Fourier-BasedForward and Back-Projectors for Iterative ...

27
Fourier-Based Forward and Back-Projectors for Iterative Image Reconstruction Samuel Matej, Jeffrey A. Fessler and Ivan G. Kazantsev University of Pennsylvania, MIPG Technical Report MIPG303 University of Michigan, EECS Technical Report May 2003

Transcript of Fourier-BasedForward and Back-Projectors for Iterative ...

Page 1: Fourier-BasedForward and Back-Projectors for Iterative ...

Fourier-BasedForwardandBack-Projectorsfor Iterative ImageReconstruction

SamuelMatej, Jeffrey A. Fessler and IvanG. Kazantsev

Universityof Pennsylvania,MIPG TechnicalReportMIPG303

Universityof Michigan,EECSTechnicalReport

May 2003

Page 2: Fourier-BasedForward and Back-Projectors for Iterative ...

UNIVERSITY OF PENNSYLVANIA, MIPG AND UNIVERSITY OF MICHIGAN, EECS – TECHNICAL REPORT, MAY 2003 2

CONTENT

1. Introduction2. PrinciplesandImplementaion

A. Fourier-BasedProjectorsB. Non-UniformFastFourierTransformC. Fourier-BasedIterativeReconstructionD. Emulationof ImageRepresentationUsingBasisFunctionsE. ResolutionModelingF. Min-max InterpolationOptimization

3. NumericalErrorAnalysisResults4. ComputerSimulationResults

A. Forward-ProjectorB. Back-ProjectorC. ForwardandBack-Projectorwithin Iterative Reconstruc-

tion5. IterativeReconstructionusingRealData6. Discussion7. ConclusionsReferencesAppendix

A1. TheoreticalErrorsA2. ZubalPhantomForward-ProjectionErrorsA3. ZubalPhantomBack-ProjectionErrorsA4. Voxel andBlob-basedReconstructionErrors

Abstract— Iterati ve image reconstruction algorithms play an increas-ingly important role in modern tomographic systems,especiallyin emissiontomography. With the fast increaseof the sizesof the tomographic data,reduction of the computation demandsof the reconstructionalgorithms isof great importance. Fourier-basedforward and back-projection methodshave the potential to considerablyreducethe computation time in iterativereconstruction.Additional substantialspeed-upof thoseapproachescanbeobtained utilizing powerful and cheapoff-the-shelf FFT processinghard-ware. The Fourier reconstructionapproachesarebasedon the relationshipbetweenthe Fourier transform of the image and Fourier transformationof the parallel-ray projections. The critical two stepsare the estimationsof the samplesof the projection transform, on the central sectionthr oughthe origin of Fourier space,fr om the samplesof the transform of the im-age,and vice versa for back-projection. Interpolation errors are a limita-tion of Fourier-basedreconstruction methods. We have applied min-maxoptimized Kaiser-Besselinterpolation within the non-uniform Fast Fouriertransform (NUFFT) framework. This approach is particularly well suitedto the geometriesof PET scanners.Numerical and computer simulation re-sultsshow that the min-max NUFFT approachprovidessubstantially lowerapproximation errors in tomographic forward and back-projection thanconventional interpolation methods, and that it is a viable candidate forfast iterative imagereconstruction.

Keywords— Iterati ve tomographic reconstruction, forward and back-projectors,non-uniform FFT, gridding, min-max interpolation.

I . INTRODUCTION�TERATIVE imagereconstructionalgorithmsusingstatisticalmodelsof acquireddataplay an increasinglyimportantrole

in moderntomographicsystems,especiallyin emissiontomog-raphycharacterizedby datawith low counts,andconsequently,low signal-to-noiseratio[1–3]. Thecomputationalbottleneckofiterativereconstructionalgorithmsis thecomputationof forwardand back-projectionoperations. With the fast increaseof thesizesof thetomographicdata,reductionof thecomputationde-mandsof forwardandback-projectorsis of greatimportance,asdemonstratedby therecentincreaseof interestin fastcomputa-

tional proceduresfor calculationof theseoperations(for exam-ple, [4–9]). Thecontribution of this paperto thoseendeavorsisthe investigationof Fourier-basedforward andback-projectorsfor iterativetomographicreconstructionapproaches.In additionto their computationalefficiency, theFourier-basedapproacheshave potential for additionalsubstantialspeed-upby utilizingpowerful andcheapoff-the-shelfFFT processinghardware.

It hasbeenknown for a longtime thatdirectFouriermethods(DFM), that build up the Fourier transformof the objectusingtheFourier transformsof theprojections,have thepotentialforaccurateandhigh speedreconstruction[10–15]. The Fourier-slice theoremwas later proposedasa tool for performingthereprojectionoperation(e.g., [16,17]). The crucial step influ-encingthe reconstructionquality andspeedis the interpolationbetweenpolar andCartesianrastersin frequency space.Grid-ding interpolation[18,19], with properinterpolating[20] anddataweightingfunctions,as investigatedin the MRI literature[21–23], broughtimprovementin thedirectFourierreconstruc-tion. Recently, theFourier-basedreprojectionhasbeenappliedfor (non-iterative)fully 3D PETreconstruction[24] andfor cal-culationof attenuationcorrectionfactorsin PET [25]. In theseworks, Kaiser-Bessel(KB) windows were usedfor interpola-tion, whichareknown to bereasonablyaccuratebut withoutex-plicitly evaluatingtheaccuracy. Theconceptof thenon-uniformFastFourier transform(NUFFT) [26] usedin this paperis re-latedto gridding methodsfor interpolationin frequency space.TheKB interpolationkernelsusedin this work have beenopti-mizedusinga min-maxapproach[27], thusproviding substan-tial improvementof theinterpolationaccuracy.

In the previous works on gridding, the focus was on us-ing the interpolationto find a non-iterative approximatesolu-tion to an inverseproblem. In contrast,we useFourier-basedforward-projectionasatool for calculatingtheforwardproblem,andallow iterative reconstructionmethodsto solve the inverseproblem. Iterative algorithmsneedalsothe ability to computematrix-vectormultiplicationby thetransposeof thematrix cor-respondingto forwardprojection,eventhoughthematrix itselfis not storedexplicitly. It is straightforward to reverse(not in-vert) the stepsexecutedduring the forward-projectioncompu-tation to developanalgorithmto performmultiplicationby thetranspose,correspondingto theadjointof theforwardoperator,which is a form of back-projection.

Section II containsdescriptionsof basic principles of theFourierbasedforwardandback-projectors(II-A) andof theiref-ficientimplementationusingNUFFTapproach(II-B), anoutlineof the iterative reconstructionapproachesusing Fourier basedforwardandback-projectors(II-C), discussionof incorporationof basisfunctions(II-D) and resolutionmodels(II-E), and fi-nally discussionof optimizedNUFFT interpolationparameters(II-F). Resultsof thenumericalerroranalysisof theNUFFT in-terpolatorsbasedon the min-max methodologyare presentedin Section III. Effects of interpolationparameterson accu-racy of theNUFFT-basedforwardandback-projectors,asstan-dalonemodulesandwithin iterative reconstruction,arefurtherevaluatedusingsimulateddatain SectionIV, includingperfor-mancecomparisonsof the optimizedversionsof the Fourier-basedforward and back-projectorsto their space-basedcoun-terparts. SectionV containsperformancecomparisonsof the

Page 3: Fourier-BasedForward and Back-Projectors for Iterative ...

UNIVERSITY OF PENNSYLVANIA, MIPG AND UNIVERSITY OF MICHIGAN, EECS – TECHNICAL REPORT, MAY 2003 3

Image x Projection data pData spectrum PImage spectrum X

�� �� �� �� �� �� � �� � �� �� �� �� �� �� �� �� �� �� �� �� ��1D IFFTs2D FFT Interpolation

Fig.1. Basicstepsof theNUFFTforward-projectionillustratedonthe2D case:1) point-wisemultiplicationof theimagewith theScalefunction- pre-compensationfor interpolationimperfections;2) FastFourier Transformon uniform (rectangular)rastersfrom imageinto spectrumdomain;3) spectrummultiplicationbyBasisfunctionfilter - modelingeffectsof theimagerepresentationusingbasisfunctions(II-D) andof theshift-invariantdetectorresolutionkernels(II-E.1, forotherpossibilitiesof resolutionmodelingseetext); 4) Interpolation into non-uniform(polar)dataspectrumrasterlocations- convolution with the fixedsizeinterpolationkernel;5) InverseFastFourier Transformsonsetof polarlinesto obtainasetof projections(sinogram).

Fourier-basedandspace-basedprojectorswithin iterativerecon-structionusingphysicalphantomtransmissiondataacquiredona commercialPETscanner. Finally, discussionandconclusionsarein SectionsVI andVII.

I I . PRINCIPLES AND IMPLEMENTATION

A. Fourier-BasedProjectors

Fourier basedforward andback-projectorsarebasedon thecentralsectiontheorem(alsocalledprojectiontheorem)asout-lined in thefollowing. Werepresentstraightlinesin ��� ( =2,3)by a direction !#"%$&�('*) (unit sphere),anda point +,"-!/. as0 +21%34!65�37"%� )98 , where ! .;: 0 +#"%� � 5<+>=?! :A@98 . LetBDCFEHGJIKE "L�<� denotethe - dimensionalimagewhoseprojec-tions(theray transform)MON C + G :QPR*S BDC +T1634! GVU 3 (1)

wewishto compute.Let W CYXZG betheimagespectrum,obtainedby FouriertransformW CYXZG : PRO[ BDCFEHG]\ 'O^`_ba?c/d e U/E�f (2)

Thenthecentralsectiontheorem[11] is givenbyg N CihZG : W CihZGjIKh "k! . I (3)

whereg N CFhZG is Fouriertransformof

MON C + G .Usingthecentralsectiontheorem,theprojectionat direction! andasa functionof + , canbeobtainedfrom the imagespec-

trum W N CFhZG : W CFhZGjIlh "m!/. byMON C + G :nPNpo W N CFhZGV\ ^`_ba/qDd r Ushtf (4)

Alternatively, using the sameapparatusin reverse,the back-projectioncanbeobtainedby depositingthe Fourier transformof the projection into the proper locationsof the centralsec-tion of the -dimensionalspectraldomain,followed by the -dimensionalinverseFouriertransform.

B. Non-UniformFastFourier Transform

Practicalimplementationof Fourierprojectorsis basedonthediscretizedversionof theprojectiontheorem.Thecrucialstepisobtainingsamplesof projectionspectrumvalues

g N CFhZGvu qxwzys{}| ,where $~"��T�('H) ( � denotesinteger numbers),distributedonthe centralsectionplanes !s. with grid spacing � q (formingthe polar rasterin 2D case)from the valuesof the samplesofimagespectrumW C4XZGpu exw*�D{�� , ��"m��� , distributedontheuni-form Cartesianrasterwith spacing� e (forming therectangularrasterin 2D case).Directevaluationof imagespectrumvaluesatthecentralsectionlocationsusing(exact)DiscreteFouriertrans-form (DSFT)wouldrequire� Ci���?G operationsfor the2D imageof size ����� . Using Non-Uniform Fast Fourier Transform(relatedto gridding) allows utilization of Fast FT algorithmsthussubstantiallyspeeding-upthisprocess.For the2D case,theNUFFT projectorsrequireonly � CF� _z���/� �LG operations,com-paredto � CF����G neededby thespatialforward-projectionalgo-rithms.Basicstepsof theNUFFT are(seeFig. 1):a) imageof size � is first pre-compensated(scaled) for imper-fectionsof thesubsequentfrequency domaininterpolation;b) calculationof the � -timesoversampled(in eachdirection)FFT - imageis zeropaddedbeforetheFFT (for theefficient im-plementationof theoversampledFFT see[12,27]);c) interpolationonto thedesiredfrequency locationswithin thecentralsectionof thespectrumusingsmalllocalneighborhoodsin thefrequency domain- this is acrucialoperationdeterminingtheNUFFTaccuracy.The resultof thesethreestepsis theNUFFT, andforwardpro-jectionsare thenobtainedby performinginverseFFTs on thecentralsectionsamples(polar lines in 2D case). The discreteback-projectionrepresentsthe samesetof operationsexecutedin thereverseorder. Fourierbasedforwardandback-projectorsfor the statisticalreconstructiontechniquesshouldadditionallytake into accountthe shapeof basisfunctionsusedfor imagerepresentationandresolutionproperties(e.g.,LOR profiles)asdescribedin SectionsII-D, II-E.

C. Fourier-BasedIterativeReconstruction

Forward and back-projectionoperationsrepresentthe com-putationalbottleneckswithin any iterative reconstructionap-

Page 4: Fourier-BasedForward and Back-Projectors for Iterative ...

