Frekuensi

download Frekuensi

of 15

Transcript of Frekuensi

GELOMBANG RADIO1. Dasar Propagasi Gelombang Radio1.1. Propagasi Gelombang

Definisi dari propagasi gelombang adalah perambatan gelombang pada media perambatan. Media perambatan atau biasa juga disebut saluran transmisi gelombang dapat berupa fisik yaitu sepasang kawat konduktor, kabel koaksial dan berupa non fisik yaitu gelombang radio atau sinar laser. Pada Gambar 1 merupakan gambaran singkat tentang propagasi gelombang (J, Herman, 1986: 1.4).

Gambar 1. Propagasi Gelombang

1.2. Gelombang Radio Dan Spektrum Elektromagnetik

Gelombang radio termasuk keluarga radiasi elektromagnetik meliputi infra merah (radiasi panas), cahaya tampak (visible light), ultraviolet, sinar-X, dan bahkan panjang gelombang Gamma yang lebih pendek dan sinar kosmik. Gelombang elektromagnetik berasal dari interaksi antara medan listrik dan medan magnet seperti pada Gambar 2 (Reed, 2004: 20.1).

Gambar 2. Medan listrik dan magnet pada gelombang elektromagnetik

Pembagian spektrum gelombang elektromagnetik dapat di lihat pada Gambar 3 berikut ini

Gambar 3. Spektrum elektromagnetik

Menurut John (1988: 8-10) Nilai panjang gelombang berhubungan dengan frekuensi f dan kecepatan gelombang v, dimana kecepatan gelombang bergantung pada media. Dalam kasus ini medianya adalah ruang bebas (free space/vacuum).

= v / fdimana : v= c (ruang bebas)= 3 x 108 m s-1 Pada Gambar 4 ditunjukkan hubungan antara panjang gelombang dan frekuensi pada v = c. Banyak jenis frekuensi yang ada seperti Gambar 3 diatas. Berikut ini adalah daftar frekuensi yang lebih rinci dalam tabel 1.

Tabel 1. Pembagian Band Frekuensi Radio

1.3. Polarisasi Gelombang ElektromagnetikJ, Herman (1986: 1.43) menyatakan polarisasi gelombang didefinisikan sebagai sifat gelombang elektromagnetik yang menjelaskan arah dan amplitudo vektor kuat medan magnet sebagai fungsi waktu. Ada tiga macam polarisasi gelombang yaitu polarisasi linier, polarisasi lingkaran, dan polarisasi eliptis.

Gambar 4. Polarisasi Gelombang Elektromagnetik2. Gelombang Ruang Bebas (Free Space)2.1. Pembiasan (Refraction) oleh Atmosfir Bumi

Pada atmosfir bumi terjadi pembiasan gelombang sekitar 18 km dari permukaan bumi di daerah khatulistiwa dan sampai sekitar 8 dan 11 km di daerah kutub selatan dan utara. Untuk itu radius bumi diubah disesuaikan demikian hingga kelengkungan relatif antara gelombang dan bumi tetap seperti yang ditunjukkan Gambar 6 Radius kelengkungan bumi yang telah disesuaikan dengan perbandingan antara radius efektif bumi dan radius bumi yang sesungguhnya disebut dengan faktor K. Pada kondisi atmosfir normal, dalam perhitungan radius bumi ekuivalen biasanya digunakan K = 4/3 (J, Herman, 1986: 3.2).

Gambar 5. Radius Efektif Bumi2.2. Propagasi Line Of Sight (LOS)

Propagasi gelombang pada frekuensi diatas 30 MHz memanfaatkan gelombang langsung dan gelombang pantul oleh permukaan bumi. Pada Gambar 8 berikut ini adalah gambaran dari propagasi Line of Sight (LOS).

Gambar 6. Daerah Freshnel di sekitar lintasan langsung

Pada propagasi LOS terdapat daerah yang harus dan wajib terhindar dari halangan, daerah itu disebut dengan daerah fresnel (fresnel zone). Seperti yang ditunjukkan pada gambar dibawah ini.

