Fixed Wing Design Tool

77
Profile Notes/Sources: 0 Source: "2006-2007 AI 1 2 3 4 5 6 7 8 9 10 20 min. Combat @ Corner Speed/SL Max Power Climb to Opt. Alt. Cruise Back 800 nm @ Optimum Speed/Alt Descend to SL @ Idle Thrust Setting 20 min Loiter @ Endurance Speel/SL Landing with 30 min Reserve Fuel @ SL Mission Profile Warm-up Taxi Max Perforamnce Take-Off @ SL Max Power Climb to Opt. Alt. Cruise out 800 nm @ Optimum Speed/Alt Loiter for 20 min. @ 5,000ft

description

Filename: FIXED_WING_DESIGN_TOOL.xls

Transcript of Fixed Wing Design Tool

Profile Notes/Sources:

0 Source: "2006-2007 AIAA Graduate Team Aircraft Design Competition - Modifiied RFP"

1

2

3

4

5

6

7

8

9

10

20 min. Combat @ Corner Speed/SL

Max Power Climb to Opt. Alt.

Cruise Back 800 nm @ Optimum Speed/Alt

Descend to SL @ Idle Thrust Setting

20 min Loiter @ Endurance Speel/SL

Landing with 30 min Reserve Fuel @ SL

Mission Profile

Warm-up Taxi

Max Perforamnce Take-Off @ SL

Max Power Climb to Opt. Alt.

Cruise out 800 nm @ Optimum Speed/Alt

Loiter for 20 min. @ 5,000ft

Source: "2006-2007 AIAA Graduate Team Aircraft Design Competition - Modifiied RFP"

Step 1 Payload Calculations, WPL Notes/Sources:

3,240 lbs Source: "2006-2007 AIAA Graduate Team Aircraft Design Competition - Modifiied RFP"

5,000 lbs

12,000 lbs

Total WPL 12,000 lbs Enter Payload based on above values, and Desired Mission (for baseline misson, assume worst case external stores)

Crew Weight

250 lbs Source: "2006-2007 AIAA Graduate Team Aircraft Design Competition - Modifiied RFP"

Total WCREW 250 lbs

Step 2 Weight Take Off Guess Based on Historical Data, WTO_GUESS

W_PL W_TO V_MAX Range Source: Taylor, J.W.R, Jane's All The World Aircraft Published Annually by: Jane's Publishing Company, (Issues used: 1945/45, 1968/84)

(lbs) (lbs) (kts) (nm) Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 60

15,000 50,000 450 540

17,000 60,400 689 1,700

16,000 58,400 600 750

Average: 16,000 56,267 580 997 Some initial guess for TOGW, will only be used for reference, program automatically calculates TOGW based on historical data

WTO_GUESS 59,488 lbs Later this will be iterated to find weight empty

Step 3 Mission Fuel Weight Fractions, WF Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 12

Climb 1

Range Credit 24.5 nm Assume 10,000 ft/min climb (from RFP) and 350 knot ground speed during climb (from Roskam page 62); therefore, Rclimb = Alt./(10K/min)*350knots

Cruise 1

Rcr, Cruise Range 775.5 nm 800 nm specified in RFP - climb 1 range

Altitude 42,000 ft

Temperature @ Alt, T -90.6o F

Delta 0.1668

Theta 0.7116

GD GAU-8 30-mm Cannon is part of weight empty

External Stores is deemed the limiting case

Tornado F.Mk2

Aircraft Type

Mission Analysis

Ammunition Weight (1.62 lbs x 2000 rounds)

F.R. A10A

Grumman A6

Internal Stores Max

External Stores Max

Crew (1x250lbs)

Seg. Description Altitude Temp. Density Velocity Range

(ft) (°F) slug/ft^3 knots nm

0 0 59.0 2.377E-03 0.0 -

1 Warm-up Taxi 0 59.0 2.377E-03 0.0 -

2 Max Perforamnce Take-Off @ SL 0 59.0 2.377E-03 TBD -

3 Max Power Climb to Opt. Alt. 42,000 -90.6 5.571E-04 350.0 25

4 Cruise out 800 nm @ Optimum Speed/Alt 42,000 -90.6 5.571E-04 459.0 800

5 Loiter for 20 min. @ 5,000ft 5,000 41.2 2.048E-03 226.6 800

6 20 min. Combat @ Corner Speed/SL 0 59.0 2.377E-03 275.0 800

7 Max Power Climb to Opt. Alt. 42,000 -90.6 5.571E-04 350.0 825

8 Cruise Back 800 nm @ Optimum Speed/Alt 42,000 -90.6 5.571E-04 459.0 1,600

9 Descend to SL @ Idle Thrust Setting 0 0.0 2.377E-03 459.0 1,600

10 20 min Loiter @ Endurance Speel/SL 0 0.0 2.377E-03 187.5 1,600

11 Landing with 30 min Reserve Fuel @ SL 0 0.0 2.377E-03 0.0 1,600

Mission Summary (Baseline Mission)

q CL CD L/D Wn-1/Wn Fuel Burn Fuel Weight Beta

psf (lbs) (lbs) (lbs)

0 0.0000 0.0172 0.00 1.000 - - 59,488 1.000

0 0.0000 0.0172 0.00 0.990 595 595 58,894 0.990

0 TBD TBD 0.990 1,184 589 58,305 0.980

- - - - 0.960 3,516 2,332 55,972 0.941

167 0.3940 0.0282 13.97 0.930 7,434 3,918 52,054 0.875

150 0.4088 0.0291 14.07 0.986 8,161 727 51,327 0.863

256 1.1794 0.1160 10.17 0.974 9,477 1,315 50,012 0.841

- - - - 0.960 11,477 2,000 48,011 0.807

167 0.3379 0.0253 13.36 0.927 14,985 3,508 44,504 0.748

167 0.3379 0.0253 13.36 1.000 14,985 - 44,504 0.748

119 0.4400 0.0309 14.23 0.986 15,600 615 43,889 0.738

0 0.0000 0.0172 0.00 0.979 16,516 916 42,973 0.722

Input Source: This section describes where the initial input values are referenced from

Lapse Rate α 0.243478 α Lapse Rate Based on High Bypass Ratio Turbofan Engine, Source: Hernando Jimenez - "An Energy Based Approach to Aircraft Constraint Analysis - Part 2), ASDL GA Tech, AE6343, Fall 2006

Fuel/Payload β 0.9801 β At Cruising Altitude

Load Factor n 1 n Level Flight n=1

Gravity g 32.2 ft/s2 g Earth

Excrescence Drag R 0 slug/ft3 R Gear retracted for level flight

Freesteam Velocity Velocity 774.7048 ft/s Velocity Optimum Cruise first guess assumed to be 459 knots, Fighter Example Problem, Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 62

Dynamic Pressure q 167.18 psf q Calculated from Velocity and Ambient Conditions

Min Drag CD0 0.017179 CD0Includes External Stores Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 118-122, 156, 166 for Fighters

Drag Polar Coefficient K1 0.07 K1 Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 156

Drag Polar Coefficient K2 0 K2Typically Zero, Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 156

Vertical Velocity dh/dt 0 ft/s dh/dt zero, no change in altitude

Vertical Acceleration dV/dt 0 ft/s2 dV/dt zero, no change in vertical acceleration

Additional Inputs

Altitude 42,000 ft Altitude Cruising Alt.

Temperature @ Alt, T -90.6o F Temperature @ Alt, TBased on Standard Day Atmosphere

Delta 0.1668 Delta

Theta 0.7116 Theta

Sigma 0.2344 Sigma

Density 5.571E-04 slugs/ft3

Density

Weight 58,305 lbs Weight

VCRUISE 459.00 kts VCRUISEOptimum Cruise first guess assumed to be 459 knots, Fighter Example Problem, Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 62

M 0.823 M Wings are swept to reduce compressibility in transonic regime

Input Source: This section describes where the initial input values are referenced from

Lapse Rate α 0.23888 α Lapse Rate Based on High Bypass Ratio Turbofan Engine, Source: Hernando Jimenez - "An Energy Based Approach to Aircraft Constraint Analysis - Part 2), ASDL GA Tech, AE6343, Fall 2006

Fuel/Payload β 0.9801 β At Cruising Altitude

Load Factor n 1 n Level Flight n=1

Gravity g 32.2 ft/s2 g Earth

Excrescence Drag R 0 slug/ft3 R Gear retracted for level flight

Freesteam Velocity Velocity 928.2955 ft/s Velocity Specified in RFP - "2006-2007 AIAA Graduate Team Aircraft Design Competition - Modified", AE 6343, Project 1, Fall 2007

Dynamic Pressure q 240.04 psf q Calculated from Velocity and Ambient Conditions

Min Drag CD0 0.019679 CD0Drag Include Compressibility for High Mach Number, and External Stores Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 118-122, 156, 166 for Fighters

Drag Polar Coefficient K1 0.07 K1 Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 156

Drag Polar Coefficient K2 0 K2Typically Zero, Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 156

Vertical Velocity dh/dt 0 ft/s dh/dt zero, no change in altitude

Vertical Acceleration dV/dt 0 ft/s2 dV/dt zero, no change in vertical acceleration

Additional Inputs

Altitude 42,000 ft Altitude Cruising Alt.

