First order methodssaketh/talks/ifcam2014-2.pdf · •Define gradient map: ℎ T ... Martin Jaggi....

42
First order methods FOR CONVEX OPTIMIZATION Saketh (IIT Bombay)

Transcript of First order methodssaketh/talks/ifcam2014-2.pdf · •Define gradient map: ℎ T ... Martin Jaggi....

Page 1: First order methodssaketh/talks/ifcam2014-2.pdf · •Define gradient map: ℎ T ... Martin Jaggi. Sparse Convex Optimization Methods for Machine Learning. PhD Thesis, 2011. • [Ju12]

First order methodsFOR CONVEX OPTIMIZATION

Saketh (IIT Bombay)

Page 2: First order methodssaketh/talks/ifcam2014-2.pdf · •Define gradient map: ℎ T ... Martin Jaggi. Sparse Convex Optimization Methods for Machine Learning. PhD Thesis, 2011. • [Ju12]

Topics

• Part – I

• Optimal methods for unconstrained convex programs

• Smooth objective

• Non-smooth objective

• Part – II• Optimal methods for constrained convex programs

• Projection based

• Frank-Wolfe based

• Functional constraint based

• Prox-based methods for structured non-smooth programs

Page 3: First order methodssaketh/talks/ifcam2014-2.pdf · •Define gradient map: ℎ T ... Martin Jaggi. Sparse Convex Optimization Methods for Machine Learning. PhD Thesis, 2011. • [Ju12]

Constrained Optimization - Illustration

𝑥∗

𝑓

𝐹

Page 4: First order methodssaketh/talks/ifcam2014-2.pdf · •Define gradient map: ℎ T ... Martin Jaggi. Sparse Convex Optimization Methods for Machine Learning. PhD Thesis, 2011. • [Ju12]

Constrained Optimization - Illustration

𝑥∗

𝑥∗ 𝑖𝑠 𝑜𝑝𝑡𝑖𝑚𝑎𝑙 ⇔ 𝛻𝑓 𝑥∗ 𝑇𝑢 ≥ 0 ∀ 𝑢 ∈ 𝑇𝐹(𝑥∗)

𝛻𝑓 𝑥∗

𝑓

𝐹

Page 5: First order methodssaketh/talks/ifcam2014-2.pdf · •Define gradient map: ℎ T ... Martin Jaggi. Sparse Convex Optimization Methods for Machine Learning. PhD Thesis, 2011. • [Ju12]

Two Strategies

• Stay feasible and minimize• Projection based• Frank-Wolfe based

Page 6: First order methodssaketh/talks/ifcam2014-2.pdf · •Define gradient map: ℎ T ... Martin Jaggi. Sparse Convex Optimization Methods for Machine Learning. PhD Thesis, 2011. • [Ju12]

Two Strategies

• Alternate between• Minimization• Move towards feasibility set

Page 7: First order methodssaketh/talks/ifcam2014-2.pdf · •Define gradient map: ℎ T ... Martin Jaggi. Sparse Convex Optimization Methods for Machine Learning. PhD Thesis, 2011. • [Ju12]

Projection Based MethodsCONSTRAINED CONVEX PROGRAMS

Page 8: First order methodssaketh/talks/ifcam2014-2.pdf · •Define gradient map: ℎ T ... Martin Jaggi. Sparse Convex Optimization Methods for Machine Learning. PhD Thesis, 2011. • [Ju12]

Projected Gradient Method

min𝑥∈𝑋

𝑓(𝑥)

• 𝑥𝑘+1 = argmin𝑥∈𝑋 𝑓 𝑥𝑘 + 𝛻𝑓 𝑥𝑘𝑇 𝑥 − 𝑥𝑘 +

1

2𝑠𝑘𝑥 − 𝑥𝑘

2

= argmin𝑥∈𝑋 𝑥 − 𝑥𝑘 − 𝑠𝑘𝛻𝑓(𝑥𝑘)2

≡ Π𝑋 𝑥𝑘 − 𝑠𝑘𝛻𝑓(𝑥𝑘)

𝑋 is closed convex

Page 9: First order methodssaketh/talks/ifcam2014-2.pdf · •Define gradient map: ℎ T ... Martin Jaggi. Sparse Convex Optimization Methods for Machine Learning. PhD Thesis, 2011. • [Ju12]

Projected Gradient Method

min𝑥∈𝑋

𝑓(𝑥)