Gambar 7. Pemetaan Daerah Freshel

Berdasarkan Gambar 9 dan keterangan di atas, F1 disebut sebagai radius daerah Freshnel pertama, yang dirumuskan dengan (Aswoyo, 2006: 101) :

Redaman LOS berharga rata-rata sama dengan redaman ruang bebas. Dalam perhitungan redaman lintasan dianggap tetap sehingga untuk LOS adalah (J, Herman, 1986: 3.29):

Lp = 32,5 + 20 log d (km) + 20 log f (MHz) (2.5)3. Difraksi (Diffraction) dan Hamburan (Scattering)3.1. Difraksi oleh penghalang (Knife Edge Diffraction)

Difraksi adalah kemampuan gelombang untuk berbelok setelah mengalami benturan dengan penghalang. J, Herman (1986: 4.5) menyatakan difraksi oleh bukit, pohon, bangunan dan lain-lain sulit sekali dihitung, akan tetapi perkiraan redamannya dapat diperoleh dengan mengingat harga-harga ekstrim yang disebabkan oleh difraksi rintangan tajam yang menyerap sempurna (Knife Edge Diffraction).

Gambar 8. Difraksi oleh penghalang3.2. Hamburan oleh Troposfir (Troposphere Scatter)

Sistem komunikasi radio yang mengunakan sifat hamburan gelombang elektromagnetik oleh partikel-partikel troposfir yang disebut sistem tropo atau thin line troposcattering system. Jaraknya berkisar 200 800 km dan frekuensi yang dipakai yaitu 300 30.000 MHz berada di daerah UHF dan SHF (J, Herman,1986: 4.11). Pada Gambar 11, adalah mekanisme troposcattering.

Gambar 9. Mekenisme Hamburan oleh Troposfir4. Gelombang Langit (Sky Wave)

4.1. Ionosfir

Ionosfir tersusun dari 3 (tiga) lapisan , mulai dari yang terbawah yang disebut dengan lapisan D, E dan F. Sedangkan lapisan F dibagi menjadi dua, yaitu lapisan F1 dan F2 (yang lebih atas), seperti Gambar 10.

Gambar 10. Lapisan Ionosfir

Untuk lebih jelasnya tentang fenomena masing-masing lapisan pada ionosfir klik tombol nama-nama lapisan ionosfir.

1. Lapisan D terletak sekitar 40 km 90 km. Ionisasi di lapisan D sangat rendah, karena lapisan ini adalah daerah yang paling jauh dari matahari. Lapisan ini mampu membiaskan gelombang-gelombang yang berfrekuensi rendah. Frekuensi-frekuensi yang tinggi, terus dilewatkan tetapi mengalami redaman. Setelah matahari terbenam, lapisan ini segera menghilang karena ion-ionnya dengan cepat bergabung kembali menjadi molekul-molekul.

2. Lapisan E terletak sekitar 90 km 150 km. Lapisan ini, dikenal juga dengan lapisan KenellyHeaviside, karena orang-orang inilah yang pertama kali menyebutkan keberadaan lapisan E ini. Setelah matahari terbenam, pada lapisan ini juga terjadi penggabungan ion-ion menjadi molekul-molekul, tetapi kecepatan penggabungannya lebih rendah dibandingkan dengan lapisan D, dan baru bergabung seluruhnya pada tengah malam. Lapisan ini mampu membiaskan gelombang dengan frekuensi lebih tinggi dari gelombang yang bisa dibiaskan lapisan D. Dalam praktek, lapisan E mampu membiaskan gelombang hingga frekuensi 20 MHz.

3. Lapisan F terdapat pada ketinggian sekitar 150 km 400 km. Selama siang hari, lapisan F terpecah menjadi dua, yaitu lapisan F1 dan F2. Level ionisasi pada lapisan ini sedemikian tinggi dan berubah dengan cepat se iring dengan pergantian siang dan malam. Pada siang hari, bagian atmosfir yang paling dekat dengan matahari mengalami ionisasi yang paling hebat. Karena atmosfir di daerah ini sangat renggang, maka penggabungan kembali ion-ion menjadi molekul terjadi sangat lambat (setelah terbenam matahari). Karena itu, lapisan ini terionisasi relatif konstan setiap saat. Lapisan F bermanfaat sekali untuk transmisi jarak jauh pada frekuensi tinggi dan mampu membiaskan gelombang pada frekuensi hingga 30 MHz.

4.2. Propagasi Gelombang dalam Ionosfir

Pada frekuensi tinggi atau daerah HF, yang mempunyai range frekuensi 3 30 MHz, gelombang dapat dipropagasikan menempuh jarak yang jauh akibat dari pembiasan dan pemantulan lintasan pada lapisan ionospher. Gelombang yang berpropagasi melalui lapisan ionosfer ini disebut sebagai gelombang ionosfer (ionospheric wave) (Aswoyo, 2006: 89).

