frbclv_wp1982-02.pdf

28
Working Paper 8202 STABILITY IN A MODEL OF STAGGERED - RESERVE ACCOUNTING by Michael L. Bagshaw and William T. Gavin The authors are grateful to Robert Avery, Richard Davis, William Dewald, Robert Laurent, David Lindsey, E.J. Stevens, and members of the research staff of the Federal Reserve Bank of Cleveland for helpful comments and suggestions. Working papers of t h Bank of Cleveland are preliminary materials, circulated to stimulate discussion and critical comment. The views expressed herein are those of the authors and not necessarily those of the Federal Reserve Bank of Cleveland or the Board of Governors of the Federal R Rev i sed Federal August 1982 Reserve Bank of Cleveland http://clevelandfed.org/research/workpaper/index.cfm Best available copy

Transcript of frbclv_wp1982-02.pdf

  • Working Paper 8202

    STABILITY I N A MODEL OF STAGGERED-RESERVE ACCOUNTING

    by Michael L. Bagshaw and W i l l i a m T. Gavin

    The au thors a r e g r a t e f u l t o Robert Avery, R ichard Davis, W i l l i a m Dewald, Robert Laurent, David Lindsey, E.J. Stevens, and members o f t h e research s ta f f of t h e Federa l Reserve Bank o f Cleveland f o r h e l p f u l comments and suggest ions.

    Working papers o f t h Bank o f Cleveland a re p r e l i m i n a r y ma te r i a l s , c i r c u l a t e d t o s t i m u l a t e d i scuss ion and c r i t i c a l comment. The views expressed h e r e i n a re those o f t h e authors and n o t n e c e s s a r i l y those of t h e Federa l Reserve Bank o f Cleveland o r t h e Board o f Governors o f t h e Federa l R

    Rev i sed Federa l

    August 1982 Reserve Bank o f Cleveland

    http://clevelandfed.org/research/workpaper/index.cfmBest available copy

  • Stability in a Model of Staggered-Reserve Accounting

    Abstract

    Critics of staggered-reserve accounting have used simple models to

    show that a disturbance to deposits with no change in total reserves sets

    in motion an undamped cycle in which deposits oscillate above and below

    the equilibrium implied by the total reserve target. In this paper a

    simple reduced-form model of the money-supply process is used to

    investigate the nature of the dynamic process implied by

    staggered-reserve accounting. The parameters in the model include the

    number of banking groups in the staggered regime, the reserve

    requirement, the response of banks to their own reserve position, and the

    response of banks to a deviation of the money supply from target.

    Classical stability algorithms are used to range of

    parameters for which the model is stable. In this paper, the model is

    defined to be stable if the reduced-form difference equation for the

    money supply represents a converging process.

    The results confirm the presence of a perpetual cycle found by

    others. This perpetual cycle depends on two special c

    is that there are only two groups of banks in the sta

    the second is that banks ignore information about the money supply and

    Federal Reserve policy in making their asset portfolio decisions. When

    del is extended to include more than two banking groups, or when

    s are allowed to react to aggregate information, the money supply

    rges to the target level following a disturbance to equilibrium.

    http://clevelandfed.org/research/workpaper/index.cfmBest available copy

  • I. I n t r o d u c t i o n

    I n t h i s paper we p resen t a genera l model of t h e money-supply process

    w i t h s taggered- reserve account ing. ' The fundamental b u i l d i n g b l ock i s

    t he m u l t i p l i e r r e l a t i o n s h i p between t o t a l reserves and demand depos i ts .

    We a b s t r a c t f r om t h e problems assoc ia ted w i t h lagged rese rve account ing,

    t he l e n g t h o f t h e se t t lement per iod, d i f f e r e n t t ypes o f depos i ts ,

    d i f f e r e n t i a l r ese rve requirements, t h e demand f o r currency, t h e demand

    f o r excess reserves, and t h e u n c o n t r o l l a b l e f a c t o r s a f f e c t i n g reserve

    supply. It i s assumed t h a t t h e Federa l Reserve System s e t s t h e l e v e l o f

    t o t a l reserves, c l oses t h e d i scoun t window, and a l l ows no car ryover .

    The purpose o f t h i s model i s t o analyze a s s e r t i o n s about t h e dynamic

    response o f depos i t s t o a d is tu rbance of t h e money supply f rom t h e t a r g e t

    l e v e l . Th i s t a r g e t l e v e l i s assumed t o be t h e e q u i l i b r i u m l e v e l i n a more

    complete u n s p e c i f i e d model o f t h e money-supply process and t h e economy.