UNIVERSITY OF PENNSYLVANIA, MIPG AND UNIVERSITY OF MICHIGAN, EECS – TECHNICAL REPORT, MAY 2003 4

�� �� ���� � �    ¡¢ £¤ ¥¦ §¨ �  ©ª «¬ £¤­® ¯° §¨ � �    ¡¢ ±²³´ §¨ £¤ µ¶ «¬ ·¸ ¹º

»¼ ©ª ¹º ¯° ±² ¡¢ ½¾ §¨ £¤ ¯° ¿À

p(k) P(k)

∆∆(k)

b

x(k)

cs(k)

Á ½¾ µ¶ §¨ �  ¡¢X(k)

C(k)ÃÄ §¨ ¹º ©ª ¹º ÅÆ ¥¦ £¤ ¯° �  ©ª «¬ £¤ ÅÆ ©ª ÇÈ �  ¡¢ ±²��

�� �� �� ��ÉÊ £¤ �  ¡¢ ±² ½¾

ÉÊ £¤ �  ¡¢ ±² ½¾Data

Image

x(0)

δδ(k)

Back-projection

Forward-projection

c(k) ËÌ ¯° §¨ ÇÈ ¡¢

xs(k) ËÌ ¯° §¨ ÇÈ ¡¢

Fig. 2. Flowchartof iterative reconstructionusingFourier-basedforwardandback-projection.ÍÏÎÑÐbÒVÓJÔiÕ?Öv×sÒ]Ø and ÙOÕ?ÚpÖvÛÑÔ operatorsaredefinedby a particulariterative technique. For the 2D case,the Fourier transformationsare 1D (I)FT of projectionson datasideand 2D (I)FT on imageside. ÜJ×sÛÑÔbÓ4ÕÞÝlß�ÖpÛàÎàÝl×operationsareperformedbetweendata(polar) and image(rectangular)spectrumgrids. áKÒ]ÖâßãÔ , alsoknown asthe “correction function” in the gridding, isscalingoperation,wherethescalingfactorsaredesignedto compensatefor imperfections(departurefrom theidealSincinterpolation)in theinterpolationstep.ä ÖâÐåÎàÒåæ�ç?×(ÒVÛàÎàÝl×(æèÎéßãÛÑÔåÓ is spectraloperationallowing efficient modelingof the imagerepresentationusingbasisfunctions(II-D) andof the shift-invariantdetectorresolutionkernels(II-E.1, for otherpossibilitiesof resolutionmodelingseetext).

proach. The generalflowchart of iterative reconstructioninwhich theoperationsof forwardandback-projectionweresub-stitutedby their fast Fourier-basedcounterpartsis depictedinFig. 2. Specificiterative algorithmswill be distinguishedonefrom anotherby uniquediscrepancyandupdateoperators.Notethat the Fourier basediterative techniquesdo not requirespe-cial treatmentof any missingportionsof the data,similarly tospatial-basediterative approachesbut unlike the transformre-constructionapproaches(3D RP [28], 3D-FRP[24]) which dorequireestimationof missingportionsof thedatabeforebeingemployed. In the Fourier-basediterative approaches,the dis-crepancy operatorwill providecompletecorrectiondatavectors(to be Fourier transformed),including valuesindicating “no-discrepancy” (e.g.,1 for ML-EM, 0 for RAMLA) in theregionsin which datawere not measured.Theseare valid valuesforthe back-projectionoperatorand result in “no-change”back-projectionfor the corresponding(data)regions,similarly as itwouldbedonein thespace-basediterativemethods.

Within thefastFourier-basedapproachesmostof thecompu-tationtime is spentby thecalculationsof theFouriertransformson dataandimagegrids. For bothforwardandback-projectionoperationsof Fourier-basediterative techniques,the (inverse)Fourier transformationof the image(spectrum)hasto be doneonly onceper ê -th imageupdate(i.e.,periteration,or datasub-set)makingit desirableto uselargesubsetsizesfor block-typealgorithms. On the otherhand,the large subsetsizestypicallyrequiremorepassesthroughthe data(iterations). It is easytoshow that for linearalgorithmsthediscrepancy operator(basedon datadifference)andupdateoperator(basedon additive op-eration)canbe moved into the Fourier domain,thuseliminat-ing the needto do FFT calculationson imageanddatarastersat eachimageupdateandconsequentlyeliminatingtheneedtouselarge subsetsizes. However, typical statisticalreconstruc-tion approachesfor emissiondataare not linear. Fortunately,thespeed-upbroughtby theFourier-basedapproachesmakesitpossibleto useincreasednumberof iterations,comparedto the

space-basedapproaches,while still providing clinically practi-cal timeseven for the big subsetsizes. Additional substantialspeed-upof the Fourier-basedapproachescan be obtainedbyusingrelatively cheapoff-the-shelfFFT processorboards.

D. Emulationof ImageRepresentationUsingBasisFunctions

In theconventionalspace-domainiterativealgorithms,there-constructedimageis usuallyrepresentedby a setof coefficientsof basisfunctions(e.g.,pixels,or blobs[29]), ratherthanby theset of imagesamples. The valuesof continuousimage B�CÑE*G ,E "#�<� , arethenobtainedfrom coefficients U/ë , where ì repre-sentsthe discretesetof locations E : ì?� c , of basisfunctioníxCÑE*G by BDCFEHG :ïîëJð?ñ [ U ë íxCÑEóò ì?� c Gjf (5)

If the basisfunctionsarespatially invariant (the typical case),theNUFFTprojectionsthroughtheimagecomposedfrom thosebasisfunctionscanbe emulatedby includinga properspectralfilter into theNUFFT path(Basisfunctionfilter in Fig. 2). Thefiltering is donesimply asmultiplication by the basisfunctionspectrumô C4XZG . Amongthemostpopularspatialbasisfunctionsaresquarepixelsor rotationallysymmetricKaiserBesselbasisfunctions(blobs)in the2D caseandcubicvoxelsor spherically-symmetricblobsin the3D case.

E. ResolutionModeling

A discretizedversionof theFourier-sectiontheoremprovidesdiscretesamplesof the (continuous)projectionfunction

MõN C + Gwhich might beanover-simplifieddescriptionof themeasureddatain many tomographicapplications.Iterative reconstructionapproachesprovide convenientways to include more realisticdataacquisitionmodels. In the following, we describepossi-bilities of incorporationof thosemorerealisticmodelsinto theFourierbasedforwardandback-projectors.

Page 5: Fourier-BasedForward and Back-Projectors for Iterative ...

UNIVERSITY OF PENNSYLVANIA, MIPG AND UNIVERSITY OF MICHIGAN, EECS – TECHNICAL REPORT, MAY 2003 5

KB profiles - J=6, m=0, K/N=2

0

0.25

0.5

0.75

1

0 0.5 1 1.5 2 2.5 3

Radius

KB

Val

ue

alpha_-, alpha/J=2.00alpha_o, alpha/J=2.34alpha_+, alpha/J=2.50alpha_s, alpha/J=3.08

Fig. 3. Profilesof four Kaiser-Besselinterpolationkernelsof size öZ÷kø usingoptimum(alpha o) andsuboptimumparametersfor ù-÷mú and ûTü]ý6÷kþ .alpha - andalpha + representtwo suboptimumKB kernels( ÿ parameterlocatedon bothsidesfrom theoptimum- starsymbolsin Fig. 5) providingcomparablemaximumerrors,which areabout6.5-timeshigherthanin theoptimumcase.For comparison,we show alsoalpha s representingtypicalKB window having desirablepropertiesfor thespatialimagerepresentation[30], but poorperformanceasthe interpolationkernel. It is interestingthatalthoughall of themhave similar shape,they provide quitedramaticdiffer-encein theNUFFT performance.

E.1 Shift-invariantdetectorresolutionmodel

Assumingthat the detectorresponsecan be modeledby ashift-invariant blur with impulse response� C + G , with corre-spondingfrequency response� CFhZG , the measureddata � canbeapproximatedby��N C�� � r G : C ��� M N GpC�� � r G : PNpo � CFhZG g N Cih2G]\ ^�_laÞqDd �V{ U/htI (6)

where � r is detectorsamplingunit, � "�� �9'H) . The detectorblur canthusbemodeledby simplemultiplicationof spectrumof the data,or image,by � CFhZG . Typical examplesof � C + G are+ \�� 3 functionmodelingsimpleintegrationoveranuniformstrip,Gaussianresolutionkernelof definedwidth, or an experimen-tally obtainedresolutionkernel.

E.2 Shift-variantdetectorresolutionmodel

The detectorresolutionfunction �N � C + G dependson the de-

tectorsurfacelocation,i.e. it typically dependson both ! and � .Themeasureddatacanbeapproximatedby��

N C�� � r G : î��� ð?ñ [�� S �N ��� CåC��Tò����ÑG � r G =

M N C���� � r GJI (7)

usingseparateresolutionkernelfunctionfor eachprojectionlinelocation C ! I���G . This operationhasto be performedin the pro-jectiondomain,sinceit doesnothaveanefficientcounterpartinthe spectrumdomain. Fortunately, the resolutionfunction canusuallybe approximatedby small localizedkernelsleadingtoonly a minor increaseof thecomputationdemands.

E.3 Image-spaceshift-variantresolutionmodel

In this model the blur (or shapeof the integration kernel)variesalso along the projectionlines as they traversethe im-agespace.Although Fourier-basedprojectorscannot directly

KB Power spectra - J=6, m=0, K/N=2

-160

-140

-120

-100

-80

-60

-40

-20

00 0.25 0.5 0.75 1

Frequency

dB

alpha_s, alpha/J=3.08alpha_+, alpha/J=2.50alpha_o, alpha/J=2.34alpha_-, alpha/J=2.00 1 - f_Nq

Fig. 4. Power spectraof Kaiser-Besselinterpolationkernelsof usingoptimum(alpha o) andsuboptimumparametersfor öt÷ ø , ùQ÷ ú and û ü]ý%÷,þ ,whoseprofilesareshown in Fig. 3.

take into accountthe spacevariant resolutionproperties,theireffect can be modelledin the imagedomain(ratherthan dur-ing the projectiongenerationprocess)similarly as it waspro-posedin [31] for the EM reconstruction. Here, the image-domainspatially-variantresolutionkernelwill model(approx-imately) thosespatially-varianteffectson resolutionwhich arenot modeledin theprojectionspace.Theresolutionkernelcanbe determinedby measurement,or MonteCarlo simulation,ofspatially-variantprojectiondatafor a setof point sourcesdis-tributed throughoutthe imageregion, followed by reconstruc-tion. In this modelingapproachtheforward-projectioncalcula-tion is precededby blurring of imagewith thespatially-variantresolutionkernel � ë?CFEHG :�BDC ì?� c G : îë � ð?ñ [ � ë � CbC ì ò ì � G � c G = B�C ì � � c GjI (8)

where � c is imagesamplingunit and ì#"�� � . For the back-projection,theblurringoperationis performedonthecorrectionimage( �������� in Fig. 2) after the back-projectionoperationandbeforetheupdateoperation.Again,for thesmalllocalizedreso-lution kernelsthisoperationrepresentsonly a minor increaseoftheoverall computationdemands.

F. Min-Max InterpolationOptimization

Thesinglemostimportantoperationwithin theFourier-basedapproachesinfluencingtheirquality in acrucialway is theinter-polationbetweenthespectrumrasters.We haveutilizedKaiser-Bessel(KB) interpolationkernel[29] whichwasoptimizedto beoptimal in themin-maxsenseusingthemethodologydescribedin [27]. TheKB window functionhastheformê�� �� CFhZG : !" � C�#<G $&% ! ò C�'Þh)(+*DG _�, � " � $ # % ! ò-C�'Þh-(.*DG _�,

(9)for @0/ h / *1(2' andvaluezero for h435*1(2' , where h isthedistancefrom theKB kernelcenter,

" � denotesthemodifiedBesselfunction [32] of order 6 , * is the sizeof the KB win-dow and # is aparametercontrollingtheKB window shapeandfrequency characteristics[29,30] (seeexamplesof KB windowfunctionsandof their spectrain Figs. 3 and4). The interpo-lation kernelcanbegivenasa radially symmetricKB window

Page 6: Fourier-BasedForward and Back-Projectors for Iterative ...

UNIVERSITY OF PENNSYLVANIA, MIPG AND UNIVERSITY OF MICHIGAN, EECS – TECHNICAL REPORT, MAY 2003 6

function,or asaseparable(in spectrumcomponentsh ) Ilh _ Ivf`f�f )windo7 w function. In our studieswe have usedthe secondap-proach,in which theinterpolationkernelis givenbyê � 8� CFh ) Ibh _ G : ê � 8� CFh ) G =âê � 8� CFh _ GJf (10)

In [27], themin-maxmethodfor designingandoptimizationof thefinite supportinterpolatorsandof thecorrespondingscalefunctionswasdeveloped. The min-max analysisprovides theinterpolatorthat minimizes the worst-caseinterpolationerrorover all signalsof unit norm. Unfortunately, no analyticalfor-mulawasfound for specifyingthe optimal choicefor the scal-ing function. Consequently, the spaceof scalingfunctionshadto besearchednumerically. A varietyof classesof scalingfunc-tionswereconsideredin [27]. For theKB interpolationkernel,thescalingfunctioncorrespondingto its Fouriertransformpro-videdby far the lowestpossibleworst-caseerror, provided theparametersthatdeterminetheshapeof theKaiser-Besselfunc-tion werechosenappropriately. The parameters( # , 6 ) of theKaiser-Besselfunction werevariedby brute-forcesearch,andthe valuesthat minimizedthe worst-caseerror werefound nu-merically for eachinterpolationkernelsize * . Basedon there-sultsin [27] andon thenumericalandexperimentalresultspre-sentedin the following we believe that theseinterpolatorsarequitecloseto optimalfor theNUFFT problem.

I I I . NUMERICAL ERROR ANALYSIS RESULTS

Wehavecalculatedthemaximumerror 9 � 8;: for therangeofoversamplingfactors( � (J� : ! I ! f <KI='9I=> ), interpolationkernelsizes( * :@? I=<9I=AKI�B ), ordersof KB window ( 6 "DC òE'9I='�F ) andKB shape(width) parameter( # , where#(.* "GC ! I=>�F ). Theinter-polationerroris rapidlydecreasingwith theamountof oversam-pling. Weshow results(Figs.5,6,7) only for thecase� (J� : '(a reasonablecompromisebetweenthespeedandquality). Thebehavior for other oversamplingcasesis similar, as shown inAppendix. The optimumorderof the KB interpolatoris closeto zerofor all � (p� , contraryto our previousexperienceswiththe KB window usedasspatialimagebasisfunction [30]. At6 :�@ , theoptimalvaluesof #(.* ratio areapproximatelycon-stantoverarangeof KB kernelsizes,but theoptimal #H(+* is dif-ferentfor differentoversamplingfactors(about1.5for � (p� =1,about2.05for � (J� =1.5,about2.34for � (p� =2 andabout2.6for � (J� =3).