Gambar 11. Propagasi Gelombang Ionosfir5. Gelombang Permukaan Bumi (Ground Wafe)

5.1. Permukaan Bumi sebagai Penumpu Gelombang Elektromagnetik

Gelombang permukaan bumi berpolarisasi vertikal, karena setiap komponen horisontalnya akan dihubung singkat oleh permukaan bumi. Daerah frekuensi utama gelombang ini adalah 30 kHz 3 MHz yaitu band MF dan LF dan konfigurasi medannya terlihat seperti pada gambar.

Perubahan kadar air mempunyai pengaruh yang besar terhadap gelombang tanah. Redaman gelombang tanah berbanding lurus terhadap impedansi permukaan tanah. Impedansi ini merupakan fungsi dari konduktivitas dan frekuensi. Jika bumi mempunyai konduktivitas yang tinggi, maka redaman (penyerapan energi gelombang) akan berkurang. Dengan demikian, propagasi gelombang tanah di atas air, terutama air garam (air laut) jauh lebih baik dari pada di tanah kering (berkonduktivitas rendah), seperti padang pasir. Rugi-rugi (redaman) tanah akan meningkat dengan cepat dengan semakin besarnya frekuensi. Karena alasan tersebut, gelombang tanah sangat tidakefektif pada frekuensi di atas 2 MHz.

Gambar 12. Perambatan Gelombang Permukaan Bumi5.2. Propagasi Gelombang dalam Air Laut

Propagasi gelombang permukaan merupakan satu-satunya cara untuk berkomunikasi di dalam lautan Untuk memperkecil redaman laut, maka digunakan frekuensi yang sangat rendah, yaitu band ELF (Extremely Low Frequency), yaitu antara 30 hingga 300 Hz. Dalam pemakaian tertentu dengan frekuensi 100 Hz, redamannya hanya sekitar 0,3 dB per meter. Redaman ini akan meningkat drastis bila frekuensinya makin tinggi, misalnya pada 1 GHz redamannya menjadi 1000 dB per meter.

Gambar 13. Perambatan antara dua Antena dalam air laut6. Frekuensi

Frekuensi adalah benyaknya getaran yang terjadi dalam kurun waktu satu detik. Rumus frekuensi adalah jumlah getaran dibagi jumlah detik waktu. Frekuensi memiliki satuan hertz / Hz. Adapun jenis jenis frekuensi tersebut diantaranya :

1. Band HF (High Frequency) dan

2. Band VHF (Very High Frequency)VHF (Very High Frquency) -- istilah radio komunikasi yag dipergunakan anggota RAPI adalah 2 meter band-- biasanya dipergunakan untuk radio komunikasi jarak dekat. Sebenarnya band ini memancar pada frekuensi 100 Mhz hingga 300 Mhz. Karena gelombang radio yang dipancarkan tersebut arahnya berbentuk garis lurus (horizontal). Sebagai contoh, apabila jarak antara pengguna 2 stasiun radio komunikasi, salah satu diantarnya terdapat hambatan atau halangan objek seperti gunung, pohon, bangunan tinggi, yang posisinya lebih tinggi dibanding tempat yang bersangkutan mengudara (pancaran gelombang radionya lebih rendah dibanding penghalang atau hambatannya), maka sudah pasti transmisi yang dikirimkan ataupun diterima akan terhambat pula. Dari kesemua penghalang dan hambatan sifatnya berbeda-beda. Misalkan jika hambatanya berupa sebuah gunung, maka gelombang yang dipancarkan akan dipantulkan kembali, sehingga transmisi yang yang dikirimkan kepada lawan komunikasi kita tidak akan mencapai tujuan. (Untuk menyiasati kendala seperti ini, ada sebagian anggota RAPI yang mempergunakan antene pengarah dengan cara memantulkannya ke pegunungan lain yang tidak bergaris lurus dengan lawan bicaranya, tujuannya agar pantulan gelombang transmisinya dapat memantul dan mengarah kepada lawan bicaranya). Lain lagi dengan hambatan sebuah pohon. Keberadaan gelombangnya masih ada dan dapat dipancarkan kelawan komunikasi atau stasiun tujuan. Akan tetapi transmisinya sangat lemah sehingga tidak dapat diterima dengan jelas. Dan yang paling tidak menguntungkan adalah bangunan tinggi sebagai hambatannya. Karena apabila salah satu penggunanya terhalang oleh sebuah bangunan maka gelombang yang dipancarkannya akan hilang dan berhenti saat mengenai bangunan tersebut.

