Finite Differences - LMUigel/Lectures/NMG/... · 2010. 7. 14. · ¾Compact codes ¾Easy to...

76
1 Computational seismology - applications Computational seismology: applications Finite Differences ¾ Cartesian grids ¾ Fault zone waves ¾ Los Angeles Basin Earthquake scenarios (Olsen) ¾ Spherical grids ¾ Global SH and P-SV wave propagation ¾ Spherical sections – waves in subduction zones Spectral Element Method ¾ Regular grids ¾ Time reversal (Finite source inversion) ¾ Full waveform inversion on a continental scale ¾ Irregular/unstructured grids ¾ Soil-structure interaction ¾ Earthquake scenarios ¾ Global wave propagation (Komatitsch and Tromp) Discontinuous Galerkin Methods: WHY? With studies by Jahnke, Fohrmann, Cochard, Käser, Fichtner, Stuppazzini, Ripperger, Nissen- Meyer, Kremers, Brietzke, a.o., (all LMU) as well as Olsen, Komatitsch, Tromp a.o.

Transcript of Finite Differences - LMUigel/Lectures/NMG/... · 2010. 7. 14. · ¾Compact codes ¾Easy to...

Page 1: Finite Differences - LMUigel/Lectures/NMG/... · 2010. 7. 14. · ¾Compact codes ¾Easy to parallelize ¾Hard to get boundary conditions (free surface, absorbing) accurate ¾„brute

1Computational seismology - applications

Computational seismology: applications

Finite DifferencesCartesian grids

Fault zone wavesLos Angeles Basin Earthquake scenarios (Olsen)

Spherical gridsGlobal SH and P-SV wave propagationSpherical sections – waves in subduction zones

Spectral Element MethodRegular grids

Time reversal (Finite source inversion)Full waveform inversion on a continental scale

Irregular/unstructured gridsSoil-structure interactionEarthquake scenarios

Global wave propagation (Komatitsch and Tromp)

Discontinuous Galerkin Methods: WHY?

With studies by Jahnke, Fohrmann, Cochard, Käser, Fichtner, Stuppazzini, Ripperger, Nissen- Meyer, Kremers, Brietzke, a.o., (all LMU) as well as Olsen, Komatitsch, Tromp a.o.

Page 2: Finite Differences - LMUigel/Lectures/NMG/... · 2010. 7. 14. · ¾Compact codes ¾Easy to parallelize ¾Hard to get boundary conditions (free surface, absorbing) accurate ¾„brute

2Computational seismology - applications

The Forward Problem … a glossary …

What method should I use for a specific problem?

Numerical Methodslow-order vs. high order methods; FD, FE, SE, FV, DG, BE; global vs. local

time stepping

Geometrical complexity, computational gridsregular, unstructured, adaptive meshes; conforming vs. non-conforming

meshes; tetrahedral vs. hexahedral grids (combinations)

Parallelizationmesh partitioning, load balancing, optimization, multi-platform implementations,

parallel scaling

Large data volume handlingpost-processing, visualization, transfer and storage

Page 3: Finite Differences - LMUigel/Lectures/NMG/... · 2010. 7. 14. · ¾Compact codes ¾Easy to parallelize ¾Hard to get boundary conditions (free surface, absorbing) accurate ¾„brute

3Computational seismology - applications

Finite Differences

FD approximations in space and timeSimple to understandCompact codesEasy to parallelizeHard to get boundary conditions (free surface, absorbing) accurate„brute force“ approach

Page 4: Finite Differences - LMUigel/Lectures/NMG/... · 2010. 7. 14. · ¾Compact codes ¾Easy to parallelize ¾Hard to get boundary conditions (free surface, absorbing) accurate ¾„brute

4Computational seismology - applications

FD Cartesian Grids

Page 5: Finite Differences - LMUigel/Lectures/NMG/... · 2010. 7. 14. · ¾Compact codes ¾Easy to parallelize ¾Hard to get boundary conditions (free surface, absorbing) accurate ¾„brute

5Computational seismology - applications

FD – Fault zone wave propagation

Aftershock recordingsafter the 1999 M7.4 Izmit earthquake

From:Ben-Zion, Peng, Okaya, Seeber, Armbruster, Michael, Ozer, SSA2002

Page 6: Finite Differences - LMUigel/Lectures/NMG/... · 2010. 7. 14. · ¾Compact codes ¾Easy to parallelize ¾Hard to get boundary conditions (free surface, absorbing) accurate ¾„brute

6Computational seismology - applications

FZ trapped waves

Near fault

At distance (about 300m) from fault

Page 7: Finite Differences - LMUigel/Lectures/NMG/... · 2010. 7. 14. · ¾Compact codes ¾Easy to parallelize ¾Hard to get boundary conditions (free surface, absorbing) accurate ¾„brute