Figs.3 and4 show profilesandpower spectra,respectively,of optimal andsuboptimalinterpolationkernels. Note that thereciprocal(spectral)domainfor theNUFFT interpolatorsis thespatialimagedomain. Consequently, the frequency 1.0 repre-sentsrepetitionimageperiodgiven by the spectrumsamplingand1-f Nq representsperiodicrepeatof the(left) imagebound-ary for the caseof 100% oversampling( � (p� : ' ), beyondwhich the interpolationkernel spectrumshouldbe effectivelyzero. Optimuminterpolationkernel is a compromisebetweentherequirementsthat themain lobeof its transform(spectrum)decaysto negligible valuesat, or before,the imageperiodicre-peat1-f Nq (limiting # from thetop) andthat its sidelobesareeffectively zerobeyondthatpoint (requiringlarge # ). Any devi-ation from this compromiseleadsto a dramaticincreaseof theinterpolationerrors(seestarsymbolsin Fig. 5), in spiteof verysimilar kernelshapes(Fig. 3).

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

10−6

10−5

10−4

10−3

10−2

10−1

NUFFT Error for K/N=2 and m=0

α/J (Kaiser−Bessel shape)

Em

ax

J =4 J =5 J =6 J =7

Fig. 5. Maximum error I�JLK�M of Kaiser-Besselinterpolatorasa function oftheshapeparameterÿ , for severalinterpolationkernelsizesö , Besselorderù;÷ ú andusing100%zero-paddingof the spatialdomain( û üåý�÷ þ )(NUFFTinterpolatorhasbeenfoundto performbestfor theKB orderscloseto ùn÷�ú - seeFig. 6). Notethat theoptimumratio ÿKüJö is about þ�N O�P forvaryingkernelsizes.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

10−6

10−5

10−4

10−3

10−2

NUFFT Error for K/N=2 and αopt

for each m

m (Kaiser−Bessel order)

Em

ax

J =4 αopt

=2.25J J =5 α

opt=2.3J

J =6 αopt

=2.3J J =7 α

opt=2.3J

Fig. 6. Maximum error I JLK�M of Kaiser-Besselinterpolatorasa function oftheorder ù , for severalsizesö , 100%zero-padding( û ü]ý ÷ þ ) andusingoptimum ratio ÿKüJö for eachparticularvalue of ù . The optimum orderparameterù is slightly above ú for all kernel sizes; ÿ+QSR�T in the legendrepresentglobaloptimumof the ÿ parameterfor thegivenkernelsize.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 22

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

Optimum Values α for K/N=2

m (Kaiser−Bessel order)

α opt /

J

J =4 J =5 J =6 J =7

Fig. 7. Valuesof the optimumratio ( ÿ+QSR�T4üJö ) asa function of the KB orderù , for 100%zero-padding( û üåý ÷�þ ). The valuesof optimumratio forindividual kernel sizesclusteraroundsimilar value for order ù~÷%ú anddiverge for other orders. Similar behavior have beenobserved for othervaluesof û ü]ý , but with differentvalueof theoptimumratioat ù ÷mú .

Page 7: Fourier-BasedForward and Back-Projectors for Iterative ...

UNIVERSITY OF PENNSYLVANIA, MIPG AND UNIVERSITY OF MICHIGAN, EECS – TECHNICAL REPORT, MAY 2003 7

0.35 sec

Fourier Bilinear

0

222

rms=1.6% max=6.1%

|Bilinear−DSFT|

0.01

13.68

0.11 sec

Fourier NUFFT

0

224

rms=0.020% max=0.061%

|NUFFT−DSFT|

0.01

0.14

1.95 sec

Space Based Projector

0

224

rms=0.17% max=1.7%

|SBP−NUFFT|

0.1

3.92

Fig.8. Exampleof sinograms(144angularsamples)of Zubalphantomobtainedby Fourier-basedforward-projectorusingbilinearinterpolation( û üåý ÷mþ )(topleft), Fourier-basedforward-projectorusingNUFFTwith optimizedKBkernel( ûTü]ý ÷�þ , ù ÷ ú , öm÷�P , and ÿKüJö ÷6þ�N P ) (top middle) andaspace-basedforward-projector(SBP)(top right). (Illustrative timesarefornon-optimizedMatlabimplementations.)Bottomrow shows correspondingabsolutedifferencesinograms(includingmeasuresof root-mean-squaredif-ferenceandmaximumabsolutedifference)with respectto theexactFourierprojector(DSFT) (bottomleft andmiddle), andFourier NUFFT projector(bottomright).

TABLE I

MAXIMUM FORWARD-PROJECTION ERRORS FOR DIFFERENT

OVERSAMPLING AND KERNEL SIZES, USING ù-÷mú AND OPTIMUM ÿ .

Oversampling J=4 J=5 J=6 J=7

K/N=1 5.21% 2.27% 2.94% 1.17%

K/N=1.5 0.11% 0.021% 0.0039% 0.00033%

K/N=2 0.061% 0.0037% 0.00078% 0.000042%

K/N=3 0.033% 0.0011% 0.00019% 0.000007%

IV. COMPUTER SIMULATION RESULTS

A. Forward-Projector

In additionto the numericalevaluationof the NUFFT-basedforward projectorfor the worst caseerror, we have evaluatedthe accuracy of the NUFFT-basedforward projectorusing thedigital Zubalphantom.We croppedtheoriginal

! '2U7� ! '�U im-ageto thesize

! @Þ@ � ! @Þ@ sothat thephantomtorsofully occu-piesthewholeimageregion in its wider dimension(seebottomleft imagein Fig. 11), to avoid any extra zero-padding,otherthan that given by � (J� . We have simulateda parallel-beamtomographicsystem,with a sinogramsizeof 100radialbinsby192anglesover

! U @WV , includinga rectangulardetectorresponse� C + G : rectC + G with widthequalto thepixelsize,partiallyrepre-sentingthefinite detectorwidth in aPETsystem(ratherthanus-ing overly idealizedline integrals).We have computedforwardprojectionsfor this systemin four ways: usingFourier-basedprojectorwith exact(to within doubleprecisionin Matlab)eval-

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 310

−5

10−4

10−3

10−2

10−1

100

Forward−Projection Error for K/N=2 and m=0

α/J (Kaiser−Bessel shape)

Em

ax (

%)

J =4 J =5 J =6 J =7

Fig. 9. Maximuminterpolationerror (% of projectionmaximum)of forward-projectionof modifiedZubalphantomusingNUFFTwith Kaiser-Besselin-terpolatorof several sizes ö asa functionof theparameterÿ . Samesetofparametersusedasfor theFig. 5

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

10−4

10−3

10−2

10−1

Forw−Proj Error for K/N=2 and αopt

for each m

m (Kaiser−Bessel order)

Em

ax (

%)

J =4 αopt

=2.35J J =5 α

opt=2.35J

J =6 αopt

=2.35J J =7 α

opt=2.4J

Fig. 10. Maximuminterpolationerror(% of projectionmaximum)of forward-projectionof modified Zubal phantomusing NUFFT with Kaiser-Besselinterpolatorof several sizes ö asa function of the KB order ù . For eachindividual ù anoptimum ÿ wasused. ÿ QSR�T in thelegendrepresentglobaloptimumof the ÿ parameterfor thegivenkernelsize.

uationof the2D FT (DSFT),usingFourier-basedprojectorwiththe2D NUFFTapproximation(to theDSFT)utilizing min-maxoptimizedKaiser-Besselinterpolation,usingFourier-basedpro-jector with bilinear interpolation,and using space-basedpro-jector. Examplesof sinogramsobtainedby Fourier-basedandspace-basedprojectors,andcorrespondingabsolutedifferenceimagesareshown in Fig. 8.

Basedon the differencebetweenthe exact FT and NUFFTmethodwe have evaluatedMaximumError, RootMeanSquareError andMeanError. In the following graphs,we show onlymaximumerrordefinedasthemaximumabsolutedifferencebe-tweenexactFT andNUFFTmethodin percentof themaximumvalueof theexactFT method.Othererrorshave beenfoundtoexhibit similarbehavior, asshown in Appendix.Theerrorshavebeenevaluatedfor thesamesetof theNUFFT parametersasinthenumericalanalysis.Theerrorcurvesasa functionof the #(Fig. 9) show very similar behavior to thenumericalcase,withnearlyexactlythesameoptima.Theoptimaover 6 (Fig.10)arelessconsistentcomparedto thetheoreticalcase(Fig. 6) but the

Page 8: Fourier-BasedForward and Back-Projectors for Iterative ...

UNIVERSITY OF PENNSYLVANIA, MIPG AND UNIVERSITY OF MICHIGAN, EECS – TECHNICAL REPORT, MAY 2003 8

231 sec

Exact DSFT

0

5

Zubal phantom

0

5

0.37 sec

Fourier NUFFT

0

5

rms=0.009% max=0.016%

|NUFFT−DSFT|

0

8.1x 10

−4

4.88 sec

Space Based B−Proj

0

5

rms=0.20% max=1.5%

|SBBP−NUFFT|

0

0.07

Fig. 11. Exampleof imagesobtainedby back-projectionof filteredsinogramsof Zubal phantom(bottom left) usingexact Fourier-basedback-projector(DSFT) (top left), Fourier-basedback-projectorusingNUFFT with opti-mizedKB kernel ( û ü]ý ÷%þ , ù ÷ ú , ö ÷DP , and ÿKüJöL÷ þ�N O�P ) (topmiddle)anda space-basedback-projector(SBBP)(top right). (Illustrativetimesarefor non-optimizedMatlabimplementations.)Bottom(middleandright) row showscorrespondingabsolutedifferenceimages(includingmea-suresof root-mean-squaredifferenceand maximumabsolutedifference)with respectto the exact Fourier back-projector(DSFT) (bottommiddle),andFourierNUFFT projector(bottomright).

TABLE II

MAXIMUM BACK-PROJECTION ERRORS FOR DIFFERENT OVERSAMPLING

AND KERNEL SIZES, USING ù-÷mú AND OPTIMUM ÿ .

Oversampling J=4 J=5 J=6 J=7

K/N=1 9.10% 1.32% 1.75% 0.71%

K/N=1.5 0.099% 0.020% 0.0042% 0.00068%

K/N=2 0.015% 0.0015% 0.00034% 0.000019%

K/N=3 0.0075% 0.00044% 0.000063% 0.000002%

locationsof thesmallestmaximumerror 9 � 8;: arestill clusteredaround6 : @ . Thecalculatedsinogramsfor theoptimumval-uesarevisually indistinguishable(from theexactFT approach)with errorssmallerthan0.06%when � (J� : ' even for thesmallestkernelsize( * :X? ). By comparison,conventionalbi-linear interpolationfor the polar to Cartesianconversiongivesabouttwo ordersof magnitudehighermaximumerror thanthissmallkernel.TableI showsmaximumforward-projectionerrorsfor optimumshapeparametersfor different levels of oversam-pling � (J� anddifferentkernelsizes* .

B. Back-Projector

We comparedthe adjoint operator(back-projector)of theNUFFT-basedforward projector using the Kaiser-Bessel in-terpolatorto the adjoint of the exact Fourier-basedreprojec-tor whenappliedto ramp-filteredideal sinogramsof the Zubalphantomof limited size(Fig. 11,bottomleft). Examplesof im-agesobtainedby Fourier-basedandspace-basedback-projectors

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 310

−5

10−4

10−3

10−2

10−1

100

Back−Projection Error for K/N=2 and m=0

α/J (Kaiser−Bessel shape)

Em

ax (

%)

J =4 J =5 J =6 J =7

Fig. 12. Maximum interpolationerror (% of phantommaximum)of discreteback-projectionusing NUFFT with Kaiser-Besselinterpolatorof severalsizes ö asa function of the parameterÿ . Samesetof parametersusedasfor theFigs.5, 9.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 210

−5

10−4

10−3

10−2

10−1

100

Back−Proj Error for K/N=2 and αopt

for each m

m (Kaiser−Bessel order)

Em

ax (

%)

J =4 αopt

=2.3J J =5 α

opt=2.35J

J =6 αopt

=2.35J J =7 α

opt=2.4J

Fig. 13. Maximum interpolationerror (% of phantommaximum)of discreteback-projectionusing NUFFT with Kaiser-Besselinterpolatorof severalsizes ö asa function of the KB order ù . For eachindividual ù an opti-mum ÿ wasused. ÿ+QSR�T in the legendrepresentglobal optimumof the ÿparameterfor thegivenkernelsize.

and correspondingabsolutedifferenceimagesare shown inFig. 11. Similar to the caseof the forward-projector, we haveevaluatedNUFFT-basedback-projectorerrorsfor arangeof pa-rameters.Themaximumerrors(shown in graphsin Figs.12,13)havebeencalculatedwithin thephantomtorsoregionastheper-centerror of the maximumvaluein the DSFT images.Again,the error curves are consistentwith the previous casesandthe NUFFT approachagreeswith the exact approachwithin0.015%,even for the smallestkernel size ( * :Y? ). Table IIshows maximumback-projectionerrorsfor optimumshapepa-rametersfor differentlevelsof oversampling� (p� andfor dif-ferentkernelsizes* .

C. Forward andBack-Projectorwithin IterativeReconstruction

Sinceiterativealgorithmsrequirerepeatedforwardandback-projections,it is conceivable that even small errorsin the re-projector could accumulate. To study practical performanceof the NUFFT forward andback-projectorwithin the iterativereconstructionprocess,the following experimentshave been

Page 9: Fourier-BasedForward and Back-Projectors for Iterative ...