Temperature @ Alt, T -90.6o F Temperature @ Alt, TBased on Standard Day Atmosphere

Delta 0.1668 Delta

Theta 0.7116 Theta

Sigma 0.2344 Sigma

Density 5.571E-04 slugs/ft3

Density

Constraint Analysis as a Function of T/W and T/S

Max Cruise Speed, 550 kts (Ps=0)

Constant Altitude/Speed Cruise (Ps=0)

Weight 58,305 lbs Weight

VCRUISE_MAX 550.00 kts VCRUISE_MAXVelocity in knots for my Reference

M 0.986 M Due to the High Mach number there will be additional drag due to Compressibility

Input Source: This section describes where the initial input values are referenced from

Lapse Rate α 0.688611 α Lapse Rate Based on High Bypass Ratio Turbofan Engine, Source: Hernando Jimenez - "An Energy Based Approach to Aircraft Constraint Analysis - Part 2), ASDL GA Tech, AE6343, Fall 2006

Fuel/Payload β 1 β Specified by RFP to be Max TOGW

Load Factor n 3.180281 n Sustained Turn will require a certain g value based on the turn rate, this can be calculated from source: Raymer, "Aircraft Design, A Conceptual Approach, 3rd Edition", 1999, pg 106

Gravity g 32.2 ft/s2 g Earth

Excrescence Drag R 0 slug/ft3 R Gear retracted

Freesteam Velocity Velocity 464.1478 ft/s Velocity 275 knots min, provided by RFP

Dynamic Pressure q 256.04 psf q Calculated from Velocity and Ambient Conditions

Min Drag CD0 0.017179 CD0Includes External Stores Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 118-122, 156, 166 for Fighters

Drag Polar Coefficient K1 0.07 K1 Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 156

Drag Polar Coefficient K2 0 K2Typically Zero, Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 156

Vertical Velocity dh/dt 0 ft/s dh/dt zero, no change in altitude

Vertical Acceleration dV/dt 0 ft/s2 dV/dt zero, no change in vertical acceleration

Additional Inputs

Altitude 0 ft Altitude

Temperature @ Alt, T 59.0o F Temperature @ Alt, TBased on Standard Day Atmosphere

Delta 1.0000 Delta

Theta 1.0000 Theta

Sigma 1.0000 Sigma

Density 2.377E-03 slugs/ft3

Density

Weight 59,488 lbs Weight

VCRUISE 275.00 kts VCRUISE 275 knots min, provided by RFP

M 0.416 M

Input Source: This section describes where the initial input values are referenced from

Lapse Rate α 0.225354 α Lapse Rate Based on High Bypass Ratio Turbofan Engine, Source: Hernando Jimenez - "An Energy Based Approach to Aircraft Constraint Analysis - Part 2), ASDL GA Tech, AE6343, Fall 2006

Fuel/Payload β 1 β Specified by RFP to be Max TOGW

Load Factor n 1 n Level Flight n=1

Gravity g 32.2 ft/s2 g Earth

Excrescence Drag R 0 slug/ft3 R Gear retracted

Freesteam Velocity Velocity 774.7048 ft/s Velocity Cruise Velocity

Dynamic Pressure q 147.49 psf q Calculated from Velocity and Ambient Conditions

Min Drag CD0 0.017179 CD0Includes External Stores Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 118-122, 156, 166 for Fighters

Drag Polar Coefficient K1 0.07 K1 Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 156

Drag Polar Coefficient K2 0 K2Typically Zero, Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 156

Vertical Velocity dh/dt 1.667 ft/s dh/dt Specified 100 ft/min capability at 45,000 ft (Service Ceiling) to allow for maneuver margin. Requirement from RFP

Vertical Acceleration dV/dt 0 ft/s2 dV/dt zero, no change in vertical acceleration

Additional Inputs

Altitude 45,000 ft Altitude Max Altitude

Temperature @ Alt, T -101.2o F Temperature @ Alt, TBased on Standard Day Atmosphere

Delta 0.1429 Delta

Theta 0.6910 Theta

Level Combat Corner Speed 275kts (Ps=0)

Service Ceiling, 45,000 ft. (100 ft/min)

Sigma 0.2068 Sigma

Density 4.915E-04 slugs/ft3

Density

Weight 59,488 lbs Weight

VCRUISE 459.00 kts VCRUISE

M 0.835 M

Input Source: This section describes where the initial input values are referenced from

Lapse Rate α 0.856454 α Lapse Rate Based on High Bypass Ratio Turbofan Engine, Source: Hernando Jimenez - "An Energy Based Approach to Aircraft Constraint Analysis - Part 2), ASDL GA Tech, AE6343, Fall 2006

Fuel/Payload β 1 β Specified by RFP to be Max TOGW

Load Factor n 1 n Level Flight n=1

Gravity g 32.2 ft/s2 g Earth

Excrescence Drag R 0 slug/ft3 R Gear retracted

Freesteam Velocity Velocity 168.781 ft/s Velocity Stall Speed must be no greater then 100 knots @ SL Max TOGW, from RFP

Dynamic Pressure q 33.86 psf q Calculated from Velocity and Ambient Conditions

Min Drag CD0 0.037179 CD0Includes Flaps Down, External Stores Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 118-122, 156, 166 for Fighters

Drag Polar Coefficient K1 0.07 K1 Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 156

Drag Polar Coefficient K2 0 K2Typically Zero, Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 156

Vertical Velocity dh/dt 0 ft/s dh/dt zero, no change in altitude

Vertical Acceleration dV/dt 0 ft/s2 dV/dt zero, no change in vertical acceleration

Additional Inputs

Altitude 0 ft Altitude

Temperature @ Alt, T 59.0o F Temperature @ Alt, TBased on Standard Day Atmosphere

Delta 1.0000 Delta

Theta 1.0000 Theta

Sigma 1.0000 Sigma

Density 2.377E-03 slugs/ft3

Density

Weight 59,488 lbs Weight

VSTALL 100.00 kts VSTALL Stall Speed must be no greater then 100 knots @ SL Max TOGW, from RFP

M 0.151 M

Input Source: This section describes where the initial input values are referenced from

Lapse Rate α 0.643503 α Lapse Rate Based on High Bypass Ratio Turbofan Engine, Source: Hernando Jimenez - "An Energy Based Approach to Aircraft Constraint Analysis - Part 2), ASDL GA Tech, AE6343, Fall 2006

Fuel/Payload β 1 β Specified by RFP to be Max TOGW

Load Factor n 1 n Level Flight n=1

Gravity g 32.2 ft/s2 g Earth

Excrescence Drag R 0 slug/ft3 R Gear retracted

Freesteam Velocity Velocity 590.7335 ft/s Velocity Assume 10,000 ft/min climb (from RFP) and 350 knot ground speed during climb (from Roskam page 62); therefore, Rclimb = Alt./(10K/min)*350knots

Dynamic Pressure q 414.74 psf q Calculated from Velocity and Ambient Conditions

Min Drag CD0 0.017179 CD0Includes External Stores Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 118-122, 156, 166 for Fighters

Drag Polar Coefficient K1 0.07 K1 Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 156

Drag Polar Coefficient K2 0 K2Typically Zero, Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 156

Vertical Velocity dh/dt 166.67 ft/s dh/dt Specified 10,000 ft/min capability at SL/Max TOGW, Requirement from RFP

Vertical Acceleration dV/dt 0 ft/s2 dV/dt zero, no change in vertical acceleration

Additional Inputs

Altitude 0 ft Altitude Max Altitude

Temperature @ Alt, T 59.0o F Temperature @ Alt, TBased on Standard Day Atmosphere

Delta 1.0000 Delta

Stall Speed, 100 knots

Rate of Climb,10,000 ft/min

Theta 1.0000 Theta

Sigma 1.0000 Sigma

Density 2.377E-03 slugs/ft3

Density

Weight 59,488 lbs Weight

VCLIMB 350.00 kts VCLIMBAssume 10,000 ft/min climb (from RFP) and 350 knot ground speed during climb (from Roskam page 62); therefore, Rclimb = Alt./(10K/min)*350knots

M 0.529 M

Input Source: This section describes where the initial input values are referenced from

Lapse Rate α 0.449458 α Lapse Rate Based on High Bypass Ratio Turbofan Engine, Source: Hernando Jimenez - "An Energy Based Approach to Aircraft Constraint Analysis - Part 2), ASDL GA Tech, AE6343, Fall 2006

Fuel/Payload β 0.75 β Specified by RFP to be 75% of Max TOGW

Load Factor n 5.137207 n Sustained Turn will require a certain g value based on the turn rate, this can be calculated from source: Raymer, "Aircraft Design, A Conceptual Approach, 3rd Edition", 1999, pg 106

Gravity g 32.2 ft/s2 g Earth

Excrescence Drag R 0 slug/ft3 R Gear retracted

Freesteam Velocity Velocity 774.7048 ft/s Velocity 459 cruise speed, but max speed is 550

Dynamic Pressure q 448.76 psf q Calculated from Velocity and Ambient Conditions

Min Drag CD0 0.017179 CD0Includes External Stores Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 118-122, 156, 166 for Fighters

Drag Polar Coefficient K1 0.07 K1 Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 156

Drag Polar Coefficient K2 0 K2Typically Zero, Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 156

Vertical Velocity dh/dt 0 ft/s dh/dt zero, no change in altitude

Vertical Acceleration dV/dt 0 ft/s2 dV/dt zero, no change in vertical acceleration

Additional Inputs

Altitude 15,000 ft Altitude Specified by RFT

Temperature @ Alt, T 5.6o F Temperature @ Alt, TBased on Standard Day Atmosphere

Delta 0.5643 Delta

Theta 0.8970 Theta

Sigma 0.6292 Sigma

Density 1.495E-03 slugs/ft3

Density

Weight 44,616 lbs Weight

VCRUISE 459.00 kts VCRUISE 459 cruise speed, but max speed is 550

M 0.733 M

Input Source: This section describes where the initial input values are referenced from

Lapse Rate α 0.852729 α Lapse Rate Based on High Bypass Ratio Turbofan Engine, Source: Hernando Jimenez - "An Energy Based Approach to Aircraft Constraint Analysis - Part 2), ASDL GA Tech, AE6343, Fall 2006

Fuel/Payload β 1 β Take off is max Take off wieght Beta = 1

Load Factor n 1 n

Gravity g 32.2 ft/s2 g Earth

Excrescence Drag R 0.01 slug/ft3 R Gear Down, 10 sq.ft for landing gear

Freesteam Velocity Velocity 173.8444 ft/s Velocity Speed for Take off

Dynamic Pressure q 35.92 psf q Calculated from Velocity and Ambient Conditions

Min Drag CD0 0.037179 CD0Must have Flaps, Includes External Stores Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 118-122, 156, 166 for Fighters

Drag Polar Coefficient K1 0.07 K1 Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 156

Drag Polar Coefficient K2 0 K2Typically Zero, Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 156

Vertical Velocity dh/dt 0 ft/s dh/dt zero, no change in altitude

Vertical Acceleration dV/dt 0 ft/s2 dV/dt zero, no change in vertical acceleration

Additional Inputs

Altitude 0 ft Altitude Specified by RFT

Temperature @ Alt, T 59.0o F Temperature @ Alt, TBased on Standard Day Atmosphere

