proteins, Toxins

•Molecular Models/Molecular Electronics

Page 3: From Confocal Microscopy to Molecular Imagineering Dr. Michael L. Norton Department of Chemistry Marshall University 1:30 p.m.

Molecular and Biological Imaging Center

Biotechnology Building

Page 4: From Confocal Microscopy to Molecular Imagineering Dr. Michael L. Norton Department of Chemistry Marshall University 1:30 p.m.

Leica Two Photon Microscope

Page 5: From Confocal Microscopy to Molecular Imagineering Dr. Michael L. Norton Department of Chemistry Marshall University 1:30 p.m.

Two-photon excitation versus one-photon excitation

543 nm excitation

1046 nm excitation

Dye solution, safranin O

Page 6: From Confocal Microscopy to Molecular Imagineering Dr. Michael L. Norton Department of Chemistry Marshall University 1:30 p.m.

This page left intentionally blank

Page 7: From Confocal Microscopy to Molecular Imagineering Dr. Michael L. Norton Department of Chemistry Marshall University 1:30 p.m.

Cellular Imaging - 

3% of the image

Christopher Cox, Collier Lab

Page 8: From Confocal Microscopy to Molecular Imagineering Dr. Michael L. Norton Department of Chemistry Marshall University 1:30 p.m.
Page 9: From Confocal Microscopy to Molecular Imagineering Dr. Michael L. Norton Department of Chemistry Marshall University 1:30 p.m.
Page 10: From Confocal Microscopy to Molecular Imagineering Dr. Michael L. Norton Department of Chemistry Marshall University 1:30 p.m.

How Small is a Micron100X a DNA Nanoarray

Page 11: From Confocal Microscopy to Molecular Imagineering Dr. Michael L. Norton Department of Chemistry Marshall University 1:30 p.m.
Page 12: From Confocal Microscopy to Molecular Imagineering Dr. Michael L. Norton Department of Chemistry Marshall University 1:30 p.m.

Space Filling Representation of 2D Crystal  Tile (4 X 16 nm)

Page 13: From Confocal Microscopy to Molecular Imagineering Dr. Michael L. Norton Department of Chemistry Marshall University 1:30 p.m.

Introduction to DNA OrigamiFolding DNA to create nanoscale shapes and patterns

Rothemund, P. W. K. Nature 2006,  440, 297–302.

Folding Pattern

Page 14: From Confocal Microscopy to Molecular Imagineering Dr. Michael L. Norton Department of Chemistry Marshall University 1:30 p.m.

inSēquio by Parabon NanoLabsinSēquio by Parabon NanoLabs

The inSēquio editor provides CAD tools for specifying nanostructure designs. It then uses grid supercomputing capacity to search through the vast space of possible DNA sequence sets for the rare few able to self-assemble into the target design. Typical searches would take years to perform on a single computer, but require only hours on the Parabon Computation Grid.

The inSēquio editor provides CAD tools for specifying nanostructure designs. It then uses grid supercomputing capacity to search through the vast space of possible DNA sequence sets for the rare few able to self-assemble into the target design. Typical searches would take years to perform on a single computer, but require only hours on the Parabon Computation Grid.

Page 15: From Confocal Microscopy to Molecular Imagineering Dr. Michael L. Norton Department of Chemistry Marshall University 1:30 p.m.

Single Block Production AFM Image Of The Rectangular Origami with Biotinylated DNA staples, modified to prevent agglomeration

   

Page 16: From Confocal Microscopy to Molecular Imagineering Dr. Michael L. Norton Department of Chemistry Marshall University 1:30 p.m.

AFM Image Of The Rectangular Origami with Biotinylated DNA staples

Page 17: From Confocal Microscopy to Molecular Imagineering Dr. Michael L. Norton Department of Chemistry Marshall University 1:30 p.m.

AFM Image Of The Rectangular Origami with Biotinylated DNA staples after Protein Addition

Page 18: From Confocal Microscopy to Molecular Imagineering Dr. Michael L. Norton Department of Chemistry Marshall University 1:30 p.m.

The Rectangular Origami with Biotinylated Staples In 1D Array Before and After addition of Streptavidin

Page 19: From Confocal Microscopy to Molecular Imagineering Dr. Michael L. Norton Department of Chemistry Marshall University 1:30 p.m.

Sequential Assembly of Origami/Protein Complexes

Page 20: From Confocal Microscopy to Molecular Imagineering Dr. Michael L. Norton Department of Chemistry Marshall University 1:30 p.m.

Sequential Assembly of Origami/Protein Complexes via NTA Linkage

Ni

Shen, Norton, NTA Directed Protein Nanopatterning on DNA Origami Nanoconstructs, JACS 2009Polylysine binder to mica surface nitrilotriacetic acid (NTA)

Page 21: From Confocal Microscopy to Molecular Imagineering Dr. Michael L. Norton Department of Chemistry Marshall University 1:30 p.m.

Streptavidin-biotin-origami (SBO) construct

54nm

=Biotin 

=Streptavidin

Streptavidin-biotin-origami reaction mixture was 5:1 streptavidin: DNA origami ratio. Sample 1: SBO mixture was incubated at RT for 2 hrs. keep at 4C Sample 2: SBO mixture was incubated at 4C

Page 22: From Confocal Microscopy to Molecular Imagineering Dr. Michael L. Norton Department of Chemistry Marshall University 1:30 p.m.