UNIVERSITY OF PENNSYLVANIA, MIPG AND UNIVERSITY OF MICHIGAN, EECS – TECHNICAL REPORT, MAY 2003 9

19882 sec

17 it

er o

f CG

Exact DSFT

0

5

Blob image basis

17 it

er o

f CG

Fourier NUFFT

0

5

15 sec17

iter

of C

G

Fourier NUFFT

0

5

rms=0.009% max=0.050%

|NUFFT−DSFT|

0

5.02x 10

−3

176 sec

17 it

er o

f CG

Space Based Rec

0

5

rms=0.31% max=1.5%

|SBR−NUFFT|

0

0.13

Fig.14. Exampleof QPWLS-CGreconstructions(17iterations)of thoraxphan-tomusingexactDSFT(top left), Fourier-basedNUFFTwith optimizedKBkernel ( û ü]ý ÷ þ , ù ÷ ú , ö6÷ZP , and ÿKüJö ÷ þ�N [�[ ) (top middle)andspace-based(SBR) (top right) forward andback-projectors.(Illustra-tive timesarefor non-optimizedMatlab implementations.)Bottom left isillustrationof NUFFTiterative reconstructionincludingmodelingof ablobbasisfunction and bell-shapeddetectorresolutionkernel. Bottom (mid-dleandright) row showscorrespondingabsolutedifferenceimages(includ-ing measuresof root-mean-squaredifferenceandmaximumabsolutediffer-ence)with respectto theexactFourierprojectors(DSFT)(bottommiddle),andFourierNUFFT projectors(bottomright).

TABLE III

MAXIMUM RECONSTRUCTION ERRORS FOR DIFFERENT OVERSAMPLING

AND KERNEL SIZES, USING ù-÷mú , OPTIMUM ÿ , AND USING IMAGE

MODEL INVOLVING PIXEL BASIS FUNCTIONS.

Oversampling J=4 J=5 J=6 J=7

K/N=1 0.59% 0.23% 0.056% 0.031%

K/N=1.5 0.098% 0.0081% 0.0011% 0.00055%

K/N=2 0.057% 0.0032% 0.00023% 0.000034%

K/N=3 0.039% 0.0020% 0.00010% 0.000010%

performed. We have simulatednoisy PET sinogrammeasure-ments (including attenuation,randomsand scatter)from the! '�U7� ! '�U Zubalphantom.We have simulateda parallel-beamtomographicsystemwith a sinogramsizeof 160radialbinsby192anglesover

! U @WV . We have run 17 iterationsof the conju-gategradientalgorithm for a data-weightedleast-squarescostfunction [33] with a standardquadraticfirst-order roughnesspenalty. The presentedresultswere obtainedusing a modelof rectangulardetectorresponsewith a pixel basis function,consistentwith the precedingsubsections. For the Fourier-basedapproaches,we haverepeatedreconstructionstudieswitha datamodel involving spatially-invariantbell-shapeddetectorresponseof equivalentwidth to the imagegrid sizeandmodel-ing imagerepresentationby smooth(blob) basisfunctions.Ex-amplesof reconstructedimagesusingFourier-basedandspace-basedforwardandback-projectorsandcorrespondingabsolutedifferenceimagesareshown in Fig. 14. The reconstructedim-agesusingDSFT, NUFFTandspace-basedprojectorswith pixel

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 310

−5

10−4

10−3

10−2

10−1

100

Reconstr Error for 17 iterations, K/N=2 and m=0

α/J (Kaiser−Bessel shape)

Em

ax (

%)

J =4 J =5 J =6 J =7

Fig. 15. Maximum interpolationerror (% of phantommaximum)of 17 itera-tionsof QPWLSreconstructionusingNUFFT forwardandback-projectorswith Kaiser-Besselinterpolatorof several sizes ö asa function of the pa-rameterÿ , andusingimagemodel involving pixel basisfunctions. Samesetof interpolationparametersusedasfor theFigs.5, 9, 12.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 210

−5

10−4

10−3

10−2

10−1

100

Reconstr Error for 17 iterations, K/N=2 and αopt

for each m

m (Kaiser−Bessel order)

Em

ax (

%)

J =4 αopt

=2.5J J =5 α

opt=2.55J

J =6 αopt

=2.5J J =7 α

opt=2.4J

Fig. 16. Maximum interpolationerror (% of phantommaximum)of 17 itera-tionsof QPWLSreconstructionusingNUFFT forwardandback-projectorswith Kaiser-Besselinterpolatorof several sizes ö asa function of the KBorder ù , andusingimagemodelinvolving pixel basisfunctions..For eachindividual ù anoptimum ÿ wasused. ÿ QSR�T in thelegendrepresentglobaloptimumof the ÿ parameterfor thegivenkernelsize.

basisfunctions(top row) arevisually indistinguishable.Recon-structionswith an imagemodel involving smoothbasisfunc-tions(illustratedat thebottomleft) providedecreasednoiselev-els,asexpected.

The errors of NUFFT-basedforward and back-projectorswithin the iterative reconstruction,as comparedto the recon-structionusingexactFT projectors(DSFT),havebeenevaluatedfor thesamesetof parametersasin thepreviouscases.Themax-imumerrorhasbeencalculatedwithin thephantomtorsoregionandexpressedasthepercenterrorrelativeto themaximumvaluein thephantom.Theerrorcurves(Figs.15,16)show againsim-ilar behavior, with theoptimumslightly shiftedtowardshigherparameter# values. This is probablycausedby the fact thatthephantomdoesnot cover thewholeimageregion(essentiallyconstitutingadditionalzero-padding).The maximumerror isbelow 0.06% even for the smallestkernel size ( * :\? ) and� (p� : ! f]< . TableIII shows the maximumreconstructioner-

Page 10: Fourier-BasedForward and Back-Projectors for Iterative ...

UNIVERSITY OF PENNSYLVANIA, MIPG AND UNIVERSITY OF MICHIGAN, EECS – TECHNICAL REPORT, MAY 2003 10

TABLE IV

MAX^

IMUM RECONSTRUCTION ERRORS FOR DIFFERENT OVERSAMPLING

AND KERNEL SIZES, USING ù-÷mú , OPTIMUM ÿ , AND USING IMAGE

MODEL INVOLVING BLOB BASIS FUNCTIONS.

Oversampling J=4 J=5 J=6 J=7

K/N=1 0.54% 0.24% 0.043% 0.025%

K/N=1.5 0.057% 0.0081% 0.0012% 0.00034%

K/N=2 0.033% 0.0031% 0.00024% 0.000035%

K/N=3 0.020% 0.0019% 0.00013% 0.000025%

rors for optimumshapeparametersfor differentlevelsof over-sampling � (p� andfor differentkernelsizes * . Fourier-basedreconstructionswith an image model involving smoothbasisfunctionsshowed similar comparisonswith slightly decreasederrors,asshown in Appendix.

V. ITERATIVE RECONSTRUCTION USING REAL DATA

The performanceof the Fourier-basedforward and back-projectorswithin iterativereconstructionhasbeenfurthertested(and comparedto the space-basedprojectors)using real PETdata.For this study, we have usedtransmissiondataof a phys-ical torsophantomacquiredon theclinical scannerECAT-921.The datacontained160 radial bins by 192 anglesover

! U @WV ,with projectionray size3.38mmandreconstructedimagepixelsize4.22mm.Theattenuationimagehasbeenreconstructedus-ing 200iterationsof thetransmissionpenalized-likelihoodalgo-rithm T-PL-OSPS[34] (with numberof subsetsequalto one)initialized by the filtered-backprojectionimage(shown at topleft in Fig. 19). Althoughthenumberof iterationsusedin prac-ticewouldbemuchlower, wehaverunthealgorithmsfor 200it-erationsto testif thereis any accumulationof errorsorany insta-bility in the Fourier-basedapproach,asthe iterationsprogress.The Fourier-basedapproachshowedstablebehavior consistentwith the space-basedapproach.The observed measuresof thedifferencebetweenthetwo approachesdid not changeby morethan1% (of their respective maximumvaluesat iteration200,reportedin Fig. 19)duringthelast110-120iterations.

Examplesof reconstructedimagesusing Fourier-basedandspace-basedforward and back-projectorsanda correspondingabsolutedifferenceimage are shown in Fig. 19. Horizontalprofilesthroughthecenterpartof thereconstructedimagesareshown in Fig. 20. ThereconstructedimagesusingNUFFT andspace-basedprojectorswith pixel basisfunctions(Fig. 19 topmiddleandright, Fig. 20 solid line profiles)arevisually indis-tinguishable. Reconstructionswith an imagemodel involvingsmoothbasisfunctions(illustratedin Fig. 19 at thebottomleft)provide decreasednoiselevelswhile preservingthe edges(seedashedline profile in Fig. 20).

VI . DISCUSSION

The resultsreportedwithin this paperwereobtainedfor the2D case.Theillustrative computationtimesreportedin thefig-uresarefor nonoptimizedMatlabcodes.TheFourier-basedfor-wardandback-projectorswerefoundto bemorethan10-times

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 310

−5

10−4

10−3

10−2

10−1

100

Reconstr Error for 17 iterations, K/N=2 and m=0

α/J (Kaiser−Bessel shape)

Em

ax (

%)

J =4 J =5 J =6 J =7

Fig. 17. Maximum interpolationerror (% of phantommaximum)of 17 itera-tionsof QPWLSreconstructionusingNUFFT forwardandback-projectorswith Kaiser-Besselinterpolatorof several sizes ö asa function of the pa-rameterÿ , andusingimagemodelinvolving blobbasisfunctions.Samesetof interpolationparametersusedasfor theFigs.5, 9, 12.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 210

−5

10−4

10−3

10−2

10−1

100

Reconstr Error for 17 iterations, K/N=2 and αopt

for each m

m (Kaiser−Bessel order)

Em

ax (

%)

J =4 αopt

=2.55J J =5 α

opt=2.55J

J =6 αopt

=2.5J J =7 α

opt=2.45J

Fig. 18. Maximum interpolationerror (% of phantommaximum)of 17 itera-tionsof QPWLSreconstructionusingNUFFT forwardandback-projectorswith Kaiser-Besselinterpolatorof several sizes ö asa function of the KBorder ù , andusingimagemodelinvolving blob basisfunctions.For eachindividual ù anoptimum ÿ wasused. ÿ QSR�T in thelegendrepresentglobaloptimumof the ÿ parameterfor thegivenkernelsize.

fastercomparedto their space-basedcounterparts(seeFigs. 8and11). Similar speed-upis expectedfor optimizedversionsofbothapproaches.TheFourier-basedapproachescanbestraight-forwardly extendedto the3D caseaswasdonefor the3D ver-sion of Direct Fourier Method(3D-FRP[24]), which involvedboth back-projectionandforward-projection(reprojection)op-erations.Extrapolatingfrom experiencewith the3D-FRP[24],thefully 3D iterativeapproachesusingFourier-basedprojectorswill havethepotentialto speed-upthereconstructiontimeabout5-10timesfor imagesof size

! '2UÞ� , andthisspeed-upwill bein-creasingwith theimagesize.An additionalsubstantialspeed-upof Fourier-basedapproachesis feasibleusing relatively cheapoff-the-shelfFFT processorboards. The speed-upof the re-constructionapproachesis very important,assupportedby theobservations[6] that thedatavolumesin modernPET systemsmightbeincreasingatafasterratethantheincreaseof computerpowerasdescribedby Moore’s law.

Page 11: Fourier-BasedForward and Back-Projectors for Iterative ...

UNIVERSITY OF PENNSYLVANIA, MIPG AND UNIVERSITY OF MICHIGAN, EECS – TECHNICAL REPORT, MAY 2003 11

Initi

al Im

age

FBP

206 sec20

0 ite

r of

T−

PL−

OS

PS

Fourier NUFFT

1659 sec

200

iter

of T

−P

L−O

SP

S

Space Based Rec

Blob image basis

200

iter

of T

−P

L−O

SP

S

Fourier NUFFT

rms=0.15% max=1.29%

|NUFFT−SBR|

Fig. 19. FBP (servingasinitial image)(top left) andT-PL-OSPSreconstruc-tions (200 iterations)from transmissiondata(from ECAT-921scanner)ofphysicalthoraxphantomusingFourier-basedNUFFT with (theoretically)optimizedKB kernel( û üåý%÷�þ , ùn÷�ú , öt÷_P , and ÿKüJöt÷Lþ�N O�P ) (topmiddle) and space-based(SBR) (top right) forward and back-projectors.(Illustrative timesarefor non-optimizedMatlabimplementations.)Bottomleft is illustrationof NUFFT iterative reconstructionincludingmodelingofa blob basisfunction andbell-shapeddetectorresolutionkernel. Bottomright is absolutedifferenceimage(includingmeasuresof root-mean-squaredifferenceandmaximumabsolutedifference)betweenreconstructionsus-ing Fourier-basedNUFFT andspace-basedprojectors.

20 40 60 80 100 1200

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Horizontal profiles (65−th row)

Space−Based ReconstructionFourier NUFFT (pixel basis)Fourier NUFFT (blob basis)

Fig. 20. Horizontal profiles through the iterative reconstructionsshown inFig. 19. Space-basedandFourier-basedreconstructionsusingpixel basisfunctions(solid lines) arecloselyoverlapping. Fourier-basedreconstruc-tion modelingblob basisfunction(dashedline) provideslower noiselevels(while preservingedges),in agreementwith our previousexperienceswith(space-based)iterative reconstructionsusingblob basisfunctions[30].

It is worth to mentionthat thetwo Fourier-basedreconstruc-tion approachesmentionedabove (3D-FRPanditerative), bothuse back-projectionand forward/reprojectionoperationsandthusboth benefitconsiderablyfrom the Fourier-basedforwardandback-projectors,but the two approachesarequite distinc-tivein nature.3D-FRPis basedonthediscretizedinverseRadonformuladerivedfor theidealcontinuousmodelandtheimageisobtainedin onepassthroughthedatawhich areweightedin thefrequency domainfor thesamplingdensityof thedataspectrumandfor nonuniformitiesintroducedby theinterpolation.On theother hand, the Fourier basediterative approaches,which arethe focusof this paper, arederived basedon a discreteimage

anddataacquisitionmodelwhile takinginto accountdatastatis-tics. Here,theimageis graduallybuilt-up and/orrefined(basedon particulardiscrepancy andupdateoperations)throughan it-erativeprocess,andtheimageupdatestepis basedonthesimpleback-projection(without datafiltering) which is an adjointop-erationto theforwardprojection.