HF (High Frequency) adalah radio komunikasi yang gelombangnya bekerja pada frekuensi 2 Mhz sampai 24 Mhz. Radio komunikasi ini biasanya dipergunkaan untuk berkomunikasi jarak jauh. Alasannya karena sifat gelombangnya yang dapat memantul dan tidak memiliki efek hambatan pada objek atau lawan komunikasi. Hebatnya, kemampuan frekuensi ini dapat memantul hingga lapisan ionosphere. Dan kelebihan lainnya adalah jika seorang komunikator menggunakan radio di frekuensi ini, jarak sejauh apapun dapat dijangkau. Itupun apabila cuaca bagus. Karena radio komunikasi ini masih tergantung kepada provagasi. Sifat dan kerja radio komunikasi ini adalah pancaran gelombangnya dikirimkan terlebih dahulu melewati lapisan ionosphere dan kemudian memantulnya kembali ke bumi menuju stasiun tujuan. Untuk pancaran gelombang kedua yang terhambat oleh objek, akan memantul terus menerus sampai ke stasiun tujuan.

Kedua jenis frekuensi diatas dapat kita lihat dan kita ketahui perbedaannya. Persoalannya, akan mempergunakan radio frekuensi mana yang cocok untuk berkomunikasi sesuai dengan keinginan kita. Tinggal memilih sisi kegunaanya saja. (EQ, dari berbagai sumber)7. ModulasiModulasi adalah proses pencampuran dua sinyal menjadi satu sinyal. Biasanya sinyal yang dicampur adalah sinyal berfrekuensi tinggi dan sinyal berfrekuensi rendah. Dengan memanfaatkan karakteristik masing-masing sinyal, maka modulasi dapat digunakan untuk mentransmisikan sinyal informasi pada daerah yang luas atau jauh. Sebagai contoh Sinyal informasi (suara, gambar, data), agar dapat dikirim ke tempat lain, sinyal tersebut harus ditumpangkan pada sinyal lain. Dalam konteks radio siaran, sinyal yang menumpang adalah sinyal suara, sedangkan yang ditumpangi adalah sinyal radio yang disebut sinyal pembawa (carrier). Jenis dan cara penumpangan sangat beragam. Yaitu untuk jenis penumpangan sinyal analog akan berbeda dengan sinyal digital. Penumpangan sinyal suara juga akan berbeda dengan penumpangan sinyal gambar, sinyal film, atau sinyal lain.

Tujuan Modulasi Transmisi menjadi efisien atau memudahkan pemancaran.

Masalah perangkat keras menjadi lebih mudah.

Menekan derau atau interferensi.

Untuk memudahkan pengaturan alokasi frekuensi radio.

Untuk multiplexing, proses penggabungan beberapa sinyal informasi untuk disalurkan secara bersama-sama melalui satu kanal transmisi.

Fungsi ModulasiSinyal informasi biasanya memiliki spektrum yang rendah dan rentan untuk tergangu oleh noise. Sedangakan pada transmisi dibutuhkan sinyal yang memiliki spektrum tinggi dan dibutuhkan modulasi untuk memindahkan posisi spektrum dari sinyal data, dari pita spektrum yang rendah ke spektrum yang jauh lebih tinggi. Hal ini dilakukan pada transmisi data tanpa kabel (dengan antena), dengan membesarnya data frekuensi yang dikirim maka dimensi antenna yang digunakan akan mengecil.

Gelombang pembawa berbentuk sinusoidal c(t) = Ac cos(2 fct + c )

Parameter parameter dari gelombang tersebut yang dapat dimodulasi adalah :

Amplitudo, Ac untuk modulasi amplitudo

Frekuensi, fc atau c = 2 fc t untuk modulasi frekuensi

Phasa, c untuk modulasi fasa.Amplitudo, Frekuensi, Phase

Gambar 14. Gelombang pembawa sinussoidal

AmplitudoNilai maksimum dari besaran elektrik (mis voltage) dari gelombang

FrekuensiJumlah cycle yang dihasilkan dalam satu detik (cycles per second atau Hertz)

PhaseGelombang A dengan phase 00Gelombang B dengan selisih phase -900 (lebih lambat) terhadap A