Takeoff Ground Roll

Sustained Turn Rate 12deg./s

Delta 1.0000 Delta

Theta 1.0000 Theta

Sigma 1.0000 Sigma

Density 2.377E-03 slugs/ft3

Density

Weight 59,488 lbs Weight

CLMAX 1.900 CLMAX Weight and Speed at Take off to make CLMAX=1.9, Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 185

VTO 103.00 kts VTO Speed for Take off

M 0.156 M

μg 0.025 μgHot Runway Coefficient of Friction Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 185

Distance 2000 ft s_takeoff Required in RFP

kto 1.2 K for take off, Source: Hernando Jimenez - "An Energy Based Approach to Aircraft Constraint Analysis - Part 2), ASDL GA Tech, AE6343, Fall 2006

tr 3 s 3 seconds for rotation, typical for most fighters, Source: Hernando Jimenez - "An Energy Based Approach to Aircraft Constraint Analysis - Part 2), ASDL GA Tech, AE6343, Fall 2006

Input Source: This section describes where the initial input values are referenced from

Lapse Rate α 0.852729 α Lapse Rate Based on High Bypass Ratio Turbofan Engine, Source: Hernando Jimenez - "An Energy Based Approach to Aircraft Constraint Analysis - Part 2), ASDL GA Tech, AE6343, Fall 2006

Fuel/Payload β 0.737769 β Landing distance is based on the weight at the end of the mission, therefore, the beta chosen reflects the end of the mission before the reserve loiter

Load Factor n 1 n Sustained Turn will require a certain g value based on the turn rate, this can be calculated from source: Raymer, "Aircraft Design, A Conceptual Approach, 3rd Edition", 1999, pg 106

Gravity g 32.2 ft/s2 g Earth

Excrescence Drag R 0.01 slug/ft3 R Gear Down, 10 sq.ft for landing gear

Freesteam Velocity Velocity 173.8444 ft/s Velocity Speed for Take off

Dynamic Pressure q 35.92 psf q Calculated from Velocity and Ambient Conditions

Min Drag CD0 0.037179 CD0Must have Flaps, Includes External Stores Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 118-122, 156, 166 for Fighters

Drag Polar Coefficient K1 0.07 K1 Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 156

Drag Polar Coefficient K2 0 K2Typically Zero, Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 156

Vertical Velocity dh/dt 0 ft/s dh/dt zero, no change in altitude

Vertical Acceleration dV/dt 0 ft/s2 dV/dt zero, no change in vertical acceleration

Additional Inputs

Altitude 0 ft Altitude Specified by RFT

Temperature @ Alt, T 59.0o F Temperature @ Alt, TBased on Standard Day Atmosphere

Delta 1.0000 Delta

Theta 1.0000 Theta

Sigma 1.0000 Sigma

Density 2.377E-03 slugs/ft3

Density

Weight 43,889 lbs Weight

CLMAX 1.900 CLMAX Weight and Speed at Take off to make CLMAX=1.9, Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 185

VL 103.00 kts VTO Speed for Take off

M 0.156 M

μg 0.025 μgHot Runway Coefficient of Friction Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 185

SFL 2000 ft s_landing Required in RFP

kto 1.2 K for take off, Source: Hernando Jimenez - "An Energy Based Approach to Aircraft Constraint Analysis - Part 2), ASDL GA Tech, AE6343, Fall 2006

tr 3 s 3 seconds for rotation, typical for most fighters, Source: Hernando Jimenez - "An Energy Based Approach to Aircraft Constraint Analysis - Part 2), ASDL GA Tech, AE6343, Fall 2006

SL 3800 ft Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 187

SFL 6333.333

VA 158 kts^2

VSL 131.4464 kts

VSL 221.8566 ft/s

Landing Distance

Input Source: This section describes where the initial input values are referenced from

Takeoff Ground Roll HOT DAY

Lapse Rate α 0.811621 α Lapse Rate Based on High Bypass Ratio Turbofan Engine, Source: Hernando Jimenez - "An Energy Based Approach to Aircraft Constraint Analysis - Part 2), ASDL GA Tech, AE6343, Fall 2006

Fuel/Payload β 1 β Take off is max Take off wieght Beta = 1

Load Factor n 1 n

Gravity g 32.2 ft/s2 g Earth

Excrescence Drag R 0.01 slug/ft3 R Gear Down, 10 sq.ft for landing gear

Freesteam Velocity Velocity 173.8444 ft/s Velocity Speed for Take off

Dynamic Pressure q 32.70 psf q Calculated from Velocity and Ambient Conditions

Min Drag CD0 0.037179 CD0Must have Flaps, Includes External Stores Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 118-122, 156, 166 for Fighters

Drag Polar Coefficient K1 0.07 K1 Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 156

Drag Polar Coefficient K2 0 K2Typically Zero, Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 156

Vertical Velocity dh/dt 0 ft/s dh/dt zero, no change in altitude

Vertical Acceleration dV/dt 0 ft/s2 dV/dt zero, no change in vertical acceleration

Additional Inputs

Altitude 0 ft Altitude Specified by RFT

Temperature @ Alt, T 110.0o F Temperature @ Alt, TAfghanistan at sea level can reach tempratures of 110 °F

Delta 1.0000 Delta

Theta 1.0983 Theta

Sigma 0.9105 Sigma

Density 2.164E-03 slugs/ft3

Density

Weight 59,488 lbs Weight

CLMAX 1.900 CLMAX Weight and Speed at Take off to make CLMAX=1.9, Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 185

VTO 103.00 kts VTO Speed for Take off

M 0.149 M

μg 0.025 μgHot Runway Coefficient of Friction Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 185

Distance 2000 ft s_takeoff Required in RFP

kto 1.2 K for take off, Source: Hernando Jimenez - "An Energy Based Approach to Aircraft Constraint Analysis - Part 2), ASDL GA Tech, AE6343, Fall 2006

tr 3 s 3 seconds for rotation, typical for most fighters, Source: Hernando Jimenez - "An Energy Based Approach to Aircraft Constraint Analysis - Part 2), ASDL GA Tech, AE6343, Fall 2006

Source: This section describes where the initial input values are referenced from

Lapse Rate Based on High Bypass Ratio Turbofan Engine, Source: Hernando Jimenez - "An Energy Based Approach to Aircraft Constraint Analysis - Part 2), ASDL GA Tech, AE6343, Fall 2006

At Cruising Altitude

Level Flight n=1

Gear retracted for level flight

Optimum Cruise first guess assumed to be 459 knots, Fighter Example Problem, Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 62

Calculated from Velocity and Ambient Conditions

Includes External Stores Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 118-122, 156, 166 for Fighters

Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 156

Typically Zero, Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 156

zero, no change in altitude

zero, no change in vertical acceleration

Cruising Alt.

Based on Standard Day Atmosphere

Optimum Cruise first guess assumed to be 459 knots, Fighter Example Problem, Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 62

Wings are swept to reduce compressibility in transonic regime

Source: This section describes where the initial input values are referenced from

Lapse Rate Based on High Bypass Ratio Turbofan Engine, Source: Hernando Jimenez - "An Energy Based Approach to Aircraft Constraint Analysis - Part 2), ASDL GA Tech, AE6343, Fall 2006

At Cruising Altitude

Level Flight n=1

Gear retracted for level flight

Specified in RFP - "2006-2007 AIAA Graduate Team Aircraft Design Competition - Modified", AE 6343, Project 1, Fall 2007

Calculated from Velocity and Ambient Conditions

Drag Include Compressibility for High Mach Number, and External Stores Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 118-122, 156, 166 for Fighters

Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 156

Typically Zero, Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 156

zero, no change in altitude

zero, no change in vertical acceleration

Cruising Alt.

Based on Standard Day Atmosphere

Velocity in knots for my Reference

Due to the High Mach number there will be additional drag due to Compressibility

Source: This section describes where the initial input values are referenced from

Lapse Rate Based on High Bypass Ratio Turbofan Engine, Source: Hernando Jimenez - "An Energy Based Approach to Aircraft Constraint Analysis - Part 2), ASDL GA Tech, AE6343, Fall 2006

Specified by RFP to be Max TOGW

Sustained Turn will require a certain g value based on the turn rate, this can be calculated from source: Raymer, "Aircraft Design, A Conceptual Approach, 3rd Edition", 1999, pg 106

Gear retracted

275 knots min, provided by RFP

Calculated from Velocity and Ambient Conditions

Includes External Stores Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 118-122, 156, 166 for Fighters

Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 156

Typically Zero, Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 156

zero, no change in altitude

zero, no change in vertical acceleration

Based on Standard Day Atmosphere

275 knots min, provided by RFP

Source: This section describes where the initial input values are referenced from

Lapse Rate Based on High Bypass Ratio Turbofan Engine, Source: Hernando Jimenez - "An Energy Based Approach to Aircraft Constraint Analysis - Part 2), ASDL GA Tech, AE6343, Fall 2006

Specified by RFP to be Max TOGW

Level Flight n=1

Gear retracted

Cruise Velocity

Calculated from Velocity and Ambient Conditions

Includes External Stores Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 118-122, 156, 166 for Fighters

Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 156

Typically Zero, Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 156

Specified 100 ft/min capability at 45,000 ft (Service Ceiling) to allow for maneuver margin. Requirement from RFP

zero, no change in vertical acceleration

Max Altitude

Based on Standard Day Atmosphere

Source: This section describes where the initial input values are referenced from

Lapse Rate Based on High Bypass Ratio Turbofan Engine, Source: Hernando Jimenez - "An Energy Based Approach to Aircraft Constraint Analysis - Part 2), ASDL GA Tech, AE6343, Fall 2006

Specified by RFP to be Max TOGW

Level Flight n=1

Gear retracted

Stall Speed must be no greater then 100 knots @ SL Max TOGW, from RFP

Calculated from Velocity and Ambient Conditions

Includes Flaps Down, External Stores Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 118-122, 156, 166 for Fighters

Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 156

Typically Zero, Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 156

zero, no change in altitude

zero, no change in vertical acceleration

Based on Standard Day Atmosphere

Stall Speed must be no greater then 100 knots @ SL Max TOGW, from RFP

Source: This section describes where the initial input values are referenced from