    L indsey (1981) s t a t e s t h a t a n a l y s i s done a t t h e Federal Reserve Board on s taggered- reserve account ing suggests t h a t dynamic i n s t a b i l i t i e s may be

    i nhe ren t i n staggered account ing pe r se.' We f i n d , as Trepe ta and

    L indsey ( 1 979) have found, t h a t under reasonable assumptions about banks' r e a c t i o n s t o i n d i v i d u a l r ese rve shortages ( o r surp luses) , random shocks t o t h e money s tock induce undamped c y c l e s i n t h e aggregate l e v e l o f

    depos i ts . However, t h e f a i l u r e o f depos i t s t o converge t o t h e e q u i l i b r i u m

    l e v e l seems improbable because a c y c l e i n depos i t s would t end t o induce a

    c y c l e i n t h e f e d e r a l funds r a t e and i m p l y a p r o f i t o p p o r t u n i t y t h a t would

    be easy f o r banks t o e x p l o i t . I n t h i s paper we show tha t , even i f banks

    i g n o r e t h i s p r o f i t oppor tun i t y , t h e dynamic i n s t a b i l i t y descr ibed i n t h e

    Trepeta- Lindsey paper i s p e c u l i a r t o a model w i t h j u s t two banking

    http://clevelandfed.org/research/workpaper/index.cfmBest available copy

  • groups. When t h e model i s extended t o i n c l u d e more than two banking

    groups, t h e dynamic i n s t a b i l i t y disappears.

    11. The Model

    The model t h a t i s used t o examine t h e assumptions about t h e

    i n s t i t u t i o n a l s t r u c t u r e and economic behav io r t h a t a re l i k e l y t o produce

    dynamic i n s t a b i l i t y i n t h e money-supply process i s shown i n t a b l e 1. The

    banks a re d i v i d e d i n t o n homogeneous groups, w i t h one group s e t t l i n g i n

    each o f n success ive per iods. Required reserves a re c a l c u l a t e d on a

    contemporaneous b a s i s over t h e n per iods. Banks t h a t a re s h o r t o f

    reserves on se t t l emen t day must borrow reserves f r om o t h e r banks. I n t h e

    aggregate, i f t h e members o f a s e t t l i n g group a r e sho r t o f reserves, t h e y

    must be n e t borrowers f r om t h e n o n s e t t l i n g g roup(s ) . I t i s assumed t h a t depos i t s a re s p l i t even ly among banking groups. The f i r s t equa t ion i s a

    behav io ra l equa t i on i n which t h e money supp ly changes i n response t o bank

    behavior . Changes i n t h e money supp ly a l s o depend on t h e nonbank p u b l i c ' s

    behavior , b u t t h a t behav io r i s ignored so t h a t we may focus on t h e

    " c y c l i n g t t phenomena repo r ted by Laufenberg (1975) and Trepeta and L indsey ( 1979).

    The f i r s t equa t ion descr ibes aggregate behav io r based on a model o f a

    s i n g l e bank 's behavior . The equat ion con ta ins two behav io ra l parameters,

    p and d; p measures t h e r e a c t i o n o f an i n d i v i d u a l bank t o a d e v i a t i o n

    ween ac tua l and r e q u i r e d reserves. I f t h e money supply goes above t h e

    t l e v e l , t h e demand f o r reserves w i l l exceed t h e supply and each

    e t t l i n g bank w i l l borrow a p ropo r t i on , p, o f i t s d e f i c i t , caus ing

    e s t r a t e s t o r i s e . As each bank a d j u s t s t h e asset s i d e o f i t s

    ce sheet, depos i t s w i l l t end t o f a l l back t o t h e t a r g e t l e v e l .

    http://clevelandfed.org/research/workpaper/index.cfmBest available copy

  • Table 1

    Model o f a Staggered-Reserve Account ing Regime

    (3 . ) ARNt = ( T R - ARSt)/(n - 1).

    M = t h e money supp ly

    TK = t o t a l reserves

    RRN = r e q u i r e d reserves o f a t y p i c a l non- se t t

    ARN = a c t u a l r a t y p i c a l n o n- s e t t l i

    ARS = ac tua l

    a t i o n o f t h e money supply f r om

    http://clevelandfed.org/research/workpaper/index.cfmBest available copy

  • Since t o t a l reserves a r e f i x e d , banks w i l l n o t be a b l e t o ach ieve t h e

    p o r t f o l i o mix d e s i r e d a t t h e i n i t i a l l e v e l of i n t e r e s t r a tes . Therefore,

    p r i c e s o f o t h e r asse ts w i l l change u n t i l t h e i n d i v i d u a l banks a re

    s a t i s f i e d t o h o l d a v a i l a b l e reserves. The s e t t l i n g banks w i l l have t o

    borrow any d e f i c i t (and a re assumed t o l end a l l excess reserves) on se t t l emen t day. The g r e a t e r t h e s i z e o f t h e r e s e r v e imbalance, t h e more

    i n t e r e s t r a t e s w i l l have t o change. The a c t i o n s o f t h e s e t t l i n g banks

    w i l l a f f e c t t h e money supp ly i n t h e same way as t h e a c t i o n s o f t h e