Neutravidin-Biotin Origami construct

54nm

=Biotin =Neutravidin

Neutravidin distance=56nmOrigami=109nm

Page 23: From Confocal Microscopy to Molecular Imagineering Dr. Michael L. Norton Department of Chemistry Marshall University 1:30 p.m.

AFM analysis of the Rectangular origami-Neutravidin-Ricin AB conjugate

Page 24: From Confocal Microscopy to Molecular Imagineering Dr. Michael L. Norton Department of Chemistry Marshall University 1:30 p.m.

Surface Immobilized Single Enzyme Oscillator

Page 25: From Confocal Microscopy to Molecular Imagineering Dr. Michael L. Norton Department of Chemistry Marshall University 1:30 p.m.

 Distance between Leu864 and Asp812 calculated using: 27.550 Angstroms

• Chains A (blue), B (purple), and C (green) with helices in orange and Leu864A in red

4rnp     T7-RNA Polymerase  

Page 26: From Confocal Microscopy to Molecular Imagineering Dr. Michael L. Norton Department of Chemistry Marshall University 1:30 p.m.

Molecular Electronics

Conjugated Fluorescent Polymers Length ~ 15nm

Polyvinylidene

Page 27: From Confocal Microscopy to Molecular Imagineering Dr. Michael L. Norton Department of Chemistry Marshall University 1:30 p.m.

HOMO of 3mer

27

Central Ring UnsubstitutedCentral Ring substituted

Page 28: From Confocal Microscopy to Molecular Imagineering Dr. Michael L. Norton Department of Chemistry Marshall University 1:30 p.m.

LUMO of 3mer

28

Central Ring UnsubstitutedCentral Ring substituted

Page 29: From Confocal Microscopy to Molecular Imagineering Dr. Michael L. Norton Department of Chemistry Marshall University 1:30 p.m.

HOMO of 3mer

29 Central Ring Unsubstituted

LUMO of 3mer

Page 30: From Confocal Microscopy to Molecular Imagineering Dr. Michael L. Norton Department of Chemistry Marshall University 1:30 p.m.

HOMO of 3mer

30 Central Ring substituted

LUMO of 3mer

Page 31: From Confocal Microscopy to Molecular Imagineering Dr. Michael L. Norton Department of Chemistry Marshall University 1:30 p.m.

Schematic structure of the A and B tiles of the Cross-Origami  and the their binding 

orientation on 2D origami array

A

B AA

B

BB

A81nm30nm

Page 32: From Confocal Microscopy to Molecular Imagineering Dr. Michael L. Norton Department of Chemistry Marshall University 1:30 p.m.

AFM of Cross Origami (low resolution)

Page 33: From Confocal Microscopy to Molecular Imagineering Dr. Michael L. Norton Department of Chemistry Marshall University 1:30 p.m.

AFM of Cross Origami

Page 34: From Confocal Microscopy to Molecular Imagineering Dr. Michael L. Norton Department of Chemistry Marshall University 1:30 p.m.

AFM analysis: Origami Cross

AFM by D. Neff

Page 35: From Confocal Microscopy to Molecular Imagineering Dr. Michael L. Norton Department of Chemistry Marshall University 1:30 p.m.

Single Cross-origami study

AFM by D. Neff

Page 36: From Confocal Microscopy to Molecular Imagineering Dr. Michael L. Norton Department of Chemistry Marshall University 1:30 p.m.

Conclusions

The viz lab perfectly complements our current and futureimaging systems

Successful Protein engineering will likely require collaborative studies.

Molecular simulations are a necessary enhancement for design, because they provide our only way to “observe” the relationship between properties and structural perturbations

There are tremendous opportunities for engineering collaborations catalyzed by these infrastructure investments

Page 37: From Confocal Microscopy to Molecular Imagineering Dr. Michael L. Norton Department of Chemistry Marshall University 1:30 p.m.

Norton Group Spring 2011

N

Page 38: From Confocal Microscopy to Molecular Imagineering Dr. Michael L. Norton Department of Chemistry Marshall University 1:30 p.m.

Acknowledgments• Qrigami Design, Fabrication      and Characterization

 Hong Zhong         Masudur Rahman         Jacob Potter

• Nanoscale Optical Imaging Anuradha Rajulapati 

• Micro-Fluidics System              Nathaniel Crow     • Origami Sequence Selection

Steven Armentrout, Parabon NanoLabs, DNA sequence design software

• e-beam LithographyAaron Gin, CINT, Center for Integrated Nanotechnologies

• Protein Design    Ben Owen

• Protein-DNA ConstructsDawn Nicholas

  Wanqiu Shen 

• Imaging Support    David Neff

 • Computational Chemistry             Jack Smith • Viz Lab Imaging Support

 Justin Chapman

DNA Benchmarks/NanoFab AdviceNadrian Seeman, NYUErik Winfree, CaltechDavid Lederman, WVUMark Reed, YaleSteven Brueck, UNMChris Dwyer, Duke

Page 39: From Confocal Microscopy to Molecular Imagineering Dr. Michael L. Norton Department of Chemistry Marshall University 1:30 p.m.

Funding

Page 40: From Confocal Microscopy to Molecular Imagineering Dr. Michael L. Norton Department of Chemistry Marshall University 1:30 p.m.

Question/Comments ?

Page 41: From Confocal Microscopy to Molecular Imagineering Dr. Michael L. Norton Department of Chemistry Marshall University 1:30 p.m.