• 𝑥𝑘+1 = argmin𝑥∈𝑋 𝑓 𝑥𝑘 + 𝛻𝑓 𝑥𝑘𝑇 𝑥 − 𝑥𝑘 +

1

2𝑠𝑘𝑥 − 𝑥𝑘

2

= argmin𝑥∈𝑋 𝑥 − 𝑥𝑘 − 𝑠𝑘𝛻𝑓(𝑥𝑘)2

≡ Π𝑋 𝑥𝑘 − 𝑠𝑘𝛻𝑓(𝑥𝑘)

Page 10: First order methodssaketh/talks/ifcam2014-2.pdf · •Define gradient map: ℎ T ... Martin Jaggi. Sparse Convex Optimization Methods for Machine Learning. PhD Thesis, 2011. • [Ju12]

Projected Gradient Method

min𝑥∈𝑋

𝑓(𝑥)

• 𝑥𝑘+1 = argmin𝑥∈𝑋 𝑓 𝑥𝑘 + 𝛻𝑓 𝑥𝑘𝑇 𝑥 − 𝑥𝑘 +

1

2𝑠𝑘𝑥 − 𝑥𝑘

2

= argmin𝑥∈𝑋 𝑥 − 𝑥𝑘 − 𝑠𝑘𝛻𝑓(𝑥𝑘)2

≡ Π𝑋 𝑥𝑘 − 𝑠𝑘𝛻𝑓(𝑥𝑘)X is simple:

oracle for projections

Page 11: First order methodssaketh/talks/ifcam2014-2.pdf · •Define gradient map: ℎ T ... Martin Jaggi. Sparse Convex Optimization Methods for Machine Learning. PhD Thesis, 2011. • [Ju12]

Projected Gradient Method

min𝑥∈𝑋

𝑓(𝑥)

• 𝑥𝑘+1 = argmin𝑥∈𝑋 𝑓 𝑥𝑘 + 𝛻𝑓 𝑥𝑘𝑇 𝑥 − 𝑥𝑘 +

1

2𝑠𝑘𝑥 − 𝑥𝑘

2

= argmin𝑥∈𝑋 𝑥 − 𝑥𝑘 − 𝑠𝑘𝛻𝑓(𝑥𝑘)2

≡ Π𝑋 𝑥𝑘 − 𝑠𝑘𝛻𝑓(𝑥𝑘)

𝑥𝑘𝑥𝑘 − 𝑠𝑘𝛻𝑓(𝑥𝑘)

𝑥𝑘+1

Page 12: First order methodssaketh/talks/ifcam2014-2.pdf · •Define gradient map: ℎ T ... Martin Jaggi. Sparse Convex Optimization Methods for Machine Learning. PhD Thesis, 2011. • [Ju12]

Will it work?

• 𝑥𝑘+1 − 𝑥∗ 2 = Π𝑋(𝑥𝑘 − 𝑠𝑘𝛻𝑓(𝑥𝑘)) − 𝑥∗ 2

≤ (𝑥𝑘 − 𝑠𝑘𝛻𝑓(𝑥𝑘)) − 𝑥∗ 2 (Why?)

• Remaining analysis exactly same (smooth/non-smooth)

• Analysis a bit more involved for projected accelerated gradient

• Define gradient map: ℎ 𝑥𝑘 ≡𝑥𝑘−Π𝑋 𝑥𝑘−𝑠𝑘𝛻𝑓 𝑥𝑘

𝑠𝑘

• Satisfies same fundamental properties as gradient!

Page 13: First order methodssaketh/talks/ifcam2014-2.pdf · •Define gradient map: ℎ T ... Martin Jaggi. Sparse Convex Optimization Methods for Machine Learning. PhD Thesis, 2011. • [Ju12]

Will it work?

• 𝑥𝑘+1 − 𝑥∗ 2 = Π𝑋(𝑥𝑘 − 𝑠𝑘𝛻𝑓(𝑥𝑘)) − 𝑥∗ 2

≤ (𝑥𝑘 − 𝑠𝑘𝛻𝑓(𝑥𝑘)) − 𝑥∗ 2 (Why?)

• Remaining analysis exactly same (smooth/non-smooth)

• Analysis a bit more involved for projected accelerated gradient

• Define gradient map: ℎ 𝑥𝑘 ≡𝑥𝑘−Π𝑋 𝑥𝑘−𝑠𝑘𝛻𝑓 𝑥𝑘

𝑠𝑘

• Satisfies same fundamental properties as gradient!