7Computational seismology - applications

Observations across FZ

Page 8: Finite Differences - LMUigel/Lectures/NMG/... · 2010. 7. 14. · ¾Compact codes ¾Easy to parallelize ¾Hard to get boundary conditions (free surface, absorbing) accurate ¾„brute

8Computational seismology - applications

Benchmarking

Comparison of analytical solution (Ben-Zion, 1990)with staggered FD method

Comparison of analytical solution (Ben-Zion, 1990)with staggered FD method

unfiltered filtered

Page 9: Finite Differences - LMUigel/Lectures/NMG/... · 2010. 7. 14. · ¾Compact codes ¾Easy to parallelize ¾Hard to get boundary conditions (free surface, absorbing) accurate ¾„brute

9Computational seismology - applications

FZ discontinuities

Is FZ continuous at depth?Is FZ continuous at depth?

FZ continuousFZ continuous

FZ discontinuousFZ discontinuous

Page 10: Finite Differences - LMUigel/Lectures/NMG/... · 2010. 7. 14. · ¾Compact codes ¾Easy to parallelize ¾Hard to get boundary conditions (free surface, absorbing) accurate ¾„brute

10Computational seismology - applications

Shallow fault zones

Considerable FZ trapped wave energy generated.

Considerable FZ trapped wave energy generated.

Receivers

Page 11: Finite Differences - LMUigel/Lectures/NMG/... · 2010. 7. 14. · ¾Compact codes ¾Easy to parallelize ¾Hard to get boundary conditions (free surface, absorbing) accurate ¾„brute

11Computational seismology - applications

Volume that generates FZ waves

Receiver

Fohrmann et al. 2002.

Page 12: Finite Differences - LMUigel/Lectures/NMG/... · 2010. 7. 14. · ¾Compact codes ¾Easy to parallelize ¾Hard to get boundary conditions (free surface, absorbing) accurate ¾„brute

12Computational seismology - applications

Earthquake scenarios based on FD

A number of stunningvisualizations of earthquakescenarios can be found here(code by Kim Olsen, SDSU):

http://visservices.sdsc.edu/projects/scec/t erashake/2.1/

Page 13: Finite Differences - LMUigel/Lectures/NMG/... · 2010. 7. 14. · ¾Compact codes ¾Easy to parallelize ¾Hard to get boundary conditions (free surface, absorbing) accurate ¾„brute

13Computational seismology - applications

Earthquake scenarios Los Angeles

Page 14: Finite Differences - LMUigel/Lectures/NMG/... · 2010. 7. 14. · ¾Compact codes ¾Easy to parallelize ¾Hard to get boundary conditions (free surface, absorbing) accurate ¾„brute

14Computational seismology - applications

FD Cartesian Grids3-D with topography

Page 15: Finite Differences - LMUigel/Lectures/NMG/... · 2010. 7. 14. · ¾Compact codes ¾Easy to parallelize ¾Hard to get boundary conditions (free surface, absorbing) accurate ¾„brute

15Computational seismology - applications

Volcanoes

What is the contribution of topography to scattering?Can we simulate the seismic signatures of pyroclastic flows?

What is the contribution of topography to scattering?Can we simulate the seismic signatures of pyroclastic flows?

Page 16: Finite Differences - LMUigel/Lectures/NMG/... · 2010. 7. 14. · ¾Compact codes ¾Easy to parallelize ¾Hard to get boundary conditions (free surface, absorbing) accurate ¾„brute

16Computational seismology - applications

Blocky topography

Page 17: Finite Differences - LMUigel/Lectures/NMG/... · 2010. 7. 14. · ¾Compact codes ¾Easy to parallelize ¾Hard to get boundary conditions (free surface, absorbing) accurate ¾„brute

17Computational seismology - applications

Particle Motions

Page 18: Finite Differences - LMUigel/Lectures/NMG/... · 2010. 7. 14. · ¾Compact codes ¾Easy to parallelize ¾Hard to get boundary conditions (free surface, absorbing) accurate ¾„brute

18Computational seismology - applications

FD Spherical Gridsaxisymmetric

Page 19: Finite Differences - LMUigel/Lectures/NMG/... · 2010. 7. 14. · ¾Compact codes ¾Easy to parallelize ¾Hard to get boundary conditions (free surface, absorbing) accurate ¾„brute

19Computational seismology - applications

Waves in spherical coordinates

Equations of motion (velocity – stress)

(.) = 0 Axisymmetric

Models

Page 20: Finite Differences - LMUigel/Lectures/NMG/... · 2010. 7. 14. · ¾Compact codes ¾Easy to parallelize ¾Hard to get boundary conditions (free surface, absorbing) accurate ¾„brute

20Computational seismology - applications

Grids in spherical geometry

P-SV

SH

Page 21: Finite Differences - LMUigel/Lectures/NMG/... · 2010. 7. 14. · ¾Compact codes ¾Easy to parallelize ¾Hard to get boundary conditions (free surface, absorbing) accurate ¾„brute

21Computational seismology - applications

SH wave propagation

Red and yellow denote positive and negative displacement

Wavefield for source at 600km depth.