Lapse Rate Based on High Bypass Ratio Turbofan Engine, Source: Hernando Jimenez - "An Energy Based Approach to Aircraft Constraint Analysis - Part 2), ASDL GA Tech, AE6343, Fall 2006

Specified by RFP to be Max TOGW

Level Flight n=1

Gear retracted

Assume 10,000 ft/min climb (from RFP) and 350 knot ground speed during climb (from Roskam page 62); therefore, Rclimb = Alt./(10K/min)*350knots

Calculated from Velocity and Ambient Conditions

Includes External Stores Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 118-122, 156, 166 for Fighters

Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 156

Typically Zero, Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 156

Specified 10,000 ft/min capability at SL/Max TOGW, Requirement from RFP

zero, no change in vertical acceleration

Max Altitude

Based on Standard Day Atmosphere

Assume 10,000 ft/min climb (from RFP) and 350 knot ground speed during climb (from Roskam page 62); therefore, Rclimb = Alt./(10K/min)*350knots

Source: This section describes where the initial input values are referenced from

Lapse Rate Based on High Bypass Ratio Turbofan Engine, Source: Hernando Jimenez - "An Energy Based Approach to Aircraft Constraint Analysis - Part 2), ASDL GA Tech, AE6343, Fall 2006

Specified by RFP to be 75% of Max TOGW

Sustained Turn will require a certain g value based on the turn rate, this can be calculated from source: Raymer, "Aircraft Design, A Conceptual Approach, 3rd Edition", 1999, pg 106

Gear retracted

459 cruise speed, but max speed is 550

Calculated from Velocity and Ambient Conditions

Includes External Stores Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 118-122, 156, 166 for Fighters

Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 156

Typically Zero, Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 156

zero, no change in altitude

zero, no change in vertical acceleration

Specified by RFT

Based on Standard Day Atmosphere

459 cruise speed, but max speed is 550

Source: This section describes where the initial input values are referenced from

Lapse Rate Based on High Bypass Ratio Turbofan Engine, Source: Hernando Jimenez - "An Energy Based Approach to Aircraft Constraint Analysis - Part 2), ASDL GA Tech, AE6343, Fall 2006

Take off is max Take off wieght Beta = 1

Gear Down, 10 sq.ft for landing gear

Speed for Take off

Calculated from Velocity and Ambient Conditions

Must have Flaps, Includes External Stores Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 118-122, 156, 166 for Fighters

Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 156

Typically Zero, Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 156

zero, no change in altitude

zero, no change in vertical acceleration

Specified by RFT

Based on Standard Day Atmosphere

Weight and Speed at Take off to make CLMAX=1.9, Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 185

Speed for Take off

Hot Runway Coefficient of Friction Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 185

Required in RFP

K for take off, Source: Hernando Jimenez - "An Energy Based Approach to Aircraft Constraint Analysis - Part 2), ASDL GA Tech, AE6343, Fall 20063 seconds for rotation, typical for most fighters, Source: Hernando Jimenez - "An Energy Based Approach to Aircraft Constraint Analysis - Part 2), ASDL GA Tech, AE6343, Fall 2006

Source: This section describes where the initial input values are referenced from

Lapse Rate Based on High Bypass Ratio Turbofan Engine, Source: Hernando Jimenez - "An Energy Based Approach to Aircraft Constraint Analysis - Part 2), ASDL GA Tech, AE6343, Fall 2006

Landing distance is based on the weight at the end of the mission, therefore, the beta chosen reflects the end of the mission before the reserve loiter

Sustained Turn will require a certain g value based on the turn rate, this can be calculated from source: Raymer, "Aircraft Design, A Conceptual Approach, 3rd Edition", 1999, pg 106

Gear Down, 10 sq.ft for landing gear

Speed for Take off

Calculated from Velocity and Ambient Conditions

Must have Flaps, Includes External Stores Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 118-122, 156, 166 for Fighters

Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 156

Typically Zero, Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 156

zero, no change in altitude

zero, no change in vertical acceleration

Specified by RFT

Based on Standard Day Atmosphere

Weight and Speed at Take off to make CLMAX=1.9, Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 185

Speed for Take off

Hot Runway Coefficient of Friction Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 185

Required in RFP

K for take off, Source: Hernando Jimenez - "An Energy Based Approach to Aircraft Constraint Analysis - Part 2), ASDL GA Tech, AE6343, Fall 2006

3 seconds for rotation, typical for most fighters, Source: Hernando Jimenez - "An Energy Based Approach to Aircraft Constraint Analysis - Part 2), ASDL GA Tech, AE6343, Fall 2006

Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 187

Source: This section describes where the initial input values are referenced from

Lapse Rate Based on High Bypass Ratio Turbofan Engine, Source: Hernando Jimenez - "An Energy Based Approach to Aircraft Constraint Analysis - Part 2), ASDL GA Tech, AE6343, Fall 2006

Take off is max Take off wieght Beta = 1

Gear Down, 10 sq.ft for landing gear

Speed for Take off

Calculated from Velocity and Ambient Conditions

Must have Flaps, Includes External Stores Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 118-122, 156, 166 for Fighters

Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 156

Typically Zero, Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 156

zero, no change in altitude

zero, no change in vertical acceleration

Specified by RFT

Afghanistan at sea level can reach tempratures of 110 °F

Weight and Speed at Take off to make CLMAX=1.9, Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 185

Speed for Take off

Hot Runway Coefficient of Friction Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 185

Required in RFP

K for take off, Source: Hernando Jimenez - "An Energy Based Approach to Aircraft Constraint Analysis - Part 2), ASDL GA Tech, AE6343, Fall 20063 seconds for rotation, typical for most fighters, Source: Hernando Jimenez - "An Energy Based Approach to Aircraft Constraint Analysis - Part 2), ASDL GA Tech, AE6343, Fall 2006

Lapse Rate Based on High Bypass Ratio Turbofan Engine, Source: Hernando Jimenez - "An Energy Based Approach to Aircraft Constraint Analysis - Part 2), ASDL GA Tech, AE6343, Fall 2006

Optimum Cruise first guess assumed to be 459 knots, Fighter Example Problem, Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 62

Includes External Stores Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 118-122, 156, 166 for Fighters

Typically Zero, Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 156

Optimum Cruise first guess assumed to be 459 knots, Fighter Example Problem, Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 62

Lapse Rate Based on High Bypass Ratio Turbofan Engine, Source: Hernando Jimenez - "An Energy Based Approach to Aircraft Constraint Analysis - Part 2), ASDL GA Tech, AE6343, Fall 2006

Specified in RFP - "2006-2007 AIAA Graduate Team Aircraft Design Competition - Modified", AE 6343, Project 1, Fall 2007

Drag Include Compressibility for High Mach Number, and External Stores Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 118-122, 156, 166 for Fighters

Typically Zero, Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 156

Lapse Rate Based on High Bypass Ratio Turbofan Engine, Source: Hernando Jimenez - "An Energy Based Approach to Aircraft Constraint Analysis - Part 2), ASDL GA Tech, AE6343, Fall 2006

Sustained Turn will require a certain g value based on the turn rate, this can be calculated from source: Raymer, "Aircraft Design, A Conceptual Approach, 3rd Edition", 1999, pg 106

Includes External Stores Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 118-122, 156, 166 for Fighters

Typically Zero, Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 156

Lapse Rate Based on High Bypass Ratio Turbofan Engine, Source: Hernando Jimenez - "An Energy Based Approach to Aircraft Constraint Analysis - Part 2), ASDL GA Tech, AE6343, Fall 2006

Includes External Stores Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 118-122, 156, 166 for Fighters

Typically Zero, Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 156

Specified 100 ft/min capability at 45,000 ft (Service Ceiling) to allow for maneuver margin. Requirement from RFP

Lapse Rate Based on High Bypass Ratio Turbofan Engine, Source: Hernando Jimenez - "An Energy Based Approach to Aircraft Constraint Analysis - Part 2), ASDL GA Tech, AE6343, Fall 2006

Includes Flaps Down, External Stores Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 118-122, 156, 166 for Fighters

Typically Zero, Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 156

Lapse Rate Based on High Bypass Ratio Turbofan Engine, Source: Hernando Jimenez - "An Energy Based Approach to Aircraft Constraint Analysis - Part 2), ASDL GA Tech, AE6343, Fall 2006

Assume 10,000 ft/min climb (from RFP) and 350 knot ground speed during climb (from Roskam page 62); therefore, Rclimb = Alt./(10K/min)*350knots

Includes External Stores Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 118-122, 156, 166 for Fighters

Typically Zero, Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 156

Assume 10,000 ft/min climb (from RFP) and 350 knot ground speed during climb (from Roskam page 62); therefore, Rclimb = Alt./(10K/min)*350knots

Lapse Rate Based on High Bypass Ratio Turbofan Engine, Source: Hernando Jimenez - "An Energy Based Approach to Aircraft Constraint Analysis - Part 2), ASDL GA Tech, AE6343, Fall 2006

Sustained Turn will require a certain g value based on the turn rate, this can be calculated from source: Raymer, "Aircraft Design, A Conceptual Approach, 3rd Edition", 1999, pg 106

Includes External Stores Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 118-122, 156, 166 for Fighters

Typically Zero, Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 156

Lapse Rate Based on High Bypass Ratio Turbofan Engine, Source: Hernando Jimenez - "An Energy Based Approach to Aircraft Constraint Analysis - Part 2), ASDL GA Tech, AE6343, Fall 2006

Must have Flaps, Includes External Stores Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 118-122, 156, 166 for Fighters

Typically Zero, Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 156

Weight and Speed at Take off to make CLMAX=1.9, Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 185

Hot Runway Coefficient of Friction Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 185

K for take off, Source: Hernando Jimenez - "An Energy Based Approach to Aircraft Constraint Analysis - Part 2), ASDL GA Tech, AE6343, Fall 20063 seconds for rotation, typical for most fighters, Source: Hernando Jimenez - "An Energy Based Approach to Aircraft Constraint Analysis - Part 2), ASDL GA Tech, AE6343, Fall 2006

Lapse Rate Based on High Bypass Ratio Turbofan Engine, Source: Hernando Jimenez - "An Energy Based Approach to Aircraft Constraint Analysis - Part 2), ASDL GA Tech, AE6343, Fall 2006

Landing distance is based on the weight at the end of the mission, therefore, the beta chosen reflects the end of the mission before the reserve loiter