Page 14: First order methodssaketh/talks/ifcam2014-2.pdf · •Define gradient map: ℎ T ... Martin Jaggi. Sparse Convex Optimization Methods for Machine Learning. PhD Thesis, 2011. • [Ju12]

Simple sets

• Non-negative orthant

• Ball, ellipse

• Box, simplex

• Cones

• PSD matrices

• Spectrahedron

Page 15: First order methodssaketh/talks/ifcam2014-2.pdf · •Define gradient map: ℎ T ... Martin Jaggi. Sparse Convex Optimization Methods for Machine Learning. PhD Thesis, 2011. • [Ju12]

Summary of Projection Based Methods

• Rates of convergence remain exactly same

• Projection oracle needed (simple sets)• Caution with non-analytic cases

Page 16: First order methodssaketh/talks/ifcam2014-2.pdf · •Define gradient map: ℎ T ... Martin Jaggi. Sparse Convex Optimization Methods for Machine Learning. PhD Thesis, 2011. • [Ju12]

Frank-Wolfe MethodsCONSTRAINED CONVEX PROGRAMS

Page 17: First order methodssaketh/talks/ifcam2014-2.pdf · •Define gradient map: ℎ T ... Martin Jaggi. Sparse Convex Optimization Methods for Machine Learning. PhD Thesis, 2011. • [Ju12]

Avoid Projections

• 𝑦𝑘+1 = argmin𝑥∈𝑋 𝑓 𝑥𝑘 + 𝛻𝑓 𝑥𝑘𝑇 𝑥 − 𝑥𝑘 +

1

2𝑠𝑘𝑥 − 𝑥𝑘

2

= argmin𝑥∈𝑋 𝛻𝑓 𝑥𝑘𝑇𝑥 (Support Function)

• Restrict moving far away:

• 𝑥𝑘+1 ≡ 𝑠𝑘𝑦𝑘+1 + 1 − 𝑠𝑘 𝑥𝑘

Page 18: First order methodssaketh/talks/ifcam2014-2.pdf · •Define gradient map: ℎ T ... Martin Jaggi. Sparse Convex Optimization Methods for Machine Learning. PhD Thesis, 2011. • [Ju12]

Avoid Projections [FW59]

• 𝑦𝑘+1 = argmin𝑥∈𝑋 𝑓 𝑥𝑘 + 𝛻𝑓 𝑥𝑘𝑇 𝑥 − 𝑥𝑘 +

1

2𝑠𝑘𝑥 − 𝑥𝑘

2

= argmin𝑥∈𝑋 𝛻𝑓 𝑥𝑘𝑇𝑥 (Support Function)

• Restrict moving far away:

• 𝑥𝑘+1 ≡ 𝑠𝑘𝑦𝑘+1 + 1 − 𝑠𝑘 𝑥𝑘

Page 19: First order methodssaketh/talks/ifcam2014-2.pdf · •Define gradient map: ℎ T ... Martin Jaggi. Sparse Convex Optimization Methods for Machine Learning. PhD Thesis, 2011. • [Ju12]

Illustration

[Mart Jaggi, ICML 2014]−𝛻𝑓(𝑥)𝑦

𝑥+

Page 20: First order methodssaketh/talks/ifcam2014-2.pdf · •Define gradient map: ℎ T ... Martin Jaggi. Sparse Convex Optimization Methods for Machine Learning. PhD Thesis, 2011. • [Ju12]

Illustration

[Mart Jaggi, ICML 2014]

Page 21: First order methodssaketh/talks/ifcam2014-2.pdf · •Define gradient map: ℎ T ... Martin Jaggi. Sparse Convex Optimization Methods for Machine Learning. PhD Thesis, 2011. • [Ju12]

On Conjugates and Support Functions

• Convex 𝑓 is point-wise maximum of affine minorants• Provides dual definition:

• 𝑓 𝑥 = max𝑦∈𝑌

𝑎𝑦𝑇𝑥 − 𝑏𝑦, equivalently:

• ∃𝑓∗ ∋ 𝑓 𝑥 = max𝑦∈𝑑𝑜𝑚 𝑓∗

𝑦𝑇𝑥 − 𝑓∗(𝑦)

• 𝑓∗ is called conjugate or Fenchel dual• If 𝑓∗ 𝑦 is indicator of set S we get conic 𝑓:

• 𝑓 𝑥 = max𝑦∈𝑆

𝑦𝑇𝑥

Page 22: First order methodssaketh/talks/ifcam2014-2.pdf · •Define gradient map: ℎ T ... Martin Jaggi. Sparse Convex Optimization Methods for Machine Learning. PhD Thesis, 2011. • [Ju12]

On Conjugates and Support Functions

• Convex 𝑓 is point-wise maximum of affine minorants• Provides dual definition:

• 𝑓 𝑥 = max𝑦∈𝑌

𝑎𝑦𝑇𝑥 − 𝑏𝑦, equivalently:

• ∃𝑓∗ ∋ 𝑓 𝑥 = max𝑦∈𝑑𝑜𝑚 𝑓∗

𝑦𝑇𝑥 − 𝑓∗(𝑦)

• 𝑓∗ is called conjugate or Fenchel dual orLegendre transformation (𝑓∗∗ = 𝑓).

• If 𝑓∗ 𝑦 is indicator of set S we get conic 𝑓:• 𝑓 𝑥 = max

𝑦∈𝑆𝑦𝑇𝑥

Page 23: First order methodssaketh/talks/ifcam2014-2.pdf · •Define gradient map: ℎ T ... Martin Jaggi. Sparse Convex Optimization Methods for Machine Learning. PhD Thesis, 2011. • [Ju12]

On Conjugates and Support Functions

• Convex 𝑓 is point-wise maximum of affine minorants• Provides dual definition:

• 𝑓 𝑥 = max𝑦∈𝑌

𝑎𝑦𝑇𝑥 − 𝑏𝑦, equivalently:

• ∃𝑓∗ ∋ 𝑓 𝑥 = max𝑦∈𝑑𝑜𝑚 𝑓∗

𝑦𝑇𝑥 − 𝑓∗(𝑦)

• 𝑓∗ is called conjugate or Fenchel dual orLegendre transformation (𝑓∗∗ = 𝑓).

• If 𝑓∗ 𝑦 is indicator of set 𝑆 we get conic 𝑓:• 𝑓 𝑥 = max

𝑦∈𝑆𝑦𝑇𝑥

• If 𝑆 is a norm ball, we get dual norm

Page 24: First order methodssaketh/talks/ifcam2014-2.pdf · •Define gradient map: ℎ T ... Martin Jaggi. Sparse Convex Optimization Methods for Machine Learning. PhD Thesis, 2011. • [Ju12]

Connection with sub-gradient

Let,• 𝑦∗ ∈ argmax

𝑦∈𝑑𝑜𝑚 𝑓𝑦𝑇𝑥 − 𝑓(𝑦) i.e., 𝑓∗ 𝑥 + 𝑓 𝑦∗ = 𝑥𝑇𝑦∗

• Then 𝒚∗ must be a sub-gradient of 𝒇∗ at 𝒙• dual form exposes sub-gradients

• If 𝑓∗ 𝑦 is indicator of set S we get conic 𝑓:• 𝑓 𝑥 = max

𝑦∈𝑆𝑦𝑇𝑥

Page 25: First order methodssaketh/talks/ifcam2014-2.pdf · •Define gradient map: ℎ T ... Martin Jaggi. Sparse Convex Optimization Methods for Machine Learning. PhD Thesis, 2011. • [Ju12]

Conjugates e.g.

𝒇(𝒙) 𝒇∗(𝒙) Projection?

𝑥 𝑝 𝑥 𝑝𝑝−1

No (𝑝 ∉ {1,2,∞})

𝜎(𝑋) 𝑝 𝜎(𝑋) 𝑝𝑝−1

No (𝑝 ∉ {1,2,∞})

• 𝑥 1 Projection, conjugate = 𝑂(𝑛 log 𝑛), 𝑂(𝑛)• 𝜎(𝑋) 1 Projection, conjugate = Full, First SVD

Page 26: First order methodssaketh/talks/ifcam2014-2.pdf · •Define gradient map: ℎ T ... Martin Jaggi. Sparse Convex Optimization Methods for Machine Learning. PhD Thesis, 2011. • [Ju12]

Rate of Convergence

Theorem[Ma11]: If 𝑋 is compact convex set and 𝑓 is smooth with

const. 𝐿, and 𝑠𝑘 =2

𝑘+2, then the iterates generated by Frank-Wolfe

satisfy:

𝑓 𝑥𝑘 − 𝑓 𝑥∗ ≤4𝐿 𝑑 𝑋 2

𝑘 + 2.