Gelombang C dengan selisih phase +900 (lebih cepat) terhadap A

Jenis-jenis modulasi analog Amplitude modulation (AM)Modulasi jenis ini adalah modulasi yang paling simple, frekwensi pembawa atau carrier diubah amplitudenya sesuai dengan signal informasi atau message signal yang akan dikirimkan. Dengan kata lain AM adalah modulasi dalam mana amplitude dari signal pembawa (carrier) berubah karakteristiknya sesuai dengan amplitude signal informasi. Modulasi ini disebut juga linear modulation, artimya bahwa pergeseran frekwensinya bersifat linier mengikuti signal informasi yang akan ditransmisikan.

Gambar 15. Modulation Amplitudo

Frequency modulation (FM)Modulasi Frekwensi adalah salah satu cara memodifikasi/merubah Sinyal sehingga memungkinkan untuk membawa dan mentransmisikan informasi ketempat tujuan. Frekwensi dari Sinyal Pembawa (Carrier Signal) berubah-ubah menurut besarnya amplitude dari signal informasi. FM ini lebih tahan noise dibanding AM.

Gambar 16. Frequensi Mudulation

Pulse Amplitude Modulation (PAM)Basic konsep PAM adalah merubah amplitudo signal carrier yang berupa deretan pulsa (diskrit) yang perubahannya mengikuti bentuk amplitudo dari signal informasi yang akan dikirimkan ketempat tujuan. Sehingga signal informasi yang dikirim tidak seluruhnya tapi hanya sampelnya saja (sampling signal).

Gambar 17. Pulse Amplitudo Mudulation

Modulasi DigitalTeknik modulasi digital pada prinsipnya merupakan variant dari metode modulasi analog.

Teknik modulasi digital :

Amplitude shift keying (ASK)

Frequency shift keying (FSK)

Phase shift keying (PSK)

Modulasi digital merupakan proses penumpangan sinyal digital (bit stream) ke dalam sinyal carrier. Modulasi digital sebetulnya adalah proses mengubah-ubah karakteristik dan sifat gelombang pembawa (carrier) sedemikian rupa sehingga bentuk hasilnya (modulated carrier) memeiliki ciri-ciri dari bit-bit (0 atau 1) yang dikandungnya. Berarti dengan mengamati modulated carriernya, kita bisa mengetahui urutan bitnya disertai clock (timing, sinkronisasi). Melalui proses modulasi digital sinyal-sinyal digital setiap tingkatan dapat dikirim ke penerima dengan baik. Untuk pengiriman ini dapat digunakan media transmisi fisik (logam atau optik) atau non fisik (gelombang-gelombang radio). Pada dasarnya dikenal 3 prinsip atau sistem modulasi digital yaitu: ASK, FSK, dan PSK

Amplitude Shift Keying Amplitude Shift Keying (ASK) atau pengiriman sinyal berdasarkan pergeseran amplitude, merupakan suatu metoda modulasi dengan mengubah-ubah amplitude. Dalam proses modulasi ini kemunculan frekuensi gelombang pembawa tergantung pada ada atau tidak adanya sinyal informasi digital. Keuntungan yang diperoleh dari metode ini adalah bit per baud (kecepatan digital) lebih besar. Sedangkan kesulitannya adalah dalam menentukan level acuan yang dimilikinya, yakni setiap sinyal yang diteruskan melalui saluran transmisi jarak jauh selalu dipengaruhi oleh redaman dan distorsi lainnya. Oleh sebab itu meoda ASK hanya menguntungkan bila dipakai untuk hubungan jarak dekat saja. Dalam hal ini faktor derau harus diperhitungkan dengan teliti, seperti juga pada sistem modulasi AM. Derau menindih puncak bentuk-bentuk gelombang yang berlevel banyak dan membuat mereka sukar mendeteksi dengan tepat menjadi level ambangnya.