Sustained Turn will require a certain g value based on the turn rate, this can be calculated from source: Raymer, "Aircraft Design, A Conceptual Approach, 3rd Edition", 1999, pg 106

Must have Flaps, Includes External Stores Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 118-122, 156, 166 for Fighters

Typically Zero, Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 156

Weight and Speed at Take off to make CLMAX=1.9, Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 185

Hot Runway Coefficient of Friction Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 185

K for take off, Source: Hernando Jimenez - "An Energy Based Approach to Aircraft Constraint Analysis - Part 2), ASDL GA Tech, AE6343, Fall 2006

3 seconds for rotation, typical for most fighters, Source: Hernando Jimenez - "An Energy Based Approach to Aircraft Constraint Analysis - Part 2), ASDL GA Tech, AE6343, Fall 2006

Lapse Rate Based on High Bypass Ratio Turbofan Engine, Source: Hernando Jimenez - "An Energy Based Approach to Aircraft Constraint Analysis - Part 2), ASDL GA Tech, AE6343, Fall 2006

Must have Flaps, Includes External Stores Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 118-122, 156, 166 for Fighters

Typically Zero, Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 156

Weight and Speed at Take off to make CLMAX=1.9, Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 185

Hot Runway Coefficient of Friction Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 185

K for take off, Source: Hernando Jimenez - "An Energy Based Approach to Aircraft Constraint Analysis - Part 2), ASDL GA Tech, AE6343, Fall 20063 seconds for rotation, typical for most fighters, Source: Hernando Jimenez - "An Energy Based Approach to Aircraft Constraint Analysis - Part 2), ASDL GA Tech, AE6343, Fall 2006

Output

W/S T/W (Lift and Induced Drag Component)T/W (Linear Drag Component)T/W (Profile Drag Component)dh/dt dV/dt T/W Total

10 0.01676 0.00000 1.17956 0.00000 0.00000 1.1963

20 0.03352 0.00000 0.58978 0.00000 0.00000 0.6233

30 0.05028 0.00000 0.39319 0.00000 0.00000 0.4435

40 0.06704 0.00000 0.29489 0.00000 0.00000 0.3619

50 0.08381 0.00000 0.23591 0.00000 0.00000 0.3197

60 0.10057 0.00000 0.19659 0.00000 0.00000 0.2972

70 0.11733 0.00000 0.16851 0.00000 0.00000 0.2858

80 0.13409 0.00000 0.14745 0.00000 0.00000 0.2815

90 0.15085 0.00000 0.13106 0.00000 0.00000 0.2819

100 0.16761 0.00000 0.11796 0.00000 0.00000 0.2856

110 0.18437 0.00000 0.10723 0.00000 0.00000 0.2916

120 0.20113 0.00000 0.09830 0.00000 0.00000 0.2994

130 0.21789 0.00000 0.09074 0.00000 0.00000 0.3086

140 0.23466 0.00000 0.08425 0.00000 0.00000 0.3189

150 0.25142 0.00000 0.07864 0.00000 0.00000 0.3301

160 0.26818 0.00000 0.07372 0.00000 0.00000 0.3419

170 0.28494 0.00000 0.06939 0.00000 0.00000 0.3543

180 0.30170 0.00000 0.06553 0.00000 0.00000 0.3672

190 0.31846 0.00000 0.06208 0.00000 0.00000 0.3805

200 0.33522 0.00000 0.05898 0.00000 0.00000 0.3942

Output

W/S T/W (Lift and Induced Drag Component)T/W (Linear Drag Component)T/W (Profile Drag Component)dh/dt dV/dt T/W Total

10 0.01190 0.00000 1.97745 0.00000 0.00000 1.9893

20 0.02380 0.00000 0.98872 0.00000 0.00000 1.0125

30 0.03569 0.00000 0.65915 0.00000 0.00000 0.6948

40 0.04759 0.00000 0.49436 0.00000 0.00000 0.5420

50 0.05949 0.00000 0.39549 0.00000 0.00000 0.4550

60 0.07139 0.00000 0.32957 0.00000 0.00000 0.4010

70 0.08329 0.00000 0.28249 0.00000 0.00000 0.3658

80 0.09519 0.00000 0.24718 0.00000 0.00000 0.3424

90 0.10708 0.00000 0.21972 0.00000 0.00000 0.3268

100 0.11898 0.00000 0.19774 0.00000 0.00000 0.3167

110 0.13088 0.00000 0.17977 0.00000 0.00000 0.3106

120 0.14278 0.00000 0.16479 0.00000 0.00000 0.3076

130 0.15468 0.00000 0.15211 0.00000 0.00000 0.3068

140 0.16658 0.00000 0.14125 0.00000 0.00000 0.3078

150 0.17847 0.00000 0.13183 0.00000 0.00000 0.3103

160 0.19037 0.00000 0.12359 0.00000 0.00000 0.3140

170 0.20227 0.00000 0.11632 0.00000 0.00000 0.3186

180 0.21417 0.00000 0.10986 0.00000 0.00000 0.3240

190 0.22607 0.00000 0.10408 0.00000 0.00000 0.3301

200 0.23796 0.00000 0.09887 0.00000 0.00000 0.3368

Output

W/S T/W (Lift and Induced Drag Component)T/W (Linear Drag Component)T/W (Profile Drag Component)dh/dt dV/dt T/W Total

10 0.04074 0.00000 0.63877 0.00000 0.00000 0.6795

20 0.08148 0.00000 0.31938 0.00000 0.00000 0.4009

30 0.12223 0.00000 0.21292 0.00000 0.00000 0.3351

40 0.16297 0.00000 0.15969 0.00000 0.00000 0.3227

50 0.20371 0.00000 0.12775 0.00000 0.00000 0.3315

60 0.24445 0.00000 0.10646 0.00000 0.00000 0.3509

70 0.28519 0.00000 0.09125 0.00000 0.00000 0.3764

80 0.32594 0.00000 0.07985 0.00000 0.00000 0.4058

90 0.36668 0.00000 0.07097 0.00000 0.00000 0.4377

100 0.40742 0.00000 0.06388 0.00000 0.00000 0.4713

110 0.44816 0.00000 0.05807 0.00000 0.00000 0.5062

120 0.48891 0.00000 0.05323 0.00000 0.00000 0.5421

130 0.52965 0.00000 0.04914 0.00000 0.00000 0.5788

140 0.57039 0.00000 0.04563 0.00000 0.00000 0.6160

150 0.61113 0.00000 0.04258 0.00000 0.00000 0.6537

160 0.65187 0.00000 0.03992 0.00000 0.00000 0.6918

170 0.69262 0.00000 0.03757 0.00000 0.00000 0.7302

180 0.73336 0.00000 0.03549 0.00000 0.00000 0.7688

190 0.77410 0.00000 0.03362 0.00000 0.00000 0.8077

200 0.81484 0.00000 0.03194 0.00000 0.00000 0.8468

Output

W/S T/W (Lift and Induced Drag Component)T/W (Linear Drag Component)T/W (Profile Drag Component)dh/dt dV/dt T/W Total

10 0.02137 0.00000 1.12433 0.00955 0.00000 1.1552

20 0.04274 0.00000 0.56216 0.00955 0.00000 0.6144

30 0.06411 0.00000 0.37478 0.00955 0.00000 0.4484

40 0.08547 0.00000 0.28108 0.00955 0.00000 0.3761

50 0.10684 0.00000 0.22487 0.00955 0.00000 0.3413

60 0.12821 0.00000 0.18739 0.00955 0.00000 0.3251

70 0.14958 0.00000 0.16062 0.00955 0.00000 0.3197

80 0.17095 0.00000 0.14054 0.00955 0.00000 0.3210

90 0.19232 0.00000 0.12493 0.00955 0.00000 0.3268

100 0.21369 0.00000 0.11243 0.00955 0.00000 0.3357

110 0.23506 0.00000 0.10221 0.00955 0.00000 0.3468

120 0.25642 0.00000 0.09369 0.00955 0.00000 0.3597

130 0.27779 0.00000 0.08649 0.00955 0.00000 0.3738

140 0.29916 0.00000 0.08031 0.00955 0.00000 0.3890

150 0.32053 0.00000 0.07496 0.00955 0.00000 0.4050

160 0.34190 0.00000 0.07027 0.00955 0.00000 0.4217

170 0.36327 0.00000 0.06614 0.00955 0.00000 0.4390

180 0.38464 0.00000 0.06246 0.00955 0.00000 0.4566

190 0.40601 0.00000 0.05918 0.00955 0.00000 0.4747

200 0.42737 0.00000 0.05622 0.00955 0.00000 0.4931

Output

W/S T/W (Lift and Induced Drag Component)T/W (Linear Drag Component)T/W (Profile Drag Component)dh/dt dV/dt T/W Total

10 0.02449 0.00000 0.14697 0.00000 0.00000 0.1715

20 0.04899 0.00000 0.07349 0.00000 0.00000 0.1225

30 0.07348 0.00000 0.04899 0.00000 0.00000 0.1225

40 0.09797 0.00000 0.03674 0.00000 0.00000 0.1347

50 0.12247 0.00000 0.02939 0.00000 0.00000 0.1519

60 0.14696 0.00000 0.02450 0.00000 0.00000 0.1715

70 0.17145 0.00000 0.02100 0.00000 0.00000 0.1924

80 0.19595 0.00000 0.01837 0.00000 0.00000 0.2143

90 0.22044 0.00000 0.01633 0.00000 0.00000 0.2368

100 0.24493 0.00000 0.01470 0.00000 0.00000 0.2596

110 0.26943 0.00000 0.01336 0.00000 0.00000 0.2828

120 0.29392 0.00000 0.01225 0.00000 0.00000 0.3062

130 0.31841 0.00000 0.01131 0.00000 0.00000 0.3297

140 0.34291 0.00000 0.01050 0.00000 0.00000 0.3534

150 0.36740 0.00000 0.00980 0.00000 0.00000 0.3772

160 0.39189 0.00000 0.00919 0.00000 0.00000 0.4011

170 0.41639 0.00000 0.00865 0.00000 0.00000 0.4250

180 0.44088 0.00000 0.00817 0.00000 0.00000 0.4490

190 0.46537 0.00000 0.00774 0.00000 0.00000 0.4731

200 0.48987 0.00000 0.00735 0.00000 0.00000 0.4972

Output

W/S T/W (Lift and Induced Drag Component)T/W (Linear Drag Component)T/W (Profile Drag Component)dh/dt dV/dt T/W Total