    n o n- s e t t l i n g banks. Therefore, t h e r ese rve d e f i c i t o r su rp l us o f a

    t y p i c a l n o n - s e t t l i n g bank ing group i s m u l t i p l i e d b y t h e number o f bank ing 3 groups. I f p = 1, then t h e t o t a l depos i t e f f e c t o f t h e i n d i v i d u a l bank

    r e a c t i o n s t o t h e i r own rese rve p o s i t i o n s w i l l be equal t o n t imes t h e

    d i f f e r e n c e between t h e r e q u i r e d and a c t u a l reserves o f a n o n - s e t t l i n g

    bank ing group. If t h e rese rve requi rement i s l e s s t han 100 percent , t h i s

    e f f e c t i s l e s s t han t h e amount by which t o t a l d e p o s i t s would have t o

    change t o r e t u r n t h e t o t h e t a r g e t l e v e l

    The o t h e r behavo r i a l parameter i s d. It measures aggregate bank

    r e a c t i o n t o a d e v i a t ney supp ly from t h e t a r g e t . Equa t ion 1

    i nco rpo ra tes r e a c t i o es o f i n f o rma t i on . The f i r s t i s i n t e r n a l

    and represen ts an i n d i v i a u a l bank 's r e a c t i o n t o i

    pos i t i on. The second i r e a c t i o n t o aggregate on a v a i l a b l e

    t o a l l banks. I n a d d i t i o n , t h i s equa t ion i n c l u d e s a d i s t u rbance t e rm t h a t

    r ep resen t s shocks t h a t o r i g i n a t e f r om o u t s i d e t h i s model.

    Equa t ion 2 i s 1 equat ion.

    p t i o n t h a t t h e s e t t l i n g banks w i l l never

    they w i l l always meet t h e i r r ese rve requ

    I t i s

    h o l d e

    i rement s.

    and

    http://clevelandfed.org/research/workpaper/index.cfmBest available copy

  • Equat ion 3 i s a d e f i n i t i o n used t o c a l c u l a t e ac tua l reserves o f a

    t y p i c a l group o f n o n - s e t t l i n g banks. The d i s c o u n t window i s c losed, and

    t h e r e i s no c a r r y o v e r so t h a t ac tua l reserves o f t h e s e t t l i n g banks w i l l

    equal r e q u i r e d reserves. Ac tua l reserves o u t s i d e t h e s e t t l i n g banks a re

    assumed t o be d i v i d e d even ly among t h e n o n - s e t t l i n g banks.

    The genera l s o l u t i o n f o r t h e dynamic p a t h o f t h e money supply i n

    response t o exogenous shocks i s g i ven below. No t i ng t h a t RRNt = q/n

    Mt and s u b s t i t u t i n g 2 i n t o 3, t h e model reduces t o equat ions 1 and 3 ' :

    Using l a g ope ra to r s and s u b s t i t u t i n g equa t i on 3 ' i n t o 1, we ge t

    t h o f Mt w i l l be determined by a

    combinat ion o f t h e r e

    response t o

    s o l u t i o n of

    1 i s s t a b l e c r n = 2, 3, o r 4.

    http://clevelandfed.org/research/workpaper/index.cfmBest available copy

  • The d i f f e r e n c e equat ion de r i ved from equa t i on 4 under t h e assumption

    t h a t d = 0 i s g i ven by

    Th i s process w i l l converge i f a l l t h e r o o t s o f t h e po lynomia l ,

    n - 1 - ( n - npq)B + Bn, l i e o u t s i d e t h e u n i t c i r c l e . I f any r o o t l i e s on o r w i t h i n t h e u n i t c i r c l e , t h e process w i l l n o t converge.

    For t h e case i n which t h e r e a r e two banking groups, t h e po lynomia l i n

    t h e denominator o f equa t ion 5 i s

    The r o o t s o f t h e po lynomia l a r e g iven by

    For pq equal t o 0, bo th r o o t s equal 1; f o r pq equal t o 2, bo th r o o t s

    equal -1. For pq i n s i d e t h e range 0 t o 2, t h e r o o t s a re complex; t h e

    d i s tance o f t h e r o o t s f r om t h e o r i g i n i s g i ven by

    I n t h i s spec ia l case of two banking groups w i t h d = 0, 0 r pq I 2, b o t h

    r o o t s l i e on t h e u n i t c i r c l e , and t h e p a t h f o r t h e money supply f o l l o w i n g

    an exogenous shoc cyc 1 e.