Direct application of the NUFFT approachis limited touniformly-spacedparallelprojectiondata. However, it canbeeasily extendedto fan and conebeamdata in the casewhenthosedatacanbe resortedinto setsof parallellineswhich willhave, however, non-equidistantspacing. In this case,by usingthe duality principle, the non-uniformrasteris definedby thedistribution of the parallel projection lines for eachdirection`

and the NUFFT output is the uniform spectralrasterof theprojectiondataon

`Wa. This operation(or its adjoint) replaces

the operationof (I)FFT of projectionswithin the NUFFT back(forward)-projectorsdescribedin SectionII-B.

A noteworthypropertyof theFourierbasedapproachesis thatthey canbestraightforwardlyappliedto thecaseof dataand/orimagedefinedon theefficient spatialgrids(hexagonin 2D caseandbody-centeredcubicgrid in 3D case[35]) thanksto theex-istenceof efficientFFT algorithmsfor thosegrids.

Finally, it is importantto emphasizethat we have beenuti-lizing Kaiser-Besselwindow functionin two quitedistinctwayswithin theframework of theFourier-basediterativeapproaches.First, theKB window hasbeenutilized asthelocalizedinterpo-lation kernelin thespectrum-domaininterpolation- thecrucialNUFFT operation.Second,it hasbeenusedin theoptionalop-erationof modelingof thespatial-domainimagebasisfunction.Theseareindependentoperationshaving quitedifferentrequire-mentson theKB window shape,asillustratedin SectionIII.

VI I . CONCLUSIONS

Ourresultsshow verygoodagreementof thetheoreticalmin-max error analysisof the NUFFT forwardandback-projectorswith their practicalperformance.Consequently, the min-maxapproachoffers a valid and practical framework for the opti-mizationof theNUFFT interpolationparameters.

Our resultsfurthershow that the NUFFT-basedforwardandback-projectorswith the min-maxoptimizedKaiser-Besselin-terpolationare fast and very accurate. In particular, their ap-proximationerrorshavebeenfoundto beextremelylow ascom-paredto theexactdiscreteFouriertransformapproach,andtheyhave manifesteda very goodmatchto the space-basedprojec-tors,evenfor smalloversamplingandinterpolationkernelsizes.For example,it hasbeenobservedthatfor theoptimizedKaiser-Besselinterpolatorsit might be sufficient to usejust 50% FFToversamplingandtheinterpolationkernelsof diameterspanningjust 4 to 5 grid points.

In summary, it hasbeendemonstratedthat theFourier-basedforwardandback-projectorsutilizing theNUFFTapproachpro-vide fastandextremelyaccuratetoolsfor iterative tomographicreconstruction.The Fourier-basedprojectorsareespeciallyat-tractive for the fully 3D iterative reconstructionapproachesinPET characterizedby very large datavolumes. An additionaladvantageof the Fourier-basedapproachesis the possibilityofutilizing the powerful and cheapoff-the-shelfFFT processinghardware.

Page 12: Fourier-BasedForward and Back-Projectors for Iterative ...

UNIVERSITY OF PENNSYLVANIA, MIPG AND UNIVERSITY OF MICHIGAN, EECS – TECHNICAL REPORT, MAY 2003 12

ACKNOWLEDGMENTS

The authorsgratefully acknowledge Robert M. Lewitt forfruitful discussionsandcommentson this work. This work wassupportedby NIH grantsCA92060/ EB002131,CA-60711andby TheWhitakerFoundation.

REFERENCES

[1] R. M. LeahyandJ. Qi, “Statisticalapproachesin quantitative positronemissiontomography,” StatisticsandComputing, vol. 10,no.2, pp.147–165,2000.

[2] J. A. Fessler, Statisticalimage reconstruction, Lecturenotesfor IEEENSS/MIC shortcourse,availableat http://www.eecs.umich.edu/˜fessler/,2001.

[3] R.M. Lewitt andS.Matej, “Overview of methodsfor imagereconstructionfrom projectionsin emissioncomputedtomography,” Proc.IEEE, vol. 91,no.10,2003,To appear.

[4] S. BasuandY. Bresler, “O(N-2 log(2) N) filtered backprojectionrecon-structionalgorithmfor tomography,” IEEE Trans.Image Processing, vol.9, no.10,pp.1760–1773,2000.

[5] J. J. Hamill, C. J. Michel, andP. E. Kinahan, “FastPETEM reconstruc-tion from linograms,” in Proceedingsof the2002IEEE NuclearScienceSymposiumand Medical Imaging Conference. CDROM, M11-65, S. D.Metzler, Ed.Norfolk, VA, 2002.

[6] D. Brasse,P. E.Kinahan,R.Clackdoyle, C.Comtat,M. Defrise,andD. W.Townsend, “Fast fully 3D imagereconstructionusingplanograms,” inProceedingsof the 2000IEEE NuclearScienceSymposiumandMedicalImagingConference. CDROM., M. Ulma,J.Valentine,andE. J.Hoffman,Eds.Lyon,France,2000,pp.15.239–15.243.

[7] B. De Man andS. Basu, “Distance-driven projectionandbackprojectionfor computedtomography,” in Proceedingsof the 2002 IEEE NuclearScienceSymposiumandMedicalImaging Conference. CDROM, M10-89,S.D. Metzler, Ed.Norfolk, VA, 2002.

[8] H. Zhao and A. J. Reader, “Fast projectionalgorithm for voxel arrayswith object dependentboundaries,” in Proceedingsof the 2002 IEEENuclearScienceSymposiumandMedical Imaging Conference. CDROM,M10-104, S.D. Metzler, Ed.Norfolk, VA, 2002.

[9] A. Averbuch, R. R Coifman, D. L. Donoho,M. Israeli, and J. Walden,“Fastslantstack:A notionof Radontransformfor datain aCartesiangridwhich is rapidly computable,algebraicallyexact, geometricallyfaithfulandinvertible,” SIAMScientificComputing, 2003,to appear.

[10] R. M. Lewitt, “Reconstructionalgorithms: Transformmethods,” Proc.IEEE, vol. 71,no.3, pp.390–408,1983.

[11] A. C. Kak andM. Slaney, Principlesof ComputerizedTomographicImag-ing, IEEE Press,New York, 1987.

[12] N. Niki, R. T. Mizutani,Y. Takahashi,andT. Inouye,“A high-speedcom-puterizedtomographyimagereconstructionusingdirect two-dimensionalFourier transformmethod,” Syst.Comput.Controls, vol. 14, no. 3, pp.56–65,1983.

[13] S. Matej andI. Bajla, “A high-speedreconstructionfrom projectionsus-ing direct Fourier methodwith optimizedparameters- an experimentalanalysis,” IEEE Trans.Med.Imaging, vol. 9, no.4, pp.421–429,1990.

[14] M. Magnusson,P. E. Danielsson,andP. Edholm, “Artefactsandreme-dies in direct Fourier reconstruction,” in Proceedingsof the 1992IEEENuclearScienceSymposiumandMedical Imaging Conference, vol.2. Or-lando,Florida,1992,pp.1138–1140.

[15] H. Schomberg andJ. Timmer, “The gridding methodfor imagerecon-structionby Fouriertransformation,” IEEE Trans.Med.Imaging, vol. 14,no.3, pp.596–607,1995.

[16] C. W. Stearns,D. A. Chesler, andG. L. Brownell, “Three dimensionalimagereconstructionin theFourierdomain,” IEEE Trans.Nucl.Sci., vol.34,no.1, pp.374–378,1990.

[17] S. Dunne,S. Napel,andB. Rutt, “Fastreprojectionof volumedata,” inProceedingsof theFirst Conferenceon Visualizationin BiomedicalCom-puting. Atlanta,GA, 1990,pp.11–18.

[18] J. D. O’Sullivan, “A fast sinc function gridding algorithm for Fourierinversionin computertomography,” IEEE Trans.Med. Imaging, vol. 4,no.4, pp.200–207,1985.

[19] H. SedaratandD. G. Nishimura, “On the optimality of the gridding re-constructionalgorithm,” IEEE Trans.Med. Imaging, vol. 19, no. 4, pp.306–317,2000.

[20] J.I. Jackson,C. H. Meyer, D. G. Nishimura,andA. Macovski, “Selectionof a convolution function for Fourier inversionusing gridding,” IEEETrans.Med.Imaging, vol. 10,no.3, pp.473–478,1991.

[21] C. H. Meyer, B. S. Hu, D. G. Nishimura,andA. Macovski, “Fastspiralcoronaryarteryimaging,” Magn.Reson.Med., vol. 28,pp.202–213,1992.

[22] D. C. Noll, “Multishot rosettetrajectoriesfor spectrallyselective MRimaging,” IEEETrans.Med.Imaging, vol. 16,no.4, pp.372–377,1997.

[23] J.G. PipeandP. Menon,“Samplingdensitycompensationin MRI: Ratio-naleandaniterative numericalsolution,” Magn.Reson.Med., vol. 41,no.1, pp.179–186,1999.

[24] S. Matej andR. M. Lewitt, “3D-FRP:Direct FourierreconstructionwithFourierreprojectionfor fully 3D PET,” IEEE Trans.Nucl. Sci., vol. 48,no.4, pp.1378–1385,2001.

[25] S.Matej,M. E. Daube-Witherspoon,andJ.S.Karp, “Performanceof 3DRAMLA with smoothbasisfunctionson fully 3D PETdata,” in Proceed-ingsof TheSixthInternationalMeetingon Fully Three-DimensionalIm-age Reconstructionin Radiology andNuclearMedicine, R. H. Huesman,Ed.PacificGrove,CA, 2001,pp.193–196.

[26] J. A. FesslerandB. P. Sutton, “A min-maxapproachto themultidimen-sional nonuniformFFT: Application to tomographicimage reconstruc-tion,” in Proc.Intl. Conf. on Image Processing, 2001,vol. 1, pp.706–709.

[27] J.A. FesslerandB. P. Sutton,“Nonuniform fastFouriertransformsusingmin-maxinterpolation,” IEEETrans.SignalProcessing, vol. 51,no.2,pp.560–574,2003.

[28] P. E. KinahanandJ.G. Rogers,“Analytic 3D imagereconstructionusingall detectedevents,” IEEETrans.Nucl.Sci., vol. 36,pp.964–968,1989.

[29] R. M. Lewitt, “Multidimensionaldigital imagerepresentationsusinggen-eralizedKaiser-Besselwindow functions,” J. Opt. Soc.Am.A, vol. 7, no.10,pp.1834–1846,1990.

[30] S. Matej andR. M. Lewitt, “Practical considerationsfor 3D imagere-constructionusingspherically-symmetricvolumeelements,” IEEE Trans.Med.Imaging, vol. 15,no.1, pp.68–78,1996.

[31] A. J.Reader, P. J.Julyan,H. Williams, D. L. Hastings,andJ.Zweit, “EMalgorithmresolutionmodelingby image-spaceconvolutionfor PETrecon-struction,” in Proceedingsof the2002IEEE NuclearScienceSymposiumand Medical Imaging Conference. CDROM, M7-83, S. D. Metzler, Ed.Norfolk, VA, November10-16,2002.

[32] G. N. Watson, Theoryof BesselFunctions, CambridgeU. Press,Cam-bridge,England,1944.

[33] J.A. Fessler, “Penalizedweightedleast-squaresimagereconstructionforpositronemissiontomography,” IEEE Trans.Med.Imaging, vol. 13, no.2, pp.290–300,1994.

[34] H. ErdoganandJ.A. Fessler, “Orderedsubsetalgorithmsfor transmissiontomography,” Phys.Med.Biol., vol. 44,pp.2835–2851,1999.

[35] S. Matej andR. M. Lewitt, “Efficient 3D grids for imagereconstructionusingspherically-symmetricvolumeelements,” IEEE Trans.Nucl. Sci.,vol. 42,no.4, pp.1361–1370,1995.

Page 13: Fourier-BasedForward and Back-Projectors for Iterative ...