10 0.00266 0.00000 1.10723 0.43844 0.00000 1.5483

20 0.00532 0.00000 0.55361 0.43844 0.00000 0.9974

30 0.00798 0.00000 0.36908 0.43844 0.00000 0.8155

40 0.01064 0.00000 0.27681 0.43844 0.00000 0.7259

50 0.01331 0.00000 0.22145 0.43844 0.00000 0.6732

60 0.01597 0.00000 0.18454 0.43844 0.00000 0.6389

70 0.01863 0.00000 0.15818 0.43844 0.00000 0.6152

80 0.02129 0.00000 0.13840 0.43844 0.00000 0.5981

90 0.02395 0.00000 0.12303 0.43844 0.00000 0.5854

100 0.02661 0.00000 0.11072 0.43844 0.00000 0.5758

110 0.02927 0.00000 0.10066 0.43844 0.00000 0.5684

120 0.03193 0.00000 0.09227 0.43844 0.00000 0.5626

130 0.03459 0.00000 0.08517 0.43844 0.00000 0.5582

140 0.03726 0.00000 0.07909 0.43844 0.00000 0.5548

150 0.03992 0.00000 0.07382 0.43844 0.00000 0.5522

160 0.04258 0.00000 0.06920 0.43844 0.00000 0.5502

170 0.04524 0.00000 0.06513 0.43844 0.00000 0.5488

180 0.04790 0.00000 0.06151 0.43844 0.00000 0.5478

190 0.05056 0.00000 0.05828 0.43844 0.00000 0.5473

200 0.05322 0.00000 0.05536 0.43844 0.00000 0.5470

Output

W/S T/W (Lift and Induced Drag Component)T/W (Linear Drag Component)T/W (Profile Drag Component)dh/dt dV/dt T/W Total

10 0.05227 0.00000 1.71525 0.00000 0.00000 1.7675

20 0.10454 0.00000 0.85763 0.00000 0.00000 0.9622

30 0.15682 0.00000 0.57175 0.00000 0.00000 0.7286

40 0.20909 0.00000 0.42881 0.00000 0.00000 0.6379

50 0.26136 0.00000 0.34305 0.00000 0.00000 0.6044

60 0.31363 0.00000 0.28588 0.00000 0.00000 0.5995

70 0.36591 0.00000 0.24504 0.00000 0.00000 0.6109

80 0.41818 0.00000 0.21441 0.00000 0.00000 0.6326

90 0.47045 0.00000 0.19058 0.00000 0.00000 0.6610

100 0.52272 0.00000 0.17153 0.00000 0.00000 0.6942

110 0.57500 0.00000 0.15593 0.00000 0.00000 0.7309

120 0.62727 0.00000 0.14294 0.00000 0.00000 0.7702

130 0.67954 0.00000 0.13194 0.00000 0.00000 0.8115

140 0.73181 0.00000 0.12252 0.00000 0.00000 0.8543

150 0.78409 0.00000 0.11435 0.00000 0.00000 0.8984

160 0.83636 0.00000 0.10720 0.00000 0.00000 0.9436

170 0.88863 0.00000 0.10090 0.00000 0.00000 0.9895

180 0.94090 0.00000 0.09529 0.00000 0.00000 1.0362

190 0.99318 0.00000 0.09028 0.00000 0.00000 1.0835

200 1.04545 0.00000 0.08576 0.00000 0.00000 1.1312

Output

W/S s (ft) T/W Total

10 2,000 0.0660

30 2,000 0.2198

50 2,000 0.3965

70 2,000 0.5950

90 2,000 0.8157

110 2,000 1.0596

130 2,000 1.3286

150 2,000 1.6246

170 2,000 1.9502

190 2,000 2.3085

Find T/W to Equal Takeoff Length

Output

W/S s (ft) T/W Total

76 2,000 0.0000

76 2,000 0.5000

76 2,000 1.0000

76 2,000 1.5000

76 2,000 2.0000

Find T/W to Equal Takeoff Length

Output

W/S s (ft) T/W Total

10 2,000 0.0766

30 2,000 0.2568

50 2,000 0.4657

70 2,000 0.7022

90 2,000 0.9673

110 2,000 1.2627

130 2,000 1.5912

150 2,000 1.9560

170 2,000 2.3611

190 2,000 2.8113

Find T/W to Equal Takeoff Length

n=5

T/W Total

0.962221

0.616086

0.560697

0.577994

0.624366

0.685275

0.754492

0.8289

0.906769

0.987061

1.069116

1.152492

1.236884

1.322075

1.407905

1.494255

1.581032

1.668165

1.755599

1.843287

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0 25 50 75 100 125 150 175 200

W/S

T/W

Ambient Conditons

Flight Conditions Flight Conditions

Airspeed, V 486 ktas Temperature @ Alt, T-90.562o F

Pressure Altitude, h 42000 ft Delta 0.1668

Type of Day std std/trop/hot Theta 0.7116

Temperature, T -90.562o F Sigma 0.2344

Gravity, g 32.2 ft2/sec Density 5.571E-04 slugs/ft

3

m 2.836E-07

n 5.090E-04 ft2/sec

M 0.871

a, Speed of Sound 941.83 ft/sec

Airspeed, V 235.29 kcas

Airspeed, V 820.28 ft/sec

Aerodynamics Notes/Sources:Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 118 - 122

W/S 70 psf Found using Constraint Analyisis

WTO 59,488 lbs Iteratively found using Mission Analysis

S 849.83 sq.ft. Wing Area

b 69 ft Span

A 5.60 Aspect Ratio

e_clean 0.8 Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 156

e_flaps 0.7 Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 156

q 187.42 psf Calculated from Ambient Flight Condition

K1 0.07 Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 118

CL 0.37 Based on Speed and Alt. from above

CD_Stores 0.0038 3.2 sq.ft. for Stores, Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 156

CD_FLAPS 0.0200 Flaps Down Zero Lift, Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 156

CD_Compressablity 0.0025 Compressablity, Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 166

CD0 0.01341 Min Drag with No External Stores

CD 0.027 Includes Stores

CD Takeoff 0.05 Includes Stores and Flaps Down, Oswald Eff = 0.7

CD_Clean 0.02 No Stores

L/D 13.79 Check against Table 2.2 from Roskam

f 11.4 sq.ft. Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 118

SWET 2,850 sq.ft. Wetted Area as a function of TO weight for fighters, Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 118

cf 0.004 Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 120, figure 3.21b, fighters, cf

a -2.3979 Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 122, table 3.4, fighters, cf

b 1 Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 122, table 3.4, fighters

c -0.1289 Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 122, table 3.5, fighters

d 0.7506 Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 122, table 3.5, fighters

n 1 g factor

Drag Polar

V V q M CL CD L/D

Drag Polar

USER INPUTS CALCULATIONS

Knots ft/s psf

59.24838 100 3 0.1061768 25.1302 44.8698 0.560069

74.06048 125 4 0.132721 16.0833 18.3888 0.874625

88.87257 150 6 0.1592652 11.1690 8.8770 1.258199

103.6847 175 9 0.1858094 8.2058 4.7995 1.709727

118.4968 200 11 0.2123535 6.2825 2.8205 2.227484

133.3089 225 14 0.2388977 4.9640 1.7673 2.808864

148.121 250 17 0.2654419 4.0208 1.1654 3.450153

162.933 275 21 0.2919861 3.3230 0.8014 4.146319

177.7451 300 25 0.3185303 2.7922 0.5709 4.890819

192.5572 325 29 0.3450745 2.3792 0.4192 5.675473

207.3693 350 34 0.3716187 2.0514 0.3161 6.490428

222.1814 375 39 0.3981629 1.7870 0.2440 7.324229

236.9935 400 45 0.4247071 1.5706 0.1924 8.164036

251.8056 425 50 0.4512513 1.3913 0.1547 8.995979

266.6177 450 56 0.4777955 1.2410 0.1266 9.805658

281.4298 475 63 0.5043397 1.1138 0.1053 10.57874

296.2419 500 70 0.5308839 1.0052 0.0889 11.30164

311.054 525 77 0.5574281 0.9118 0.0762 11.96214

325.8661 550 84 0.5839723 0.8307 0.0662 12.55

340.6782 575 92 0.6105164 0.7601 0.0582 13.05741

355.4903 600 100 0.6370606 0.6981 0.0518 13.47924

370.3024 625 109 0.6636048 0.6433 0.0466 13.81315

385.1145 650 118 0.690149 0.5948 0.0423 14.05942

399.9266 675 127 0.7166932 0.5516 0.0388 14.22072

414.7387 700 136 0.7432374 0.5129 0.0359 14.3017

429.5508 725 146 0.7697816 0.4781 0.0334 14.30853

444.3629 750 157 0.7963258 0.4468 0.0314 14.24842

459.1749 775 167 0.82287 0.4184 0.0296 14.1292

473.987 800 178 0.8494142 0.3927 0.0281 13.9589

488.7991 825 190 0.8759584 0.3692 0.0269 13.74542

503.6112 850 201 0.9025026 0.3478 0.0258 13.49631

518.4233 875 213 0.9290468 0.3282 0.0248 13.21861

533.2354 900 226 0.955591 0.3102 0.0240 12.91867

548.0475 925 238 0.9821351 0.2937 0.0233 12.60218

562.8596 950 251 1.0086793 0.2785 0.0227 12.2741

577.6717 975 265 1.0352235 0.2644 0.0221 11.93872

592.4838 1000 279 1.0617677 0.2513 0.0217 11.59966

607.2959 1025 293 1.0883119 0.2392 0.0212 11.25997

Max 14.30853

0.866xMax 12.39119

1.2

1.4

Max L/D

-

0.2

0.4

0.6

0.8

1.0

1.2

- 0.03 0.05 0.08 0.10 0.13 0.15 0.18 0.20

Max L/D

CL

CD

Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 118 - 122

Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 156

Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 156

Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 118

3.2 sq.ft. for Stores, Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 156

Flaps Down Zero Lift, Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 156

Compressablity, Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 166

Includes Stores and Flaps Down, Oswald Eff = 0.7

Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 118

Wetted Area as a function of TO weight for fighters, Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 118

Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 120, figure 3.21b, fighters, cf

Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 122, table 3.4, fighters, cf

Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 122, table 3.4, fighters

Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 122, table 3.5, fighters

Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 122, table 3.5, fighters

Compressibility Drag Rise

Red Box Indicates Choosen Aircraft

Red Box Indicates Choosen Aircraft

Red Box Indicates Choosen Aircraft

Red Box Indicates Choosen Aircraft

Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 12

Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 14

Fuel Fraction Estimates

Cruise and Loiter Inputs for Bregeut Range Equation

Red Box Indicates Choosen Aircraft

Red Box Indicates Choosen Aircraft

Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", pg 27, 42, 43, 1985

Empty Weight Data for Fighters

Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", pg 27, 42, 43, 1985

Red Box Indicates Choosen Aircraft

Red Box Indicates Choosen Aircraft

Red Box Indicates Choosen Aircraft

Red Box Indicates Choosen Aircraft

Source: Georgia Tech, AE 6343 Fixed Wing Design Course, Fall 2007 Calculated using this Spreadsheet Tool

Validation Point 1

Input

α 0.33 W/S T/W Lapse Rate

β 0.57 10 2.791 Fuel/Payload

n 2.6 20 1.5549 Load Factor

g 32.2 ft/s2 30 1.168 Gravity

R 0.001832 slug/ft3 40 0.9933 Excrecence Drag

Velocity 695 ft/s 50 0.9035 Freesteam Velocity

q 442.4509 psf 60 0.8562 Dynamic Pressure

CD0 0.019 70 0.8332 Min Drag

K1 0.25 80 0.8253 Drag Polar Coeffecient

K2 0.005 90 0.8275 Drag Polar Coeffecient

dh/dt 35 ft/s 100 0.8368 Vertical Velocity

dV/dt 1.8 ft/s2 110 0.851247 Vertical Acceleration

120 0.869554

130 0.890831

140 0.91444

150 0.939915

160 0.966907

170 0.995147

180 1.024428

190 1.054586

200 1.085488

Validation Point 2

Input

α 0.69 W/S T/W Lapse Rate

β 0.72 10 0.8555 Fuel/Payload

n 1 20 0.521 Load Factor

g 32.2 ft/s2 30 0.4174 Gravity

R 0.001832 slug/ft3 40 0.3714 Excrecence Drag

Velocity 417 ft/s 50 0.3486 Freesteam Velocity

q 159.2823 psf 60 0.3373 Dynamic Pressure

CD0 0.03 70 0.3326 Min Drag

K1 0.25 80 0.332 Drag Polar Coeffecient

K2 0.005 90 0.3342 Drag Polar Coeffecient

dh/dt 35 ft/s 100 0.3383 Vertical Velocity

dV/dt 1.8 ft/s2 110 0.3438 Vertical Acceleration

120 0.350346

130 0.357699

140 0.365686

150 0.37418

160 0.383086

170 0.392332

Code Validation

180 0.401861

190 0.411628

200 0.421598

Validation Point 3

Input

α 0.69 W/S T/W Lapse Rate

β 0.72 10 1.2769 Fuel/Payload

n 1 20 0.6837 Load Factor

g 32.2 ft/s2 30 0.4866 Gravity

R 0.001832 slug/ft3 40 0.3885 Excrecence Drag

Velocity 1338 ft/s 50 0.33 Freesteam Velocity

q 1639.864 psf 60 0.2913 Dynamic Pressure

CD0 0.005 70 0.2639 Min Drag

K1 0.2 80 0.2436 Drag Polar Coeffecient

K2 0.002 90 0.228 Drag Polar Coeffecient

dh/dt 35 ft/s 100 0.2157 Vertical Velocity

dV/dt 1.8 ft/s2 110 0.205821 Vertical Acceleration

120 0.197735

130 0.191034

140 0.185421

150 0.180679

160 0.176644

170 0.173191

180 0.170224

190 0.167666

200 0.165455

Validation Point 4

Input

α 0.82 W/S T/W Lapse Rate

β 0.87 10 2.794 Fuel/Payload

n 1 20 1.413 Load Factor

g 32.2 ft/s2 30 0.9586 Gravity

R 0.002315 slug/ft3 40 0.7359 Excrecence Drag

Velocity 1338 ft/s 50 0.6058 Freesteam Velocity

q 2072.207 psf 60 0.5221 Dynamic Pressure

CD0 0.011 70 0.4648 Min Drag

K1 2 80 0.424 Drag Polar Coeffecient

K2 0.005 90 0.3944 Drag Polar Coeffecient

dh/dt 0 ft/s 100 0.3724 Vertical Velocity

dV/dt 0 ft/s2 110 0.35601 Vertical Acceleration

120 0.34386

130 0.33495

140 0.328585

150 0.324257

160 0.321583

170 0.320272

180 0.320097

190 0.320878

200 0.322471

Validation Point 5

Input

α 0.91 W/S T/W Lapse Rate

β 0.34 10 2.5215 Fuel/Payload

n 3 20 1.2801 Load Factor

g 32.2 ft/s2 30 0.8737 Gravity

R 0.002315 slug/ft3 40 0.676 Excrecence Drag

Velocity 1338 ft/s 50 0.5618 Freesteam Velocity

q 2072.207 psf 60 0.4893 Dynamic Pressure

CD0 0.011 70 0.4407 Min Drag

K1 2 80 0.407 Drag Polar Coeffecient

K2 0.005 90 0.3832 Drag Polar Coeffecient

dh/dt 0 ft/s 100 0.3664 Vertical Velocity

dV/dt 0 ft/s2 110 0.3547 Vertical Acceleration

120 0.346758

130 0.341736

140 0.339008

150 0.338114

160 0.338712

170 0.340537

180 0.343386

190 0.347096

200 0.351539

Calculated using this Spreadsheet Tool

Output

α 0.33 W/S T/W (Lift and Induced Drag Component)T/W (Linear Drag Component)T/W (Profile Drag Component)dh/dt dV/dt

β 0.57 10 0.037606 0.022455 2.548 0.086985 0.096556

n 2.6 20 0.075212 0.022455 1.274 0.086985 0.096556

g 32.2 ft/s2 30 0.112818 0.022455 0.849333 0.086985 0.096556

R 0.001832 slug/ft3 40 0.150424 0.022455 0.637 0.086985 0.096556

Velocity 695 ft/s 50 0.18803 0.022455 0.5096 0.086985 0.096556

q 442.4509 psf 60 0.225636 0.022455 0.424667 0.086985 0.096556

CD0 0.019 70 0.263242 0.022455 0.364 0.086985 0.096556

K1 0.25 80 0.300848 0.022455 0.3185 0.086985 0.096556

K2 0.005 90 0.338454 0.022455 0.283111 0.086985 0.096556

dh/dt 35 ft/s 100 0.37606 0.022455 0.2548 0.086985 0.096556

dV/dt 1.8 ft/s2 110 0.413666 0.022455 0.231636 0.086985 0.096556

120 0.451272 0.022455 0.212333 0.086985 0.096556

130 0.488878 0.022455 0.196 0.086985 0.096556

140 0.526484 0.022455 0.182 0.086985 0.096556

150 0.56409 0.022455 0.169867 0.086985 0.096556

160 0.601696 0.022455 0.15925 0.086985 0.096556

170 0.639302 0.022455 0.149882 0.086985 0.096556

180 0.676908 0.022455 0.141556 0.086985 0.096556

190 0.714514 0.022455 0.134105 0.086985 0.096556

200 0.75212 0.022455 0.1274 0.086985 0.096556

Output

α 0.69 W/S T/W (Lift and Induced Drag Component)T/W (Linear Drag Component)T/W (Profile Drag Component)dh/dt dV/dt

β 0.72 10 0.011792 0.005217 0.692797 0.087582 0.058331

n 1 20 0.023584 0.005217 0.346399 0.087582 0.058331

g 32.2 ft/s2 30 0.035376 0.005217 0.230932 0.087582 0.058331

R 0.001832 slug/ft3 40 0.047168 0.005217 0.173199 0.087582 0.058331

Velocity 417 ft/s 50 0.05896 0.005217 0.138559 0.087582 0.058331

q 159.2823 psf 60 0.070752 0.005217 0.115466 0.087582 0.058331

CD0 0.03 70 0.082544 0.005217 0.098971 0.087582 0.058331

K1 0.25 80 0.094336 0.005217 0.0866 0.087582 0.058331

K2 0.005 90 0.106128 0.005217 0.076977 0.087582 0.058331

dh/dt 35 ft/s 100 0.11792 0.005217 0.06928 0.087582 0.058331

dV/dt 1.8 ft/s2 110 0.129712 0.005217 0.062982 0.087582 0.058331

120 0.141504 0.005217 0.057733 0.087582 0.058331

130 0.153296 0.005217 0.053292 0.087582 0.058331

140 0.165088 0.005217 0.049486 0.087582 0.058331

150 0.17688 0.005217 0.046186 0.087582 0.058331

160 0.188672 0.005217 0.0433 0.087582 0.058331

170 0.200464 0.005217 0.040753 0.087582 0.058331

180 0.212256 0.005217 0.038489 0.087582 0.058331

190 0.224048 0.005217 0.036463 0.087582 0.058331

200 0.235841 0.005217 0.03464 0.087582 0.058331

Output

α 0.69 W/S T/W (Lift and Induced Drag Component)T/W (Linear Drag Component)T/W (Profile Drag Component)dh/dt dV/dt