    A p r i o r i , - be i n t h i s rang ve

    requirement, q, i s o f 10 percent . The parameter, p,

    d e s c r i b i n g t h e ban r v e imbalances should be i n t h e

    reason f o r a b

    u n l i k e l y i f ban

    http://clevelandfed.org/research/workpaper/index.cfmBest available copy

  • I f t h e p roduc t pq i s g r e a t e r than 2 o r l e s s than 0, b o t h r o o t s w i l l

    be r e a l . One r o o t w i l l be l e s s than 1 i n abso lu te value; t h e o t h e r r o o t

    w i l l be g r e a t e r than 1 i n abso lu te value, and t h e dynamic process

    descr ibed i n equa t ion 5 explodes. The economic i n t e r p r e t a t i o n i s

    s t r a i g h t f o r w a r d . I f pq< 0, then banks a r e p e r s i s t e n t l y l end ing a t an

    i n t e r e s t r a t e t h a t i s below t h e expected i n t e r e s t r a t e i n t h e nex t

    per iod, o r t h e y a re p e r s i s t e n t l y borrowing a t an i n t e r e s t r a t e t h a t i s

    above t h e expected i n t e r e s t r a t e i n t h e n e x t per iod . I f pq i s g r e a t e r

    than 2, and q i s i n t h e neighborhood o f 10 percent , then banks a re

    g r e a t l y o v e r r e a c t i n g t o any rese rve imbalance.

    To analyze t h e cases when n i s g r e a t e r t han 2, no te t h a t t h e

    po lynomia l i n equa t i on 6 has r o o t s t h a t a r e t h e i nve rse o f t h e r o o t s i n

    equa t ion 7.

    ( 6 ) f (B ) = n-1 - n ( l - pq)B + B ~ .

    D u f f i n (1969) presented an a l g o r i t h m f o r t e s t i n g whether a l l t h e r o o t s o f a po lynomia l l i e i n s i d e t h e u n i t c i r c l e . I f t h e r o o t s o f g(B) l i e i n s i d e t h e u n i t c i r c l e , then t h e r o o t s o f f ( B ) l i e o u t s i d e t h e u n i t c i r c l e , and equat ion 5 r ep resen ts a s t a b l e d i f f e r e n c e equat ion. The d e t a i l s o f t h i s

    a l g o r i t h m are presented i n appendix A w i t h t h e s o l u t i o n s f o r t h e cases

    n = 3 and n = 4. Eq i s s t a b l e f o r t h e f o l l o w i n g va lues o f p and q:

    Case 1: n =

    Case 2: n = 4,

    http://clevelandfed.org/research/workpaper/index.cfmBest available copy

  • For t h e genera l case o f n banking groups, a n a l y t i c c a l c u l a t i o n o f

    bounds on pq f o r convergence proved t o be i n t r a c t a b l e . However, f o l l o w i n g

    computer s o l u t i o n s o f t h e model f o r cases n equals 5 through 30 and a

    l a r g e v a r i e t y of values f o r pq, we hypothesize t h a t t h e dynamic process

    descr ibed i n equat ion 5 converges f o r t h e f o l l o w i n g values o f pq:

    Case 1: n > 2 and odd,

    o < pq < 2(*). Case 2: n > 2 and even,

    o < pq < 2.

    I V . S t a b i l i t y Condi t ions w i t h a React ion t o Aggregate In fo rma t i on

    I n t h i s s e c t i o n we r e l a x t h e assumption t h a t d = 0. The d i f f e r e n c e

    equat ion der ived f rom equat ion 4 i n t h e general case i s g iven by n-1

    (n - 1 - ZBi)et (8) Mt = l / q TR - i =l

    i n - 1 - n(1-pq-d)B + B~ - d 2 B

    i = l hhen n = 2, equat ion 8 i s s t a b l e i f and o n l y i f bo th r o o t s o f t h e

    polynomi a1

    ( 9 ) 1 - [ 2 ( 1 - p q ) - d ) B + ( l - d ) B 2 l i e ou ts ide t h e u n i t c t h e general case t h e procedure developed

    by D u f f i n and used above i s i n t r a c t a b l e f o r n > 2. I n use a

    method developed by Wise (1956) t o d e r i v e s t a b i l i t y condi t ions. For n =2 , hod y i e l d s t h e f o l l o w i n g cond i t i ons (see appendix B f o r

    http://clevelandfed.org/research/workpaper/index.cfmBest available copy

  • It i s impor tan t t o no te t h a t w h i l e t h e system w i t h two banking groups d i d

    no t converge f o r any values o f pq when d = 0, i t converges f o r a l l l i k e l y

    values o f p and q when d l i e s between 0 and 2. The g rea t a t t e n t i o n

    attached t o t h e weekly re lease o f aggregate i n f o r m a t i o n on t h e money

    supply suggests t h a t d i s l i k e l y t o be g r e a t e r than 0. While t h e ac tua l

    va lue of a can o n l y be est imated, we know t h a t banks and t h e p u b l i c r e a c t

    t o aggregate i n f o r m a t i o n i n t oday ' s market. Unless one would p r e d i c t a

    d r a s t i c change i n behavior f o l l o w i n g t h e adopt ion o f staggered- reserve

    accounting, d i s l i k e l y t o f a l l i n t h e s t a b l e range.