UNIVERSITY OF PENNSYLVANIA, MIPG AND UNIVERSITY OF MICHIGAN, EECS – TECHNICAL REPORT, MAY 2003 13

APPENDIX

A1. TheoreticalErrors(Fig. 21 - Fig. 24)Fig. 21 TheoreticalErrorsfor bdcfe and gih�jkc 1, 1.5,2 and3Fig. 22 TheoreticalErrorsfor differentvaluesof lh.m againstKB order b , for gnh;joc 1, 1.5,2 and3Fig. 23 TheoreticalErrorsfor optimalvaluesof lh.m againstKaiser–Besselorder b , for K/N=1, 1.5,2 and3Fig. 24 Optimalvaluesof lHh+m againstb in termsof theoreticalerrorfor gnh;jkc 1, 1.5,2 and3

A2. ZubalPhantomForward-ProjectionErrors(Fig. 25 - Fig. 32)Fig. 25 Zubalphantomforwardprojectionmaximalerrorsfor bdcDe and gih�jpc 1, 1.5,2 and3Fig. 26 Zubalphantomforwardprojectionnormalizedmean-rootsquares(NRMS)errorsfor bdcDe and gih�jpc 1, 1.5,2 and3Fig. 27 Zubalphantomforwardprojectionmaximalerrorsfor different lHh+m and gnh;joc 1, 1.5,2 and3Fig. 28 ZubalphantomforwardprojectionNRMS errorsfor different lHh+m and gnh;jkc 1, 1.5,2 and3Fig. 29 ZubalphantomforwardprojectionmaxErrorsfor optimal lh.m againstb ( gih�jpc 1, 1.5,2 and3)Fig. 30 ZubalphantomforwardprojectionNRMS errorsfor optimal lHh+m againstb ( gih�jkc 1, 1.5,2 and3)Fig. 31 Zubalphantomforwardprojectionoptimal l -s in termsof maxerror gih�jpc 1, 1.5,2 and3Fig. 32 Zubalphantomforwardprojectionoptimal l -s in termsof NRMS error, gih�jpc 1, 1.5,2 and3

A3. ZubalPhantomBack-ProjectionErrors(Fig. 33 - Fig. 40)Fig. 33 Zubalphantombackprojectionmaxerrorsfor bocDe and gnh�jpc 1, 1.5,2 and3Fig. 34 ZubalphantombackprojectionNRMS errors gih�jkc 1, 1.5,2 and3Fig. 35 Zubalphantombackprojectionmaxerrorsfor differentvaleslh.m and gih�jpc 1, 1.5,2 and3Fig. 36 ZubalphantombackprojectionNRMS errorsfor differentvalueslh.m and gnh;j =1,1.5,2 and3Fig. 37 ZubalphantombackprojectionMax errorsfor optimal lh.m againstb , gnh;jpc 1, 1.5,2 and3Fig. 38 ZubalphantombackprojectionNRMS errorsfor optimal lHh+m againstb , gnh�jpc 1, 1.5,2 and3Fig. 39 ZubalphantombackprojectionMax errors- optimumvaluesl againstb , gnh�jkc 1, 1.5,2 and3Fig. 40 ZubalphantombackprojectionNRMS errors- optimumvaluesl againstb , gih�jkc 1, 1.5,2 and3

A4. Voxel andBlob-BasedReconstructionMax Errors(Fig. 41 - Fig. 48)Fig. 41 Zubalphantomvoxel-basedreconstructionmaxerrorsfor boc0e and gnh�jpc 1, 1.5,2 and3Fig. 42 Zubalphantomblob-basedreconstructionmaxerrorsfor bdc0e and gnh;jkc 1, 1.5,2 and3Fig. 43 Zubalphantomvoxel-basedreconstructionmaxerrorsfor different lh.m and gih�jkc 1, 1.5,2 and3Fig. 44 Zubalphantomblob-basedreconstructionmaxerrorsfor different lh.m and gnh�jkc 1, 1.5,2 and3Fig. 45 Zubalphantomvoxel-basedreconstructionmaxerrorsagainstb and gnh;jkc 1, 1.5,2 and3Fig. 46 Zubalphantomblob-basedreconstructionmaxerrorsagainstb and gnh;jpc 1, 1.5,2 and3Fig. 47 Zubalphantomvoxel-basedreconstructionmaxerrors- optimalvalueslHh+m againstb , gnh�jpc 1, 1.5,2 and3Fig. 48 Zubalphantomblob-basedreconstructionmaxerrors- optimalvalueslHh+m againstb , gnh;joc 1, 1.5,2 and3

Page 14: Fourier-BasedForward and Back-Projectors for Iterative ...

UNIVERSITY OF PENNSYLVANIA, MIPG AND UNIVERSITY OF MICHIGAN, EECS – TECHNICAL REPORT, MAY 2003 14

A1. THEORETICAL ERRORS (FIG. 21 - FIG. 24)

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

10−1

100

Kaiser−Bessel Error for K/N=1 and m=0

α/J (Kaiser−Bessel width)

Err

or f

t

J =4 J =5 J =6 J =7

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

10−5

10−4

10−3

10−2

10−1

Kaiser−Bessel Error for K/N=1.5 and m=0

α/J (Kaiser−Bessel width)

Err

or f

t

J =4 J =5 J =6 J =7

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

10−6

10−5

10−4

10−3

10−2

10−1

Kaiser−Bessel Error for K/N=2 and m=0

α/J (Kaiser−Bessel width)

Err

or f

t

J =4 J =5 J =6 J =7

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 310

−7

10−6

10−5

10−4

10−3

10−2

10−1

Kaiser−Bessel Error for K/N=3 and m=0

α/J (Kaiser−Bessel width)

Err

or f

t

J =4 J =5 J =6 J =7

Fig. 21. TheoreticalErrorsfor qsrit and uwv&xyr 1, 1.5,2 and3

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

10−1

100

101

102

Kaiser−Bessel Error for K/N=1 and α/J =1.5

m (Kaiser−Bessel order)

Err

or ft

J =4 J =5 J =6 J =7

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

10−5

10−4

10−3

10−2

Kaiser−Bessel Error for K/N=1.5 and α/J =2.05

m (Kaiser−Bessel order)

Err

or ft

J =4 J =5 J =6 J =7

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

10−6

10−5

10−4

10−3

10−2

Kaiser−Bessel Error for K/N=2 and α/J =2.3

m (Kaiser−Bessel order)

Err

or ft

J =4 J =5 J =6 J =7

−2 −1.5 −1 −0.5 0 0.5 1 1.5 210

−7

10−6

10−5

10−4

10−3

10−2

Kaiser−Bessel Error for K/N=3 and α/J =2.6

m (Kaiser−Bessel order)

Err

or ft

J =4 J =5 J =6 J =7

Fig. 22. TheoreticalErrorsfor differentvaluesof z{v�| againstKB order q , for uwv&x}r 1, 1.5,2 and3

Page 15: Fourier-BasedForward and Back-Projectors for Iterative ...

UNIVERSITY OF PENNSYLVANIA, MIPG AND UNIVERSITY OF MICHIGAN, EECS – TECHNICAL REPORT, MAY 2003 15

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

10−1

Kaiser−Bessel Error for K/N=1 and optimal α/J for each m

m (Kaiser−Bessel order)

Err

or f

t

J =4 α/J=1 J =5 α/J=1.45 J =6 α/J=1.35 J =7 α/J=1.5

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

10−5

10−4

10−3

10−2

Kaiser−Bessel Error for K/N=1.5 and optimal α/J for each m

m (Kaiser−Bessel order)

Err

or f

t

J =4 α/J=1.95 J =5 α/J=2 J =6 α/J=2.05 J =7 α/J=2.05

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

10−6

10−5

10−4

10−3

10−2

Kaiser−Bessel Error for K/N=2 and optimal α/J for each m

m (Kaiser−Bessel order)

Err

or f

t

J =4 α/J=2.25 J =5 α/J=2.3 J =6 α/J=2.3 J =7 α/J=2.3

−2 −1.5 −1 −0.5 0 0.5 1 1.5 210

−7

10−6

10−5

10−4

10−3

10−2

Kaiser−Bessel Error for K/N=3 and optimal α/J for each m

m (Kaiser−Bessel order)

Err

or f

t

J =4 α/J=2.5 J =5 α/J=2.6 J =6 α/J=2.55 J =7 α/J=2.6

Fig. 23. TheoreticalErrorsfor optimalvaluesof z{v�| againstKaiser–Besselorder q , for K/N=1, 1.5,2 and3

−2 −1.5 −1 −0.5 0 0.5 1 1.5 21

1.2

1.4

1.6

1.8

2

2.2Optimal α −s in terms of Kaiser−Bessel Error for K/N=1

m (Kaiser−Bessel order)

α opt/J

fo

r ft

err

or

J =4 J =5 J =6 J =7

−2 −1.5 −1 −0.5 0 0.5 1 1.5 21.6

1.7

1.8

1.9

2

2.1

2.2

2.3

2.4

2.5

2.6Optimal α −s in terms of Kaiser−Bessel Error for K/N=1.5

m (Kaiser−Bessel order)

α opt/J

fo

r ft

err

or

J =4 J =5 J =6 J =7

−2 −1.5 −1 −0.5 0 0.5 1 1.5 21.9

2

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

Optimal α −s in terms of Kaiser−Bessel Error for K/N=2

m (Kaiser−Bessel order)

α opt/J

fo

r ft

err

or

J =4 J =5 J =6 J =7

−2 −1.5 −1 −0.5 0 0.5 1 1.5 22.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3Optimal α −s in terms of Kaiser−Bessel Error for K/N=3

m (Kaiser−Bessel order)

α opt/J

fo

r ft

err

or

J =4 J =5 J =6 J =7

Fig. 24. Optimalvaluesof z{v�| againstq in termsof theoreticalerrorfor uwv&x}r 1, 1.5,2 and3

Page 16: Fourier-BasedForward and Back-Projectors for Iterative ...

UNIVERSITY OF PENNSYLVANIA, MIPG AND UNIVERSITY OF MICHIGAN, EECS – TECHNICAL REPORT, MAY 2003 16

A2. ZUBAL PHANTOM FORWARD-PROJECTION ERRORS (FIG. 25 - FIG. 32)

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 310

0

101

102

Kaiser−Bessel Error for K/N=1 and m=0

α/J (Kaiser−Bessel width)

Err

or m

x

J =4 J =5 J =6 J =7

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 310

−4

10−3

10−2

10−1

100

101

Kaiser−Bessel Error for K/N=1.5 and m=0

α/J (Kaiser−Bessel width)

Err

or m

x

J =4 J =5 J =6 J =7

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 310

−5

10−4

10−3

10−2

10−1

100

Forward−Projection Error for K/N=2 and m=0

α/J (Kaiser−Bessel shape)

Em

ax (

%)

J =4 J =5 J =6 J =7

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 310

−6

10−5

10−4

10−3

10−2

10−1

100

101

Kaiser−Bessel Error for K/N=3 and m=0

α/J (Kaiser−Bessel width)

Err

or m

x

J =4 J =5 J =6 J =7

Fig. 25. Zubalphantomforwardprojectionmaximalerrorsfor qyrnt and uwv~x�r 1, 1.5,2 and3

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

10−1

100

101

102

Kaiser−Bessel Error for K/N=1 and m=0

α/J (Kaiser−Bessel width)

Err

or n

rms

J =4 J =5 J =6 J =7

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 310

−5

10−4

10−3

10−2

10−1

100

101

Kaiser−Bessel Error for K/N=1.5 and m=0

α/J (Kaiser−Bessel width)

Err

or n

rms

J =4 J =5 J =6 J =7

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

10−5

10−4

10−3

10−2

10−1

100

Kaiser−Bessel Error for K/N=2 and m=0

α/J (Kaiser−Bessel width)

Err

or n

rms

J =4 J =5 J =6 J =7

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 310

−6

10−5

10−4

10−3

10−2

10−1

100

101

Kaiser−Bessel Error for K/N=3 and m=0

α/J (Kaiser−Bessel width)

Err

or n

rms

J =4 J =5 J =6 J =7

Fig. 26. Zubalphantomforwardprojectionnormalizedmean-rootsquares(NRMS)errorsfor qyrnt and uwv&x}r 1, 1.5,2 and3

Page 17: Fourier-BasedForward and Back-Projectors for Iterative ...

UNIVERSITY OF PENNSYLVANIA, MIPG AND UNIVERSITY OF MICHIGAN, EECS – TECHNICAL REPORT, MAY 2003 17

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

100

101

102

Kaiser−Bessel Error for K/N=1 and α/J =1.6

m (Kaiser−Bessel order)

Err

or m

x

J =4 J =5 J =6 J =7

−2 −1.5 −1 −0.5 0 0.5 1 1.5 210

−3

10−2

10−1

100

101

Kaiser−Bessel Error for K/N=1.5 and α/J =2.35

m (Kaiser−Bessel order)

Err

or m

x

J =4 J =5 J =6 J =7

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

10−4

10−3

10−2

10−1

100

Kaiser−Bessel Error for K/N=2 and α/J =2.35

m (Kaiser−Bessel order)

Err

or m

x

J =4 J =5 J =6 J =7

−2 −1.5 −1 −0.5 0 0.5 1 1.5 210

−6

10−5

10−4

10−3

10−2

10−1

100

Kaiser−Bessel Error for K/N=3 and α/J =2.65

m (Kaiser−Bessel order)

Err

or m

x

J =4 J =5 J =6 J =7

Fig. 27. Zubalphantomforwardprojectionmaximalerrorsfor different z{v�| and uwv&xyr 1, 1.5,2 and3

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

10−1

100

101

Kaiser−Bessel Error for K/N=1 and α/J =1.6

m (Kaiser−Bessel order)

Err

or n

rms

J =4 J =5 J =6 J =7

−2 −1.5 −1 −0.5 0 0.5 1 1.5 210

−5

10−4

10−3

10−2

10−1

100

Kaiser−Bessel Error for K/N=1.5 and α/J =2.1

m (Kaiser−Bessel order)

Err

or n

rms

J =4 J =5 J =6 J =7

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

10−5

10−4

10−3

10−2

10−1

100

Kaiser−Bessel Error for K/N=2 and α/J =2.35

m (Kaiser−Bessel order)

Err

or n

rms

J =4 J =5 J =6 J =7

−2 −1.5 −1 −0.5 0 0.5 1 1.5 210

−6

10−5

10−4

10−3

10−2

10−1

100

Kaiser−Bessel Error for K/N=3 and α/J =2.65

m (Kaiser−Bessel order)

Err

or n

rms

J =4 J =5 J =6 J =7

Fig. 28. ZubalphantomforwardprojectionNRMS errorsfor different z{v�| and uEv&x}r 1, 1.5,2 and3

Page 18: Fourier-BasedForward and Back-Projectors for Iterative ...