Proof Sketch:

• 𝑓 𝑥𝑘+1 ≤ 𝑓 𝑥𝑘 + 𝑠𝑘𝛻𝑓 𝑥𝑘𝑇 𝑦𝑘+1 − 𝑥𝑘 +

𝑠𝑘2𝐿

2𝑑 𝑋 2

• Δ𝑘+1 ≤ 1 − 𝑠𝑘 Δ𝑘 +𝑠𝑘2𝐿

2𝑑 𝑋 2 (Solve recursion)

Sub-optimal

Page 27: First order methodssaketh/talks/ifcam2014-2.pdf · •Define gradient map: ℎ T ... Martin Jaggi. Sparse Convex Optimization Methods for Machine Learning. PhD Thesis, 2011. • [Ju12]

Rate of Convergence

Theorem[Ma11]: If 𝑋 is compact convex set and 𝑓 is smooth with

const. 𝐿, and 𝑠𝑘 =2

𝑘+2, then the iterates generated by Frank-Wolfe

satisfy:

𝑓 𝑥𝑘 − 𝑓 𝑥∗ ≤4𝐿 𝑑 𝑋 2

𝑘 + 2.

Proof Sketch:

• 𝑓 𝑥𝑘+1 ≤ 𝑓 𝑥𝑘 + 𝑠𝑘𝛻𝑓 𝑥𝑘𝑇 𝑦𝑘+1 − 𝑥𝑘 +

𝑠𝑘2𝐿

2𝑑 𝑋 2

• Δ𝑘+1 ≤ 1 − 𝑠𝑘 Δ𝑘 +𝑠𝑘2𝐿

2𝑑 𝑋 2 (Solve recursion)

Page 28: First order methodssaketh/talks/ifcam2014-2.pdf · •Define gradient map: ℎ T ... Martin Jaggi. Sparse Convex Optimization Methods for Machine Learning. PhD Thesis, 2011. • [Ju12]

Sparse Representation – Optimality

• If 𝑥0 = 0 and domain is 𝑙1ball, 𝑥𝑘 ∈ 𝑅𝑘,𝑛

• We get exact sparsity! (unlike proj. grad.)

• Sparse representation by extreme points

• 𝜖 ≈ 𝑂( 𝐿 𝑑 𝑋 2

𝑘) need atleast 𝑘 non-zeros [Ma11]

• Optimal in terms of accuracy-sparsity trade-off

• Not in terms of accuracy-iterations

(1,0)

(0,1)

(−1,0)

(0, −1)

Page 29: First order methodssaketh/talks/ifcam2014-2.pdf · •Define gradient map: ℎ T ... Martin Jaggi. Sparse Convex Optimization Methods for Machine Learning. PhD Thesis, 2011. • [Ju12]

Sparse Representation – Optimality

• If 𝑥0 = 0 and domain is 𝑙1ball, 𝑥𝑘 ∈ 𝑅𝑘,𝑛

• We get exact sparsity! (unlike proj. grad.)

• Sparse representation by extreme points

• 𝜖 ≈ 𝑂( 𝐿 𝑑 𝑋 2

𝑘) need atleast 𝑘 non-zeros [Ma11]

• Optimal in terms of accuracy-sparsity trade-off

• Not in terms of accuracy-iterations

(1,0)

(0,1)

(−1,0)

(0, −1)

Page 30: First order methodssaketh/talks/ifcam2014-2.pdf · •Define gradient map: ℎ T ... Martin Jaggi. Sparse Convex Optimization Methods for Machine Learning. PhD Thesis, 2011. • [Ju12]

Summary comparison of always feasible methods

Property Projected Gr. Frank-Wolfe

Rate of convergence + -

Sparse Solutions - +

Iteration Complexity - +

Affine Invariance - +

Page 31: First order methodssaketh/talks/ifcam2014-2.pdf · •Define gradient map: ℎ T ... Martin Jaggi. Sparse Convex Optimization Methods for Machine Learning. PhD Thesis, 2011. • [Ju12]

Functional ConstrainedBASED METHODS

Page 32: First order methodssaketh/talks/ifcam2014-2.pdf · •Define gradient map: ℎ T ... Martin Jaggi. Sparse Convex Optimization Methods for Machine Learning. PhD Thesis, 2011. • [Ju12]