    Appendix B a l so descr ibes t h e a lgo r i t hm used t o compute t h e s o l u t i o n s

    t o equat ion 8 f o r h ighe r values o f n. Numeric s o l u t i o n s up t o t h e case

    n = 30 i n d i c a t e t h e f o l l o w i n g s t a b i l i t y c o n d i t i o n s when d > 0.

    Case 1: n > 2 and odd, n- 1 O < pq < y-(2 - d).

    Case 2: n > 2 and even,

    For d < 0 and n > 2, t h e r e i s a s t a b l e r e g i o n f o r some values o f pq. The

    cases f o r n = 3, 4, and 5 are shown i n appendix B and p l o t t e d i n f i g u r e

    http://clevelandfed.org/research/workpaper/index.cfmBest available copy

  • V. Conclusion

    The dynamic process descr ibed by equa t ion 5 i n c l u d e s no sys temat ic

    r e a c t i o n i n t h e market t o aggregate in fo rmat ion . When t h e r e a re o n l y two

    banking groups w i t h staggered reserve- se t t lement per iods , we f i n d t h a t

    t h i s process rep resen ts an undamped, unexp los ive c y c l e f o r l i k e l y va lues

    o f p, t h e bank p o r t f o l i o response, ana q, t h e rese rve requirement. When

    t h e number o f bank ing groups i s inc reased t o 3 o r 4, and f o r l i k e l y

    va lues o f p and q, t h e money supp ly converges i n a damped c y c l e t o t h e

    t a r g e t l e v e l .

    The dynamic process descr ibed i n equa t ion 8 ~ n c l u d e s a market

    response t o aggregate i n fo rma t i on . If market p a r t i c i p a n t s respond t o a

    d e v i a t i o n o f t h e money supp ly f r o m t a r g e t by changing i n t e r e s t r a t e s i n

    t h e d i r e c t i o n o f t h e dev ia t i on , t hen t h e dynamic process descr ibed i n

    equa t ion 8 i s l i k e l y t o converge even when t h e r e a re o n l y two banking

    groups.

    http://clevelandfed.org/research/workpaper/index.cfmBest available copy

  • Footnotes

    1. The proposal t o s tagger r ese rve account ing was f i r s t made by Cox and

    Leach (1964); a l s o see comments f o l l o w i n g t h e a r t i c l e by S t e r n l i g h t (1964). T h i s proposal was r e s u r r e c t e d by t h e Morgan Guaranty Company (1981) and d iscussed by Gavin (1982).

    2. These r e s u l t s come f rom t h e a n a l y s i s o f a model cons t ruc ted by

    Trepeta; see t h e appendix t o Trepeta and L indsey (1979). The fundamental d i f f e r e n c e between t h e model presented here and Trepeta

    and L indsey ' s i s t h a t we gene ra l i ze t o i n c l u d e more than two banking

    groups, and we add a behav io ra l parameter t o cap tu re r e a c t i o n t o

    aggregate i n fo rma t i on . Laufenberg (1975) f i r s t noted t h a t t h e i n s t i t u t i o n a l s t r u c t u r e o f s taggered- reserve account ing i m p l i e d t h e

    p o s s i b i l i t y o f dynamic i n s t a b i l i t i e s .

    3. Robert Avery, Federal Reserve Board s t a f f , has po in ted ou t t h a t when

    n = 2, and t h e model i s changed so t h a t

    - d(Mtml + l / q TR) - et, t h e range o f va lues o f pq f o r which t h e model i s s t a b l e i s reduced by

    a f a c t o r of one-half . Changing t h e model i n t h i s way does no t change

    any o f our q u a l i t a t i v e r e s u l t s .

    http://clevelandfed.org/research/workpaper/index.cfmBest available copy

  • Appendix A

    S t a b i l i t y i n t h e Model w i t h d = 0

    A Test f o r Schur Polynomials f rom D u f f i n (1969) A Schur polynomial i s de f i ned as a polynomial f o r which a l l t h e r o o t s

    l i e i n s i d e t h e u n i t c i r c l e .

    Algor i thm. Le t gn(w) be t h e polynomi a1 n gn(x) = a. + alx + a2x2 + . .. + anx ,

    where

    a. f 0, an t 0. L e t gn - , ( x ) be t h e reduced polynomial

    o f degree n - 1. Then gn(x) i s a Schur polynomial i f and o n l y i f

    ( i i ) gn-] ( x ) i s a Schur polynomi a1 . Th is procedure i s i t e r a t e d n t imes t o ge t t h e parameter domain f o r which

    gn(x) i s a Schur polynomial . Case: n = 3

    g3(B) = 1 - 3 (1 - 3 B .