Frequncy Shift Keying Frequency Shift Keying (FSK) atau pengiriman sinyal melalui penggeseran frekuensi. Metoda ini merupakan suatu bentuk modulasi yang memungkinkan gelombang modulasi menggeser frekuensi output gelombang pembawa. Pergeseran ini terjadi antara harga-harga yang telah ditentukan semula dengan gelombang output ang tidak mempunyai fase terputus-putus. Dalam proses modulasi ini besarnya frekuensi gelombang pembawa berubah-ubah sesuai dengan perubahan ada atau tidak adanya sinyal informasi digital. FSK merupakan metode modulasi yang paling populer. Dalam proses ini gelombang pembawa digeser ke atas dan ke bawah untuk memperoleh bit 1 dan bit 0. Kondisi ini masing-masing disebut space dan mark. Keduanya merupakan standar transmisi data yang sesuai dengan rekomendasi CCITT. FSK juga tidak tergantung pada teknik on-off pemancar, seperti yang telah ditentukan sejak semula. Kehadiran gelombang pembawa dideteksi untuk menunjukkan bahwa pemancar telah siap. Dalam hal penggunaan banyak pemancar (multi transmitter), masing-masingnya dapat dikenal dengan frekuensinya. Prinsip pendeteksian gelombang pembawa umumnya dipakai untuk mendeteksi kegagalan sistem bekerja. Bentuk dari modulated Carrier FSK mirip dengan hasil modulasi FM. Secara konsep, modulasi FSK adalah modulasi FM, hanya disini tidak ada bermacam-macam variasi /deviasi ataupun frekuensi, yang ada hanya 2 kemungkinan saja, yaitu More atau Less (High atau Low, Mark atau Space). Tentunya untuk deteksi (pengambilan kembali dari kandungan Carrier atau proses demodulasinya) akan lebih mudah, kemungkinan kesalahan (error rate) sangat minim/kecil. Umumnya tipe modulasi FSK dipergunakan untuk komunikasi data dengan Bit Rate (kecepatan transmisi) yang relative rendah, seperti untuk Telex dan Modem-Data dengan bit rate yang tidak lebih dari 2400 bps (2.4 kbps).

Phase Shift Keying Phase Shift Keying (PSK) atau pengiriman sinyal melalui pergeseran fase. Metoda ini merupakan suatu bentuk modulasi fase yang memungkinkan fungsi pemodulasi fase gelombang termodulasi di antara nilai-nilai diskrit yang telah ditetapkan sebelumnya. Dalam proses modulasi ini fase dari frekuensi gelombang pembawa berubah-ubah sesuai denganperubahan status sinyal informasi digital. Sudut fase harus mempunyai acuan kepada pemancar dan penerima. Akibatnya, sangat diperlukan stabilitas frekuensi pada pesawat penerima. Guna memudahkan untuk memperoleh stabilitas pada penerima, kadang-kadang dipakai suatu teknik yang koheren dengan PSK yang berbeda-beda. Hubungan antara dua sudut fase yang dikirim digunakan untuk memelihara stabilitas. Dalam keadaan seperti ini , fase yang ada dapat dideteksi bila fase sebelumnya telah diketahui. Hasil dari perbandingan ini dipakai sebagai patokan (referensi). Untuk transmisi Data atau sinyal Digital dengan kecepatan tinggi, lebih efisien dipilih system modulasi PSK. Dua jenis modulasi PSK yang sering kita jumpai yaitu: 3.1. BPSK BPSK adalah format yang paling sederhana dari PSK. Menggunakan dua yang tahap yang dipisahkan sebesar 180 dan sering juga disebut 2-PSK. Modulasi ini paling sempurna dari semua bentuk modulasi PSK. Akan tetapi bentuk modulasi ini hanya mampu memodulasi 1 bit/simbol dan dengan demikian maka modulasi ini tidak cocok untuk aplikasi data-rate yang tinggi dimana bandwidthnya dibatasi. 3.2. QPSK Kadang-Kadang dikenal sebagai quarternary atau quadriphase PSK atau 4-PSK, QPSK menggunakan empat titik pada diagram konstilasi, terletak di sekitar suatu lingkaran. Dengan empat tahap, QPSK dapat mendekode dua bit per simbol. Hal ini berarti dua kali dari BPSK. Analisis menunjukkan bahwa ini mungkin digunakan untuk menggandakan data rate jika dibandingkan dengan sistem BPSK. Walaupun QPSK dapat dipandang sebagai sebagai suatu modulasi quaternary, lebih mudah untuk melihatnya sebagai dua quadrature carriers yang termodulasi tersendiri. Dengan penafsiran ini, maka bit yang digunakan untuk mengatur komponen phase pada sinyal carrier ketika digunakan untuk mengatur komponen quadrature-phase dari sinyal carrier tersebut. BPSK digunakan pada kedua carrier dan dapat dimodulasi dengan bebas.

Gambar 18. Gambar sinyal Modulasi Digital