β 0.72 10 0.000916 0.002087 1.188573 0.027296 0.058331

n 1 20 0.001833 0.002087 0.594286 0.027296 0.058331

g 32.2 ft/s2 30 0.002749 0.002087 0.396191 0.027296 0.058331

R 0.001832 slug/ft3 40 0.003665 0.002087 0.297143 0.027296 0.058331

Velocity 1338 ft/s 50 0.004582 0.002087 0.237715 0.027296 0.058331

q 1639.864 psf 60 0.005498 0.002087 0.198095 0.027296 0.058331

CD0 0.005 70 0.006414 0.002087 0.169796 0.027296 0.058331

K1 0.2 80 0.00733 0.002087 0.148572 0.027296 0.058331

K2 0.002 90 0.008247 0.002087 0.132064 0.027296 0.058331

dh/dt 35 ft/s 100 0.009163 0.002087 0.118857 0.027296 0.058331

dV/dt 1.8 ft/s2 110 0.010079 0.002087 0.108052 0.027296 0.058331

120 0.010996 0.002087 0.099048 0.027296 0.058331

130 0.011912 0.002087 0.091429 0.027296 0.058331

140 0.012828 0.002087 0.084898 0.027296 0.058331

150 0.013745 0.002087 0.079238 0.027296 0.058331

160 0.014661 0.002087 0.074286 0.027296 0.058331

170 0.015577 0.002087 0.069916 0.027296 0.058331

180 0.016493 0.002087 0.066032 0.027296 0.058331

190 0.01741 0.002087 0.062556 0.027296 0.058331

200 0.018326 0.002087 0.059429 0.027296 0.058331

Output

α 0.82 W/S T/W (Lift and Induced Drag Component)T/W (Linear Drag Component)T/W (Profile Drag Component)dh/dt dV/dt

β 0.87 10 0.008909 0.005305 2.780072 0 0

n 1 20 0.017818 0.005305 1.390036 0 0

g 32.2 ft/s2 30 0.026727 0.005305 0.926691 0 0

R 0.002315 slug/ft3 40 0.035635 0.005305 0.695018 0 0

Velocity 1338 ft/s 50 0.044544 0.005305 0.556014 0 0

q 2072.207 psf 60 0.053453 0.005305 0.463345 0 0

CD0 0.011 70 0.062362 0.005305 0.397153 0 0

K1 2 80 0.071271 0.005305 0.347509 0 0

K2 0.005 90 0.08018 0.005305 0.308897 0 0

dh/dt 0 ft/s 100 0.089088 0.005305 0.278007 0 0

dV/dt 0 ft/s2 110 0.097997 0.005305 0.252734 0 0

120 0.106906 0.005305 0.231673 0 0

130 0.115815 0.005305 0.213852 0 0

140 0.124724 0.005305 0.198577 0 0

150 0.133633 0.005305 0.185338 0 0

160 0.142542 0.005305 0.173755 0 0

170 0.15145 0.005305 0.163534 0 0

180 0.160359 0.005305 0.154448 0 0

190 0.169268 0.005305 0.14632 0 0

200 0.178177 0.005305 0.139004 0 0

Output

α 0.91 W/S T/W (Lift and Induced Drag Component)T/W (Linear Drag Component)T/W (Profile Drag Component)dh/dt dV/dt

β 0.34 10 0.011035 0.005604 2.50512 0 0

n 3 20 0.022069 0.005604 1.25256 0 0

g 32.2 ft/s2 30 0.033104 0.005604 0.83504 0 0

R 0.002315 slug/ft3 40 0.044138 0.005604 0.62628 0 0

Velocity 1338 ft/s 50 0.055173 0.005604 0.501024 0 0

q 2072.207 psf 60 0.066207 0.005604 0.41752 0 0

CD0 0.011 70 0.077242 0.005604 0.357874 0 0

K1 2 80 0.088277 0.005604 0.31314 0 0

K2 0.005 90 0.099311 0.005604 0.278347 0 0

dh/dt 0 ft/s 100 0.110346 0.005604 0.250512 0 0

dV/dt 0 ft/s2 110 0.12138 0.005604 0.227738 0 0

120 0.132415 0.005604 0.20876 0 0

130 0.14345 0.005604 0.192702 0 0

140 0.154484 0.005604 0.178937 0 0

150 0.165519 0.005604 0.167008 0 0

160 0.176553 0.005604 0.15657 0 0

170 0.187588 0.005604 0.14736 0 0

180 0.198622 0.005604 0.139173 0 0

190 0.209657 0.005604 0.131848 0 0

200 0.220692 0.005604 0.125256 0 0

T/W Total

2.7916

1.5552

1.1681

0.9934

0.9036

0.8563

0.8332

0.8253

0.8276

0.8369

0.8513

0.8696

0.8909

0.9145

0.9400

0.9669

0.9952

1.0245

1.0546

1.0855

T/W Total

0.8557

0.5211

0.4174

0.3715

0.3487

0.3373

0.3326

0.3321

0.3342

0.3383

0.3438

0.3504

0.3577

0.3657

0.3742

0.3831

0.3923

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0 50 100 150

T/W

W/S

Validation Case 1: W/S and T/W

Calculated Using Mattingly -Master Equation

Provided Validation Points fromGA TECH

0.5

1.0

1.5

2.0

2.5

3.0

T/W

W/S

Validation Case 2: W/S and T/W

Calculated Using Mattingly -Master Equation

Provided Validation Points fromGA TECH

0.4019

0.4116

0.4216

T/W Total

1.2772

0.6838

0.4867

0.3885

0.3300

0.2913

0.2639

0.2436

0.2280

0.2157

0.2058

0.1978

0.1911

0.1854

0.1807

0.1767

0.1732

0.1702

0.1677

0.1655

T/W Total

2.7943

1.4132

0.9587

0.7360

0.6059

0.5221

0.4648

0.4241

0.3944

0.3724

0.3560

0.3439

0.3350

0.3286

0.3243

0.3216

0.3203

0.3201

0.0

0 50 100 150

W/S

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0 50 100 150

T/W

W/S

Validation Case 3: W/S and T/W

Calculated Using Mattingly -Master Equation

Provided Validation Points fromGA TECH

0.0

0.5

1.0

1.5

2.0

2.5

3.0

T/W

W/S

Validation Case 4: W/S and T/W

Calculated Using Mattingly -Master Equation

Provided Validation Points fromGA TECH

0.3209

0.3225

T/W Total

2.5218

1.2802

0.8737

0.6760

0.5618

0.4893

0.4407

0.4070

0.3833

0.3665

0.3547

0.3468

0.3418

0.3390

0.3381

0.3387

0.3406

0.3434

0.3471

0.3516

0.0

0 50 100 150

W/S

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0 50 100 150

T/W

W/S

Validation Case 5: W/S and T/W

Calculated Using Mattingly -Master Equation

Provided Validation Points fromGA TECH

200

200

200

200

200

Step 1 Payload Calculations, WPL Notes/Sources:

3,240 lbs Source: "2006-2007 AIAA Graduate Team Aircraft Design Competition - Modifiied RFP"

5,000 lbs

12,000 lbs

Total WPL 12,000 lbs Enter Payload based on above values, and Desired Mission (for baseline misson, assume worst case external stores)

Crew Weight

250 lbs Source: "2006-2007 AIAA Graduate Team Aircraft Design Competition - Modifiied RFP"

Total WCREW 250 lbs

Step 2 Weight Take Off Guess Based on Historical Data, WTO_GUESS

W_PL W_TO V_MAX Range Source: Taylor, J.W.R, Jane's All The World Aircraft Published Annually by: Jane's Publishing Company, (Issues used: 1945/45, 1968/84)

(lbs) (lbs) (kts) (nm) Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 60

15,000 50,000 450 540

17,000 60,400 689 1,700

16,000 58,400 600 750

Average: 16,000 56,267 580 997 Some initial guess for TOGW, will only be used for reference, program automatically calculates TOGW based on historical data

WTO_GUESS 59,488 lbs Later this will be iterated to find weight empty

Step 3 Mission Fuel Weight Fractions, WF Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 12

Climb 1

Range Credit 24.5 nm Assume 10,000 ft/min climb (from RFP) and 350 knot ground speed during climb (from Roskam page 62); therefore, Rclimb = Alt./(10K/min)*350knots

Cruise 1

Rcr, Cruise Range 775.5 nm 800 nm specified in RFP - climb 1 range

Altitude 42,000 ft

Temperature @ Alt, T -90.6o F

Delta 0.1668

Theta 0.7116

Mission Analysis

Ammunition Weight (1.62 lbs x 2000 rounds)

F.R. A10A

Grumman A6

Internal Stores Max

External Stores Max

Crew (1x250lbs)

GD GAU-8 30-mm Cannon is part of weight empty

External Stores is deemed the limiting case

Tornado F.Mk2

Aircraft Type

Step 1 Payload Calculations, WPL Notes/Sources:

3,240 lbs Source: "2006-2007 AIAA Graduate Team Aircraft Design Competition - Modifiied RFP"

5,000 lbs

12,000 lbs

Total WPL 12,000 lbs Enter Payload based on above values, and Desired Mission (for baseline misson, assume worst case external stores)

Crew Weight

250 lbs Source: "2006-2007 AIAA Graduate Team Aircraft Design Competition - Modifiied RFP"

Total WCREW 250 lbs

Step 2 Weight Take Off Guess Based on Historical Data, WTO_GUESS

W_PL W_TO V_MAX Range Source: Taylor, J.W.R, Jane's All The World Aircraft Published Annually by: Jane's Publishing Company, (Issues used: 1945/45, 1968/84)

(lbs) (lbs) (kts) (nm) Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 60

15,000 50,000 450 540

17,000 60,400 689 1,700

16,000 58,400 600 750

Average: 16,000 56,267 580 997 Some initial guess for TOGW, will only be used for reference, program automatically calculates TOGW based on historical data

WTO_GUESS 62,414 lbs Later this will be iterated to find weight empty

Step 3 Mission Fuel Weight Fractions, WF Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 12

Climb 1

Range Credit 24.5 nm Assume 10,000 ft/min climb (from RFP) and 350 knot ground speed during climb (from Roskam page 62); therefore, Rclimb = Alt./(10K/min)*350knots

Cruise 1

Rcr, Cruise Range 775.5 nm 800 nm specified in RFP - climb 1 range

Altitude 42,000 ft

Temperature @ Alt, T -90.6o F

Delta 0.1668

Theta 0.7116

Mission Analysis

Ammunition Weight (1.62 lbs x 2000 rounds)

F.R. A10A

Grumman A6

Internal Stores Max

External Stores Max

Crew (1x250lbs)

GD GAU-8 30-mm Cannon is part of weight empty

External Stores is deemed the limiting case

Tornado F.Mk2

Aircraft Type

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0 25 50 75 100 125 150 175 200

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0 25 50 75 100 125 150 175 200