Assumptions

min𝑥∈𝑅𝑛

𝑓0(𝑥)

𝑠. 𝑡. 𝑓𝑖 𝑥 ≤ 0 ∀ 𝑖 = 1,… , 𝑛

• All 𝑓0, 𝑓_𝑖 are smooth

• L is max. const. among all

Page 33: First order methodssaketh/talks/ifcam2014-2.pdf · •Define gradient map: ℎ T ... Martin Jaggi. Sparse Convex Optimization Methods for Machine Learning. PhD Thesis, 2011. • [Ju12]

Algorithm

At iteration 1 ≤ 𝑘 ≤ 𝑁:

• Check if 𝑓𝑖 𝑥𝑘 ≤𝑅

𝑁𝛻𝑓𝑖 𝑥𝑘 ∀ 𝑖

• If yes, then “productive” step: 𝑖 𝑘 = 0

• If no, then “non-productive” step: 𝑖(𝑘) set to a violator

• 𝑥𝑘+1 = 𝑥𝑘 −𝑅

𝑁 𝛻𝑓𝑖 𝑘 (𝑥𝑘)𝛻𝑓𝑖 𝑘 (𝑥𝑘)

• Output: 𝑥𝑁, the best among the productive.

Page 34: First order methodssaketh/talks/ifcam2014-2.pdf · •Define gradient map: ℎ T ... Martin Jaggi. Sparse Convex Optimization Methods for Machine Learning. PhD Thesis, 2011. • [Ju12]

Does it converge?

Theorem[Ju12]: Let 𝑋 be bounded and 𝐿 be the smoothness const. (upper bound). Then,

• 𝑓0 𝑥𝑁 − 𝑓0 𝑥∗ ≤𝐿𝑅

𝑁

• 𝑓𝑖 𝑥𝑁 ≤𝐿𝑅

𝑁∀ 𝑖

Proof Sketch: Let 𝑓0 𝑥𝑁 − 𝑓0 𝑥∗ >𝐿𝑅

𝑁

• 𝑘=1𝑁 𝑥𝑘 − 𝑥∗ 𝑇 𝛻𝑓𝑖(𝑘)(𝑥𝑘) 𝛻𝑓𝑖(𝑘)(𝑥𝑘) ≤ 𝑅𝑁

• Non-productive: 𝑅

𝑁𝑥𝑘 − 𝑥∗ 𝑇 𝛻𝑓𝑖(𝑘)(𝑥𝑘) 𝛻𝑓𝑖(𝑘)(𝑥𝑘) ≥

𝑅2

𝑁

• Productive: 𝑅

𝑁𝑥𝑘 − 𝑥∗ 𝑇 𝛻𝑓𝑖(𝑘)(𝑥𝑘) 𝛻𝑓𝑖(𝑘)(𝑥𝑘) >

𝑅2

𝑁

Page 35: First order methodssaketh/talks/ifcam2014-2.pdf · •Define gradient map: ℎ T ... Martin Jaggi. Sparse Convex Optimization Methods for Machine Learning. PhD Thesis, 2011. • [Ju12]

Composite ObjectivePROX BASED METHODS

Page 36: First order methodssaketh/talks/ifcam2014-2.pdf · •Define gradient map: ℎ T ... Martin Jaggi. Sparse Convex Optimization Methods for Machine Learning. PhD Thesis, 2011. • [Ju12]

Composite Objectives

min𝑤∈𝑅𝑛

Ω(𝑤) +

𝑖=1

𝑚

𝑙(𝑤′𝜙 𝑥𝑖 , 𝑦𝑖)

Non-Smooth g(w) Smooth f(w)

Key Idea: Do not approximate non-smooth part

Page 37: First order methodssaketh/talks/ifcam2014-2.pdf · •Define gradient map: ℎ T ... Martin Jaggi. Sparse Convex Optimization Methods for Machine Learning. PhD Thesis, 2011. • [Ju12]

Proximal Gradient Method

• 𝑥𝑘+1 = argmin𝑥 𝑓 𝑥𝑘 + 𝛻𝑓 𝑥𝑘𝑇 𝑥 − 𝑥𝑘 +

1

2𝑠𝑘𝑥 − 𝑥𝑘

2 + 𝑔(𝑥)

• If 𝑔 is indicator, then same as projected gr.