    ( i ) I l l < 121, ( i i ) g2(B) = 3 ( 1 - pq) - 6 ( 1 - pq)B + 3~ ' ,

    i i ) '

    http://clevelandfed.org/research/workpaper/index.cfmBest available copy

  • http://clevelandfed.org/research/workpaper/index.cfmBest available copy

  • 2 2 (ii)' g2(B) = 48(1 - pq12 - 96(1 - pq)B + (64 - 16(1 - pq) )B . 2 (i ) ' 148 (1 - pq)'~ < 164 - 16(1 - pq) 1.

    2 2 Both (1 - pq) and 4 - (1 - pq) are greater than 0 on the range

    (ii)" g,(B) = [-(64 - 16(1 - pq)2)(96(1 - pq)) + (480 - ~q)~)(96(1 - pq))l + [(64 - 16(1 - pq)')' - (48(1 - pq)2)2]~.

    1-(64 - 16(1 - pq1~)(96(1 - pq)) + 48(1 - pq)296(1 - pq)l <

    for 0 < pq < 1 3 3(1 - pq) - 3(1 - pq ) > 0 and

    2 - (1 - pq) - (1 - pq)4 > 0.

    Therefore, A.1 - 2 - 3(1 - pq) - (1 - Pq)2 + 3(1 - Pq)3 - (1 - pq) 4

    = f(l - pq) > 0. f(l - pq) = 0 when pq = 0

    = 2 when pq = 1

    http://clevelandfed.org/research/workpaper/index.cfmBest available copy

  • To show t h a t f ( 1 - pq) > 0 f o r a l l 0 < pq < 1 n o t e t h a t 2 f ' ( 1 - pq) = 3 + 2 ( 1 - pq) - 9 ( 1 - pq) + 4 ( 1 - pq13

    f ' ( 1 - pq) = 0 when pq = -.693, 0, and 1.443.

    Therefore, f ' ( 1 - pq) > 0 f o r 0 < pq < 1, and f ( 1 - pq) > 0 f o r 0 < pq < 1.

    For 1 < pq < 2

    3 ( 1 - p q ) 3 - 3 ( 1 - pq) > 0 and

    2 Therefore, A.1 - 2 + 3 ( 1 - pq) - ( 1 - pq) - 3 ( 1 - pq)3 - ( 1 - pq) 4

    = h ( l - pq) > 0. h ( 1 - pq) = 2 when pq = 1,

    = 0 when pq = 2.

    To show t h a t h ( 1 - pq) > 0 f o r a l l 1 < pq < 2 n o t e t h a t 3 h ' ( 1 - pq) = -3 + 2 ( 1 - pq) + 9 ( 1 - pq)' + 4 ( 1 - pq) .

    h ' ( 1 - pq) = 0 when pq = .557, 2, and 2.693. h ' ( 1 - 1.5) = -2.25.

    Therefore, h ' ( l - pq) < 0 f o r 1 < pq < 2,and h ( 1 - pq) > 0 f o r 1 < pq < 2.

    Therefore, equa t ion 5 represen ts a s t a b l e d i f f e r e n c e equat ion when n = 4 and

    0 < pq < 2.

    http://clevelandfed.org/research/workpaper/index.cfmBest available copy

  • For the general case of n banking groups, ana ly t ic calcula t ion of bounds

    on pq f o r convergence proved t o be in t rac tab le . However, following computer

    solut ions of the model f o r cases n equals 5 through 30 and a large var ie ty of

    values f o r pq, we hypothesize t h a t the dynamic process described in equation 5 \

    converges f o r the following values of pq.

    Case 1: n > 2 and odd,

    Case 2 : n > 2 and even,

    http://clevelandfed.org/research/workpaper/index.cfmBest available copy

  • Appendix B

    S t a b i l i t y o f t h e Model i n t h e General Case

    The dynamic process descr ibed i n equat ion 8 w i l l be s t a b l e i f t h e

    r o o t s o f

    l i e ou ts ide t h e u n i t c i r c l e . Equ iva len t ly , t h e system w i l l be s t a b l e i f

    t h e r o o t s o f

    l i e i n s i d e t h e u n i t c i r c l e .

    Wise (1956) presents a method o f t r ans fo rm ing equat ions o f t h e t ype B.2 such t h a t t h e cond i t i ons on r o o t s l y i n g i n s i d e t h e u n i t c i r c l e a re

    equ i va len t t o t h e r e a l p a r t o f t h e r o o t s of

    be ing l e s s than zero. I n 8.3 y and p, a re de f i ned as

    C . i s t h e c o e f f i c i e n t o f yr i n t h e expansion o f r J

    a1 = - n ( 1 - pq) - ( n - l ) d , n-1

    - a 2 - . . a = - d and n-1 n'zi '

    - 1 - d a n - -. n - 1

    http://clevelandfed.org/research/workpaper/index.cfmBest available copy

  • From t h i s p o i n t , we can use t h e Routh theorem (Chiang 1974, p. 546), which s t a t e s t h a t a po lynomia l o f t h e f o rm ( w i t h a. assumed g r e a t e r than 0)

    n n-1 + 8.4 a. x + al x ... + an-l x + an = 0

    has t h e r e a l p a r t s o f a l l i t s r o o t s nega t i ve i f and o n l y i f t h e f i r s t n

    o f t h e f o l l o w i n g sequence o f determinants

    a re a l l p o s i t i v e . I n app l y i ng t h i s theroem, i t should be remembered t h a t

    lal I E al and t h a t we s e t am = 0 f o r m > n.