UNIVERSITY OF PENNSYLVANIA, MIPG AND UNIVERSITY OF MICHIGAN, EECS – TECHNICAL REPORT, MAY 2003 18

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

100

Kaiser−Bessel Error for K/N=1 and optimal α/J for each m

m (Kaiser−Bessel order)

Err

or m

x

J =4 α/J=1.35 J =5 α/J=1.65 J =6 α/J=1.5 J =7 α/J=1.6

−2 −1.5 −1 −0.5 0 0.5 1 1.5 210

−4

10−3

10−2

10−1

100

Kaiser−Bessel Error for K/N=1.5 and optimal α/J for each m

m (Kaiser−Bessel order)

Err

or m

x

J =4 α/J=2.05 J =5 α/J=2.1 J =6 α/J=2.1 J =7 α/J=2.1

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

10−4

10−3

10−2

10−1

Forw−Proj Error for K/N=2 and αopt

for each m

m (Kaiser−Bessel order)

Em

ax (

%)

J =4 αopt

=2.35J J =5 α

opt=2.35J

J =6 αopt

=2.35J J =7 α

opt=2.4J

−2 −1.5 −1 −0.5 0 0.5 1 1.5 210

−6

10−5

10−4

10−3

10−2

10−1

100

Kaiser−Bessel Error for K/N=3 and optimal α/J for each m

m (Kaiser−Bessel order)

Err

or m

x

J =4 α/J=2.6 J =5 α/J=2.6 J =6 α/J=2.6 J =7 α/J=2.65

Fig. 29. ZubalphantomforwardprojectionmaxErrorsfor optimal z{v�| againstq ( uwv&x�r 1, 1.5,2 and3)

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

10−1

100

Kaiser−Bessel Error for K/N=1 and optimal α/J for each m

m (Kaiser−Bessel order)

Err

or n

rms

J =4 α/J=1.5 J =5 α/J=1.6 J =6 α/J=1.55 J =7 α/J=1.6

−2 −1.5 −1 −0.5 0 0.5 1 1.5 210

−5

10−4

10−3

10−2

10−1

Kaiser−Bessel Error for K/N=1.5 and optimal α/J for each m

m (Kaiser−Bessel order)

Err

or n

rms

J =4 α/J=2.15 J =5 α/J=2.15 J =6 α/J=2.1 J =7 α/J=2.1

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

10−5

10−4

10−3

10−2

Kaiser−Bessel Error for K/N=2 and optimal α/J for each m

m (Kaiser−Bessel order)

Err

or n

rms

J =4 α/J=2.35 J =5 α/J=2.4 J =6 α/J=2.35 J =7 α/J=2.4

−2 −1.5 −1 −0.5 0 0.5 1 1.5 210

−6

10−5

10−4

10−3

10−2

10−1

Kaiser−Bessel Error for K/N=3 and optimal α/J for each m

m (Kaiser−Bessel order)

Err

or n

rms

J =4 α/J=2.6 J =5 α/J=2.65 J =6 α/J=2.65 J =7 α/J=2.65

Fig. 30. ZubalphantomforwardprojectionNRMS errorsfor optimal z{v�| againstq ( uwv~x�r 1, 1.5,2 and3)

Page 19: Fourier-BasedForward and Back-Projectors for Iterative ...

UNIVERSITY OF PENNSYLVANIA, MIPG AND UNIVERSITY OF MICHIGAN, EECS – TECHNICAL REPORT, MAY 2003 19

−2 −1.5 −1 −0.5 0 0.5 1 1.5 21

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2Optimal α −s in terms of Kaiser−Bessel Error for K/N=1

m (Kaiser−Bessel order)

α opt/J

fo

r m

x er

ror

J =4 J =5 J =6 J =7

−2 −1.5 −1 −0.5 0 0.5 1 1.5 21.7

1.8

1.9

2

2.1

2.2

2.3

2.4

2.5

2.6Optimal α −s in terms of Kaiser−Bessel Error for K/N=1.5

m (Kaiser−Bessel order)

α opt/J

fo

r m

x er

ror

J =4 J =5 J =6 J =7

−2 −1.5 −1 −0.5 0 0.5 1 1.5 22

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3Optimal α −s in terms of Kaiser−Bessel Error for K/N=1

m (Kaiser−Bessel order)

α opt/J

fo

r m

x er

ror

J =4 J =5 J =6 J =7

−2 −1.5 −1 −0.5 0 0.5 1 1.5 22.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3Optimal α −s in terms of Kaiser−Bessel Error for K/N=3

m (Kaiser−Bessel order)

α opt/J

fo

r m

x er

ror

J =4 J =5 J =6 J =7

Fig. 31. Zubalphantomforwardprojectionoptimal z -s in termsof maxerror uwv&xyr 1, 1.5,2 and3

−2 −1.5 −1 −0.5 0 0.5 1 1.5 21.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2Optimal α −s in terms of Kaiser−Bessel Error for K/N=1

m (Kaiser−Bessel order)

α opt/J

fo

r n

rms

erro

r

J =4 J =5 J =6 J =7

−2 −1.5 −1 −0.5 0 0.5 1 1.5 21.8

1.9

2

2.1

2.2

2.3

2.4

2.5Optimal α −s in terms of Kaiser−Bessel Error for K/N=1.5

m (Kaiser−Bessel order)

α opt/J

fo

r n

rms

erro

r

J =4 J =5 J =6 J =7

−2 −1.5 −1 −0.5 0 0.5 1 1.5 22.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3Optimal α −s in terms of Kaiser−Bessel Error for K/N=2

m (Kaiser−Bessel order)

α opt/J

fo

r n

rms

erro

r

J =4 J =5 J =6 J =7

−2 −1.5 −1 −0.5 0 0.5 1 1.5 22.4

2.5

2.6

2.7

2.8

2.9

3

3.1Optimal α −s in terms of Kaiser−Bessel Error for K/N=3

m (Kaiser−Bessel order)

α opt/J

fo

r n

rms

erro

r

J =4 J =5 J =6 J =7

Fig. 32. Zubalphantomforwardprojectionoptimal z -s in termsof NRMS error, uEv&x}r 1, 1.5,2 and3

Page 20: Fourier-BasedForward and Back-Projectors for Iterative ...

UNIVERSITY OF PENNSYLVANIA, MIPG AND UNIVERSITY OF MICHIGAN, EECS – TECHNICAL REPORT, MAY 2003 20

A3. ZUBAL PHANTOM BACK-PROJECTION ERRORS (FIG. 32 - FIG. 40)

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

100

101

102

Kaiser−Bessel Error for K/N=1 and m=0

α/J (Kaiser−Bessel width)

Err

or m

x

J =4 J =5 J =6 J =7

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

10−3

10−2

10−1

100

101

Kaiser−Bessel Error for K/N=1.5 and m=0

α/J (Kaiser−Bessel width)

Err

or m

x

J =4 J =5 J =6 J =7

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 310

−5

10−4

10−3

10−2

10−1

100

Back−Projection Error for K/N=2 and m=0

α/J (Kaiser−Bessel shape)

Em

ax (

%)

J =4 J =5 J =6 J =7

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 310

−6

10−5

10−4

10−3

10−2

10−1

100

Back−Projection Error for K/N=3 and m=0

α/J (Kaiser−Bessel shape)

Em

ax (

%)

J =4 J =5 J =6 J =7

Fig. 33. Zubalphantombackprojectionmaxerrorsfor qyrnt and uwv&x}r 1, 1.5,2 and3

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

10−1

100

101

Kaiser−Bessel Error for K/N=1 and m=0

α/J (Kaiser−Bessel width)

Err

or n

rms

J =4 J =5 J =6 J =7

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

10−4

10−3

10−2

10−1

100

Kaiser−Bessel Error for K/N=1.5 and m=0

α/J (Kaiser−Bessel width)

Err

or n

rms

J =4 J =5 J =6 J =7

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

10−5

10−4

10−3

10−2

10−1

Kaiser−Bessel Error for K/N=2 and m=0

α/J (Kaiser−Bessel width)

Err

or n

rms

J =4 J =5 J =6 J =7

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 310

−7

10−6

10−5

10−4

10−3

10−2

10−1

100

Back−Projection Error for K/N=3 and m=0

α/J (Kaiser−Bessel shape)

Err

or n

rms

J =4 J =5 J =6 J =7

Fig. 34. ZubalphantombackprojectionNRMS errors uwv&xyr 1, 1.5,2 and3

Page 21: Fourier-BasedForward and Back-Projectors for Iterative ...

UNIVERSITY OF PENNSYLVANIA, MIPG AND UNIVERSITY OF MICHIGAN, EECS – TECHNICAL REPORT, MAY 2003 21

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

100

101

102

Kaiser−Bessel Error for K/N=1 and α/J =1.55

m (Kaiser−Bessel order)

Err

or m

x

J =4 J =5 J =6 J =7

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

10−3

10−2

10−1

Kaiser−Bessel Error for K/N=1.5 and α/J =2.1

m (Kaiser−Bessel order)

Err

or m

x

J =4 J =5 J =6 J =7

−2 −1.5 −1 −0.5 0 0.5 1 1.5 210

−5

10−4

10−3

10−2

10−1

100

Back−Projection Error for K/N=2 and α/J =2.4

m (Kaiser−Bessel order)

Em

ax (

%)

J =4 J =5 J =6 J =7

−2 −1.5 −1 −0.5 0 0.5 1 1.5 210

−6

10−5

10−4

10−3

10−2

10−1

100

Back−Projection Error for K/N=3 and α/J =2.65

m (Kaiser−Bessel order)

Em

ax (

%)

J =4 J =5 J =6 J =7

Fig. 35. Zubalphantombackprojectionmaxerrorsfor differentvales z{v�| and uwv&x}r 1, 1.5,2 and3

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

10−1

100

101

Kaiser−Bessel Error for K/N=1 and α/J =1.6

m (Kaiser−Bessel order)

Err

or n

rms

J =4 J =5 J =6 J =7

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

10−4

10−3

10−2

10−1

Kaiser−Bessel Error for K/N=1.5 and α/J =2.1

m (Kaiser−Bessel order)

Err

or n

rms

J =4 J =5 J =6 J =7

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

10−5

10−4

10−3

10−2

10−1

Kaiser−Bessel Error for K/N=2 and α/J =2.35

m (Kaiser−Bessel order)

Err

or n

rms

J =4 J =5 J =6 J =7

−2 −1.5 −1 −0.5 0 0.5 1 1.5 210

−6

10−5

10−4

10−3

10−2

10−1

100

Back−Projection Error for K/N=3 and α/J =2.4

m (Kaiser−Bessel order)

Err

or n

rms

J =4 J =5 J =6 J =7

Fig. 36. ZubalphantombackprojectionNRMS errorsfor differentvaluesz{v�| and uwv&x =1, 1.5,2 and3

Page 22: Fourier-BasedForward and Back-Projectors for Iterative ...

UNIVERSITY OF PENNSYLVANIA, MIPG AND UNIVERSITY OF MICHIGAN, EECS – TECHNICAL REPORT, MAY 2003 22

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

100

101

Kaiser−Bessel Error for K/N=1 and optimal α/J for each m

m (Kaiser−Bessel order)

Err

or m

x

J =4 α/J=1.2 J =5 α/J=1.4 J =6 α/J=1.45 J =7 α/J=1.55

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

10−3

10−2

10−1

Kaiser−Bessel Error for K/N=1.5 and optimal α/J for each m

m (Kaiser−Bessel order)

Err

or m

x

J =4 α/J=1.95 J =5 α/J=2.1 J =6 α/J=2.1 J =7 α/J=2.1

−2 −1.5 −1 −0.5 0 0.5 1 1.5 210

−5

10−4

10−3

10−2

10−1

100

Back−Proj Error for K/N=2 and αopt

for each m

m (Kaiser−Bessel order)

Em

ax (

%)

J =4 αopt

=2.3J J =5 α

opt=2.35J

J =6 αopt

=2.35J J =7 α

opt=2.4J

−2 −1.5 −1 −0.5 0 0.5 1 1.5 210

−6

10−5

10−4

10−3

10−2

10−1

100

Back−Proj Error for K/N=3 and αopt

for each m

m (Kaiser−Bessel order)

Em

ax (

%)

J =4 αopt

=2.6J J =5 α

opt=2.65J

J =6 αopt

=2.6J J =7 α

opt=2.65J

Fig. 37. ZubalphantombackprojectionMax errorsfor optimal z{v�| againstq , uwv&x}r 1, 1.5,2 and3

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

10−1

100

Kaiser−Bessel Error for K/N=1 and optimal α/J for each m

m (Kaiser−Bessel order)

Err

or n

rms

J =4 α/J=1.2 J =5 α/J=1.55 J =6 α/J=1.5 J =7 α/J=1.6

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

10−4

10−3

10−2

10−1

Kaiser−Bessel Error for K/N=1.5 and optimal α/J for each m

m (Kaiser−Bessel order)

Err

or n

rms

J =4 α/J=1.95 J =5 α/J=2.15 J =6 α/J=2.1 J =7 α/J=2.1

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

10−5

10−4

10−3

10−2

Kaiser−Bessel Error for K/N=2 and optimal α/J for each m

m (Kaiser−Bessel order)

Err

or n

rms

J =4 α/J=2.4 J =5 α/J=2.4 J =6 α/J=2.4 J =7 α/J=2.45

−2 −1.5 −1 −0.5 0 0.5 1 1.5 210

−7

10−6

10−5

10−4

10−3

10−2

10−1

100

Back−Proj Error for K/N=3 and αopt

for each m

m (Kaiser−Bessel order)

Err

or n

rms

J =4 αopt

=2.5J J =5 α

opt=2.7J

J =6 αopt

=2.6J J =7 α

opt=2.7J

Fig. 38. ZubalphantombackprojectionNRMS errorsfor optimal z{v�| againstq , uEv&x�r 1, 1.5,2 and3

Page 23: Fourier-BasedForward and Back-Projectors for Iterative ...