• If 𝑔 is support function: 𝑔 𝑥 = max𝑦∈𝑆

𝑥𝑇𝑦

• Assume min-max interchange

𝑥𝑘+1 = 𝑥𝑘 − 𝑠𝑘𝛻𝑓 𝑥𝑘 − 𝑠𝑘Π𝑆

1

𝑠𝑘𝑥𝑘 − 𝑠𝑘𝛻𝑓 𝑥𝑘

Page 38: First order methodssaketh/talks/ifcam2014-2.pdf · •Define gradient map: ℎ T ... Martin Jaggi. Sparse Convex Optimization Methods for Machine Learning. PhD Thesis, 2011. • [Ju12]

Proximal Gradient Method

• 𝑥𝑘+1 = argmin𝑥 𝑓 𝑥𝑘 + 𝛻𝑓 𝑥𝑘𝑇 𝑥 − 𝑥𝑘 +

1

2𝑠𝑘𝑥 − 𝑥𝑘

2 + 𝑔(𝑥)

• If 𝑔 is indicator, then same as projected gr.

• If 𝑔 is support function: 𝑔 𝑥 = max𝑦∈𝑆

𝑥𝑇𝑦

• Assume min-max interchange

𝑥𝑘+1 = 𝑥𝑘 − 𝑠𝑘𝛻𝑓 𝑥𝑘 − 𝑠𝑘Π𝑆

1

𝑠𝑘𝑥𝑘 − 𝑠𝑘𝛻𝑓 𝑥𝑘

Again, projection

Page 39: First order methodssaketh/talks/ifcam2014-2.pdf · •Define gradient map: ℎ T ... Martin Jaggi. Sparse Convex Optimization Methods for Machine Learning. PhD Thesis, 2011. • [Ju12]

Rate of Convergence

Theorem[Ne04]: If 𝑓 is smooth with const. 𝐿, and s𝑘 =1

𝐿, then

proximal gradient method generates 𝑥𝑘 such that:

𝑓 𝑥𝑘 − 𝑓 𝑥∗ ≤𝐿 𝑥0 − 𝑥∗ 2

2𝑘.

• Can be accelerated to 𝑂(1/𝑘2)

• Composite same rate as smooth provided proximal oracle exists!

Page 40: First order methodssaketh/talks/ifcam2014-2.pdf · •Define gradient map: ℎ T ... Martin Jaggi. Sparse Convex Optimization Methods for Machine Learning. PhD Thesis, 2011. • [Ju12]

Bibliography

• [Ne04] Nesterov, Yurii. Introductory lectures on convex optimization : a basic course. KluwerAcademic Publ., 2004. http://hdl.handle.net/2078.1/116858.

• [Ne83] Nesterov, Yurii. A method of solving a convex programming problem with convergencerate O (1/k2). Soviet Mathematics Doklady, Vol. 27(2), 372-376 pages.

• [Mo12] Moritz Hardt, Guy N. Rothblum and Rocco A. Servedio. Private data release vialearning thresholds. SODA 2012, 168-187 pages.

• [Be09] Amir Beck and Marc Teboulle. A fast iterative shrinkage-thresholding algorithm forlinear inverse problems. SIAM Journal of Imaging Sciences, Vol. 2(1), 2009. 183-202 pages.

• [De13] Olivier Devolder, François Glineur and Yurii Nesterov. First-order methods of smoothconvex optimization with inexact oracle. Mathematical Programming 2013.

• [FW59] Marguerite Frank and Philip Wolfe. An Algorithm for Quadratic Programming. NavalResearch Logistics Quarterly, 1959, Vol 3, 95-110 pages.

Page 41: First order methodssaketh/talks/ifcam2014-2.pdf · •Define gradient map: ℎ T ... Martin Jaggi. Sparse Convex Optimization Methods for Machine Learning. PhD Thesis, 2011. • [Ju12]

Bibliography

• [Ma11] Martin Jaggi. Sparse Convex Optimization Methods for Machine Learning. PhD Thesis, 2011.

• [Ju12] A Juditsky and A Nemirovski. First Order Methods for Non-smooth Convex Large-Scale Optimization, I: General Purpose Methods. Optimization methods for machine learning. The MIT Press, 2012. 121-184 pages.

Page 42: First order methodssaketh/talks/ifcam2014-2.pdf · •Define gradient map: ℎ T ... Martin Jaggi. Sparse Convex Optimization Methods for Machine Learning. PhD Thesis, 2011. • [Ju12]