    I n t h e p resen t problem, we have -

    ai - Pn-i f o r i = 0, 1, ..., n.

    Thus, t h e c o n d i t i o n s f o r s t a b i l i t y o f t h e system can t h e o r e t i c a l l y be

    d e r i v e d f r om Wise's r e s u l t s and t h e Routh theorem. However, i n p r a c t i c e

    t h e a n a l y t i c a l s o l u t i o n i s ex t reme ly compl icated. Therefore, we p resen t

    t h e a n a l y t i c a l s o l u t i o n s f o r n = 2 and 3. Numeric s o l u t i o n s a re g i ven f o r

    Case: n = 2 --

    ~XI = - [2 (1 -pq) -d l and

    From Wise (1 956) :

    1 + a 2 = 2 r 2 - Pq - d l ,

    p 1 = 2 - 2a2 = 2d and

    p2 = 1 + al + a2 = 2pq.

    http://clevelandfed.org/research/workpaper/index.cfmBest available copy

  • Thus, a. - - P2 = 2pq i s p o s i t i v e i f pq > 0. Otherwise,al l s igns o f

    the pi 's must be reversed. I f pq > 0, then the cond i t io r ls o f the

    Routh theorem are

    la11 = PI > o o r equ iva len t l y , d > o and

    2d[2 ( 2 - pq -d ) ] > 0. Since d > 0, we get

    If pq < 0, then we have t o reverse s igns Defore app ly ing the Routh

    a3

    acl a2

    theorem.

    PI 0 '

    "2 Po-

    - -

    Condi t ions are then

    = p p > O o r 1 0

    2d[2 ( 2 - pq -d ) ] > 0. Again, s ince d < 0

    T h i s l a s t i n e q u a l i t y c o n t r a d i c t s pq < 0. Thus, t he re are no s t a b l e

    s o l u t i o n s f o r which pq < 0. The

    < pq < 2 -d and

    > 0.

    shown i n f i g u r e B.1.

    s t a b l e reg ion i s g iven by

    http://clevelandfed.org/research/workpaper/index.cfmBest available copy

  • F i g u r e B . 1 Stab le Parameter Domain

    Case: n = 3

    a2 = - d and 2 ' = 1 - d a3 .

    2

    From Wise (1 956) :

    Again, t n i s case d i v i d e s i n t o two subcases, depending on wnether p3

    i s p o s i t i v e o r negat ive.

    I f p j > 0 o r e q u i v a l e n t l y , pq > 0, ( a l l = p 2 > 0 - p q > - 26.

    http://clevelandfed.org/research/workpaper/index.cfmBest available copy

  • B.5 pq < d ( d - 3) f o r d > l and 1 - d

    Pq > d ( d - 3) f o r d < 1. 1 - d

    There i s no c o n s t r a i n t f rom t h i s c o n d i t i o n on pq when a = 0.

    If po > 0, we get t h e same conditions as i n B.5 p lus p > 0 0

    B.6 pq < 4 - 2a . 3

    If p o < 0, we get t h e reverse of cond i t i ons g iven i n 8.5. Because we

    cannot have both t h e cond i t i ons i n B.5 and t h e i r inverses, t he re i s no

    s t a b l e s o l u t i o n when po < 0.

    I f p3 < 0 o r e q u i v a l e n t l y pq < 0, we have

    (which g ives t h e same c o n d i t i o n as B.5) and

    http://clevelandfed.org/research/workpaper/index.cfmBest available copy

  • I f po > 0, we g e t t h e r e v e r s e of c o n d i t i o n s i n B.5. Thus, t h e r e i s no

    s t a b l e r e g i o n w i t h po > 0 and p3 < 0. F o r po < 0, we o b t a i n t h e

    same c o n d i t i o n s as B.5 and

    pq > 4 - 2d . 3

    Because i t i s n o t p o s s i b l e t o have b o t h pq< -2d and pq > ( 4 - 2d)/3, t h e r e a re no s t a b l e c o n a i t i o n s f o r pq < 0.