UNIVERSITY OF PENNSYLVANIA, MIPG AND UNIVERSITY OF MICHIGAN, EECS – TECHNICAL REPORT, MAY 2003 23

−2 −1.5 −1 −0.5 0 0.5 1 1.5 21

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6Optimal α −s in terms of Kaiser−Bessel Error for K/N=1

m (Kaiser−Bessel order)

α opt/J

fo

r m

x er

ror

J =4 J =5 J =6 J =7

−2 −1.5 −1 −0.5 0 0.5 1 1.5 21.6

1.7

1.8

1.9

2

2.1

2.2

2.3

2.4

2.5Optimal α −s in terms of Kaiser−Bessel Error for K/N=1.5

m (Kaiser−Bessel order)

α opt/J

fo

r m

x er

ror

J =4 J =5 J =6 J =7

−2 −1.5 −1 −0.5 0 0.5 1 1.5 21.8

2

2.2

2.4

2.6

2.8

3

Optimum Values α for K/N=2

m (Kaiser−Bessel order)

α opt /

J

J =4 J =5 J =6 J =7

−2 −1.5 −1 −0.5 0 0.5 1 1.5 22.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3

Optimum Values α for K/N=3

m (Kaiser−Bessel order)

α opt /

J

J =4 J =5 J =6 J =7

Fig. 39. ZubalphantombackprojectionMax errors- optimumvaluesz againstq , uwv&xyr 1, 1.5,2 and3

−2 −1.5 −1 −0.5 0 0.5 1 1.5 21

1.5

2

2.5Optimal α −s in terms of Kaiser−Bessel Error for K/N=1

m (Kaiser−Bessel order)

α opt/J

fo

r n

rms

erro

r

J =4 J =5 J =6 J =7

−2 −1.5 −1 −0.5 0 0.5 1 1.5 21.7

1.8

1.9

2

2.1

2.2

2.3

2.4

2.5

2.6Optimal α −s in terms of Kaiser−Bessel Error for K/N=1.5

m (Kaiser−Bessel order)

α opt/J

fo

r n

rms

erro

r

J =4 J =5 J =6 J =7

−2 −1.5 −1 −0.5 0 0.5 1 1.5 21.8

2

2.2

2.4

2.6

2.8

3Optimal α −s in terms of Kaiser−Bessel Error for K/N=2

m (Kaiser−Bessel order)

α opt/J

fo

r n

rms

erro

r

J =4 J =5 J =6 J =7

−2 −1.5 −1 −0.5 0 0.5 1 1.5 22.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3

Optimum Values α for K/N=3

m (Kaiser−Bessel order)

α opt /

J fo

r nr

ms

erro

r

J =4 J =5 J =6 J =7

Fig. 40. ZubalphantombackprojectionNRMS errors- optimumvaluesz againstq , uwv&x}r 1, 1.5,2 and3

Page 24: Fourier-BasedForward and Back-Projectors for Iterative ...

UNIVERSITY OF PENNSYLVANIA, MIPG AND UNIVERSITY OF MICHIGAN, EECS – TECHNICAL REPORT, MAY 2003 24

A4. VOXEL AND BLOB-BASED RECONSTRUCTION MAX ERRORS (FIG. 41 - FIG. 48)

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 310

−5

10−4

10−3

10−2

10−1

100

Reconstr Error for 17 iterations, K/N=1 and m=0

α/J (Kaiser−Bessel shape)

Em

ax (

%)

J =4 J =5 J =6 J =7

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 310

−5

10−4

10−3

10−2

10−1

100

Reconstr Error for 17 iterations, K/N=1.5 and m=0

α/J (Kaiser−Bessel shape)

Em

ax (

%)

J =4 J =5 J =6 J =7

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 310

−5

10−4

10−3

10−2

10−1

100

Reconstr Error for 17 iterations, K/N=2 and m=0

α/J (Kaiser−Bessel shape)

Em

ax (

%)

J =4 J =5 J =6 J =7

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 310

−5

10−4

10−3

10−2

10−1

100

Reconstr Error for 17 iterations, K/N=3 and m=0

α/J (Kaiser−Bessel shape)

Em

ax (

%)

J =4 J =5 J =6 J =7

Fig. 41. Zubalphantomvoxel-basedreconstructionmaxerrorsfor qyrit and uwv&x}r 1, 1.5,2 and3

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

10−1

100

Reconstr Error for 17 iterations, K/N=1 and m=0

α/J (Kaiser−Bessel shape)

Em

ax (

%)

J =4 J =5 J =6 J =7

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 310

−4

10−3

10−2

10−1

100

Reconstr Error for 17 iterations, K/N=1.5 and m=0

α/J (Kaiser−Bessel shape)

Em

ax (

%)

J =4 J =5 J =6 J =7

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 310

−5

10−4

10−3

10−2

10−1

100

Reconstr Error for 17 iterations, K/N=2 and m=0

α/J (Kaiser−Bessel shape)

Em

ax (

%)

J =4 J =5 J =6 J =7

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 310

−5

10−4

10−3

10−2

10−1

100

Reconstr Error for 17 iterations, K/N=3 and m=0

α/J (Kaiser−Bessel shape)

Em

ax (

%)

J =4 J =5 J =6 J =7

Fig. 42. Zubalphantomblob-basedreconstructionmaxerrorsfor q0r�t and uwv~x}r 1, 1.5,2 and3

Page 25: Fourier-BasedForward and Back-Projectors for Iterative ...

UNIVERSITY OF PENNSYLVANIA, MIPG AND UNIVERSITY OF MICHIGAN, EECS – TECHNICAL REPORT, MAY 2003 25

−2 −1.5 −1 −0.5 0 0.5 1 1.5 210

−2

10−1

100

101

102

Reconstr Error for 17 iterations, K/N=1 and α/J =1.7

m (Kaiser−Bessel order)

Em

ax (

%)

J =4 J =5 J =6 J =7

−2 −1.5 −1 −0.5 0 0.5 1 1.5 210

−4

10−3

10−2

10−1

100Reconstr Error for 17 iterations, K/N=1.5 and α/J =2.1

m (Kaiser−Bessel order)

Em

ax (

%)

J =4 J =5 J =6 J =7

−2 −1.5 −1 −0.5 0 0.5 1 1.5 210

−5

10−4

10−3

10−2

10−1

100

Reconstr Error for 17 iterations, K/N=2 and α/J =2.4

m (Kaiser−Bessel order)

Em

ax (

%)

J =4 J =5 J =6 J =7

−2 −1.5 −1 −0.5 0 0.5 1 1.5 210

−6

10−5

10−4

10−3

10−2

10−1

100

Reconstr Error for 17 iterations, K/N=3 and α/J =2.7

m (Kaiser−Bessel order)

Em

ax (

%)

J =4 J =5 J =6 J =7

Fig. 43. Zubalphantomvoxel-basedreconstructionmaxerrorsfor different z{v�| and uwv&xyr 1, 1.5,2 and3

−2 −1.5 −1 −0.5 0 0.5 1 1.5 210

−2

10−1

100

101

102

Reconstr Error for 17 iterations, K/N=1 and α/J =1.7

m (Kaiser−Bessel order)

Em

ax (

%)

J =4 J =5 J =6 J =7

−2 −1.5 −1 −0.5 0 0.5 1 1.5 210

−4

10−3

10−2

10−1

100Reconstr Error for 17 iterations, K/N=1.5 and α/J =2.25

m (Kaiser−Bessel order)

Em

ax (

%)

J =4 J =5 J =6 J =7

−2 −1.5 −1 −0.5 0 0.5 1 1.5 210

−5

10−4

10−3

10−2

10−1

100

Reconstr Error for 17 iterations, K/N=2 and α/J =2.45

m (Kaiser−Bessel order)

Em

ax (

%)

J =4 J =5 J =6 J =7

−2 −1.5 −1 −0.5 0 0.5 1 1.5 210

−6

10−5

10−4

10−3

10−2

10−1

100

Reconstr Error for 17 iterations, K/N=3 and α/J =2.7

m (Kaiser−Bessel order)

Em

ax (

%)

J =4 J =5 J =6 J =7

Fig. 44. Zubalphantomblob-basedreconstructionmaxerrorsfor different z{v�| and uEv&x�r 1, 1.5,2 and3

Page 26: Fourier-BasedForward and Back-Projectors for Iterative ...

UNIVERSITY OF PENNSYLVANIA, MIPG AND UNIVERSITY OF MICHIGAN, EECS – TECHNICAL REPORT, MAY 2003 26

−2 −1.5 −1 −0.5 0 0.5 1 1.5 210

−2

10−1

100

101

Reconstr Error for 17 iterations, K/N=1 and αopt

for each m

m (Kaiser−Bessel order)

Em

ax (

%)

J =4 αopt

=1.8J J =5 α

opt=1.8J

J =6 αopt

=1.65J J =7 α

opt=1.7J

−2 −1.5 −1 −0.5 0 0.5 1 1.5 210

−4

10−3

10−2

10−1

100

Reconstr Error for 17 iterations, K/N=1.5 and αopt

for each m

m (Kaiser−Bessel order)

Em

ax (

%)

J =4 αopt

=2.45J J =5 α

opt=2.25J

J =6 αopt

=2.25J J =7 α

opt=2.1J

−2 −1.5 −1 −0.5 0 0.5 1 1.5 210

−5

10−4

10−3

10−2

10−1

100

Reconstr Error for 17 iterations, K/N=2 and αopt

for each m

m (Kaiser−Bessel order)

Em

ax (

%)

J =4 αopt

=2.5J J =5 α

opt=2.55J

J =6 αopt

=2.5J J =7 α

opt=2.4J

−2 −1.5 −1 −0.5 0 0.5 1 1.5 210

−6

10−5

10−4

10−3

10−2

10−1

100

Reconstr Error for 17 iterations, K/N=3 and αopt

for each m

m (Kaiser−Bessel order)

Em

ax (

%)

J =4 αopt

=2.65J J =5 α

opt=2.75J

J =6 αopt

=2.75J J =7 α

opt=2.7J

Fig. 45. Zubalphantomvoxel-basedreconstructionmaxerrorsagainstq and uEv&x}r 1, 1.5,2 and3

−2 −1.5 −1 −0.5 0 0.5 1 1.5 210

−2

10−1

100

101

Reconstr Error for 17 iterations, K/N=1 and αopt

for each m

m (Kaiser−Bessel order)

Em

ax (

%)

J =4 αopt

=1.85J J =5 α

opt=1.85J

J =6 αopt

=1.65J J =7 α

opt=1.7J

−2 −1.5 −1 −0.5 0 0.5 1 1.5 210

−4

10−3

10−2

10−1

100

Reconstr Error for 17 iterations, K/N=1.5 and αopt

for each m

m (Kaiser−Bessel order)

Em

ax (

%)

J =4 αopt

=2.3J J =5 α

opt=2.25J

J =6 αopt

=2.25J J =7 α

opt=2.25J

−2 −1.5 −1 −0.5 0 0.5 1 1.5 210

−5

10−4

10−3

10−2

10−1

100

Reconstr Error for 17 iterations, K/N=2 and αopt

for each m

m (Kaiser−Bessel order)

Em

ax (

%)

J =4 αopt

=2.55J J =5 α

opt=2.55J

J =6 αopt

=2.5J J =7 α

opt=2.45J

−2 −1.5 −1 −0.5 0 0.5 1 1.5 210

−6

10−5

10−4

10−3

10−2

10−1

100

Reconstr Error for 17 iterations, K/N=3 and αopt

for each m

m (Kaiser−Bessel order)

Em

ax (

%)

J =4 αopt

=2.7J J =5 α

opt=2.8J

J =6 αopt

=2.75J J =7 α

opt=2.7J

Fig. 46. Zubalphantomblob-basedreconstructionmaxerrorsagainstq and uEv&x�r 1, 1.5,2 and3

Page 27: Fourier-BasedForward and Back-Projectors for Iterative ...

UNIVERSITY OF PENNSYLVANIA, MIPG AND UNIVERSITY OF MICHIGAN, EECS – TECHNICAL REPORT, MAY 2003 27

−2 −1.5 −1 −0.5 0 0.5 1 1.5 21.3

1.4

1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

Optimal Values α for K/N=1

m (Kaiser−Bessel order)

α opt /

J

J =4 J =5 J =6 J =7

−2 −1.5 −1 −0.5 0 0.5 1 1.5 21.6

1.8

2

2.2

2.4

2.6

2.8

3

Optimal Values α for K/N=1.5

m (Kaiser−Bessel order)

α opt /

J

J =4 J =5 J =6 J =7

−2 −1.5 −1 −0.5 0 0.5 1 1.5 22

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

Optimal Values α for K/N=2

m (Kaiser−Bessel order)

α opt /

J

J =4 J =5 J =6 J =7

−2 −1.5 −1 −0.5 0 0.5 1 1.5 22.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3

Optimal Values α for K/N=3

m (Kaiser−Bessel order)

α opt /

J

J =4 J =5 J =6 J =7

Fig. 47. Zubalphantomvoxel-basedreconstructionmaxerrors- optimalvaluesz{v�| againstq , uwv&x}r 1, 1.5,2 and3

−2 −1.5 −1 −0.5 0 0.5 1 1.5 21.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

Optimal Values α for K/N=1

m (Kaiser−Bessel order)

α opt /

J

J =4 J =5 J =6 J =7

−2 −1.5 −1 −0.5 0 0.5 1 1.5 21.6

1.8

2

2.2

2.4

2.6

2.8

3

Optimal Values α for K/N=1.5

m (Kaiser−Bessel order)

α opt /

J

J =4 J =5 J =6 J =7

−2 −1.5 −1 −0.5 0 0.5 1 1.5 22.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3

Optimal Values α for K/N=2

m (Kaiser−Bessel order)

α opt /

J

J =4 J =5 J =6 J =7

−2 −1.5 −1 −0.5 0 0.5 1 1.5 22.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3

Optimal Values α for K/N=3

m (Kaiser−Bessel order)

α opt /

J

J =4 J =5 J =6 J =7

Fig. 48. Zubalphantomblob-basedreconstructionmaxerrors- optimalvaluesz{v�| againstq , uwv&x�r 1, 1.5,2 and3