    I n summary, t h e S t a b l e r e g i o n f o r n = 3 i s g i ven by t h e s e t o f

    c o n d i t i o n s ob ta ined f r om those g i v e n a b o v e by de te rmin ing which ones a r e

    b i n d i n g c o n d i t i o n s . They a r e

    Pq < 4 -2d, and -

    3

    pq > d ( d - 3) f o r d < 0. -

    I - d

    http://clevelandfed.org/research/workpaper/index.cfmBest available copy

  • T h e o r e t i c a l l y , i t would De p o s s i ~ l e t o s o l v e f o r t h e s t a b i l i t y

    r eg ions by us ing t h e above method f o r n > 3. However, t h e a p p l i c a t i o n i s

    n o t p r a c t i c a l because o f t h e compl i ca ted express ions invo lved. Insteaa,

    we have developea computer s o l u t i o n s f o r n up t o 30 us ing t h e above

    method and an a l g o r i t h m developed by D u f f i n (1969) t o c a l c u l a t e t h e Crjls. From these s o l u t i o n s , we maKe t h e f o l l o w i n g hypothes is :

    ( 1 ) F o r d B O , t h e s t a b i l i t y r e g i o n i s g i v e n b y pq < n - - 1 ( 2 - d ) f o r n odd,

    n

    p q < 2 - d f o r n even.

    ( 2 ) F o r 3 < 0, t h e r e i s a s t a b i l i t y r e g i o n f o r which we have n o t been a b l e t o determine genera l fo rmu las f o r boundar ies except p a r t i a l l y f o r

    t h e case where n i s odd. I n t h i s case, t h e upper boundary appears t o be

    pq < n - - 1 ( 2 - d) . F i g u r e B.2 i l l u s t r a t e s s t a b i l i t y reg ions f o r cases i n n

    which n = 3, 4, and 5.

    http://clevelandfed.org/research/workpaper/index.cfmBest available copy

  • F i g u r e B.2. S t a b l e Parameter Domains

    http://clevelandfed.org/research/workpaper/index.cfmBest available copy

  • - 2 6 -

    References

    Anderson, O l i v e r D. 'The Recurs ive Nature o f t h e S t a t i o n a r i t y and

    I n v e r t i b i l i t y R e s t r a i n t s on t h e Parameters o f Mixed

    Auto regress i on-Movi ng Average Processes, " B i omet r i ka, v o l . 62 ( 1975), pp. 704-6.

    Chiang, Alpha C. Fundamental Methods o f Mathematical Economics. 2nd ed.

    New York: McGraw-Hil l Book CO., 1974.

    Cox, A l b e r t H., Jr., and Ralph F. Leach. "Defensive Open Market Operat ions

    and t h e Reserve Se t t lement Per iods o f Member Banks," Journa l o f

    Finance, vo l . X I X , no. 1 (March 1964), pp. 76-93.

    . "Open Market Operat ions and t lement Per iods: A

    nt," Journa l o f Finance, vo l . X I X , no. 4 (December

    thms f o r C l a s s i c a l S t a b i l i t y ProblemsYfi S o c i e t y f o r

    vo l . 11, no. 2 ( A p r i l

    1982, pp.

    http://clevelandfed.org/research/workpaper/index.cfmBest available copy

  • Laufenberg, Dan ie l E. "Staggered Reserve Periods," Board o f

    Governors S t a f f Memorandum t o M r . A x i l r o d , December 9, 1975; r e v i s e d

    J u l y 6, 1978.

    Lindsey, David E. "Nonborrowed Reserve Ta rge t i ng and Monetary C o n t r 0 1 , ~ ~

    presented a t an Economic P o l i c y Conference, " Improv ing Money Stock

    Con t ro l : Problems, So lu t i ons , and Conseq~ences ,~~ October 30, 1981,

    cosponsored by Federa l Reserve Bank o f St. Lou is and Center f o r Study

    o f American Business, Washington U n i v e r s i t y , for thcoming.

    Morgan Guaranty Survey. " I n t e r e s t Rate V o l a t i l i t y : A Way t o Ease

    t h e P r ~ b l e m , ~ ~ Morgan Guaranty Company, J u l y 1981, pp. 7-10.

    S t e r n l i g h t , Pe te r D. "Reserve Se t t lement Per iods o f Member Banks:

    Comment," Journal o f Finance, vo l . X I X , no. 1 (March 1964), pp. 94-98.

    . "Member Bank Reserve Se t t lement Per iods: A F u r t h e r Comment,"

    Journal o f Finance, vo l . X I X , no. 4 (December 1964), pp. 540-43.

    Trepeta, Warren, and David E. Lindsey. "The Reuss Proposal t o Stagger

    Reserve Account ing Periods," Federa l Reserve Board, D i v i s i o n o f

    Research and S t a t i s t i c s ( A p r i 1 1979), manuscr ip t .

    Wise, J. " S t a t i o n a r i t y Cond i t i ons f o r S tochas t i c Processes o f t h e

    Autoregress ive and Moving-Average Type," Biometr ika, v o l . 43 (1956),

    http://clevelandfed.org/research/workpaper/index.cfmBest available copy