Symmetry axis

z.B. Igel und Weber, 1995Chaljub und Tarantola, 1997

Page 22: Finite Differences - LMUigel/Lectures/NMG/... · 2010. 7. 14. · ¾Compact codes ¾Easy to parallelize ¾Hard to get boundary conditions (free surface, absorbing) accurate ¾„brute

22Computational seismology - applications

Benchmarking

DSM: Direct solution method by Geller, Cummins, ...

Page 23: Finite Differences - LMUigel/Lectures/NMG/... · 2010. 7. 14. · ¾Compact codes ¾Easy to parallelize ¾Hard to get boundary conditions (free surface, absorbing) accurate ¾„brute

23Computational seismology - applications

Towards 3-D global wave propagation

multi-domainmulti-domain unstructuredunstructured

Page 24: Finite Differences - LMUigel/Lectures/NMG/... · 2010. 7. 14. · ¾Compact codes ¾Easy to parallelize ¾Hard to get boundary conditions (free surface, absorbing) accurate ¾„brute

24Computational seismology - applications

Global P-wave propagation

PKiKP

PK(P)

PcPP

Page 25: Finite Differences - LMUigel/Lectures/NMG/... · 2010. 7. 14. · ¾Compact codes ¾Easy to parallelize ¾Hard to get boundary conditions (free surface, absorbing) accurate ¾„brute

25Computational seismology - applications

Waves through random mantle models

Page 26: Finite Differences - LMUigel/Lectures/NMG/... · 2010. 7. 14. · ¾Compact codes ¾Easy to parallelize ¾Hard to get boundary conditions (free surface, absorbing) accurate ¾„brute

26Computational seismology - applications

SH - Wave effects

Page 27: Finite Differences - LMUigel/Lectures/NMG/... · 2010. 7. 14. · ¾Compact codes ¾Easy to parallelize ¾Hard to get boundary conditions (free surface, absorbing) accurate ¾„brute

27Computational seismology - applications

Is the mantle faster than we think?

Jahnke, Thorne, Cochard, Igel, GJI, 2008

Page 28: Finite Differences - LMUigel/Lectures/NMG/... · 2010. 7. 14. · ¾Compact codes ¾Easy to parallelize ¾Hard to get boundary conditions (free surface, absorbing) accurate ¾„brute

28Computational seismology - applications

FD Spherical Grids3-D sections

Page 29: Finite Differences - LMUigel/Lectures/NMG/... · 2010. 7. 14. · ¾Compact codes ¾Easy to parallelize ¾Hard to get boundary conditions (free surface, absorbing) accurate ¾„brute

29Computational seismology - applications

Spherical section – regular grid

Page 30: Finite Differences - LMUigel/Lectures/NMG/... · 2010. 7. 14. · ¾Compact codes ¾Easy to parallelize ¾Hard to get boundary conditions (free surface, absorbing) accurate ¾„brute

30Computational seismology - applications

Waves in spherical sections

Page 31: Finite Differences - LMUigel/Lectures/NMG/... · 2010. 7. 14. · ¾Compact codes ¾Easy to parallelize ¾Hard to get boundary conditions (free surface, absorbing) accurate ¾„brute

31Computational seismology - applications

Subduction zones

Page 32: Finite Differences - LMUigel/Lectures/NMG/... · 2010. 7. 14. · ¾Compact codes ¾Easy to parallelize ¾Hard to get boundary conditions (free surface, absorbing) accurate ¾„brute

32Computational seismology - applications

Subduction zones

Page 33: Finite Differences - LMUigel/Lectures/NMG/... · 2010. 7. 14. · ¾Compact codes ¾Easy to parallelize ¾Hard to get boundary conditions (free surface, absorbing) accurate ¾„brute

33Computational seismology - applications

Can we observe such effects?

Page 34: Finite Differences - LMUigel/Lectures/NMG/... · 2010. 7. 14. · ¾Compact codes ¾Easy to parallelize ¾Hard to get boundary conditions (free surface, absorbing) accurate ¾„brute

34Computational seismology - applications

Spectral element methodCartesian grids

Page 35: Finite Differences - LMUigel/Lectures/NMG/... · 2010. 7. 14. · ¾Compact codes ¾Easy to parallelize ¾Hard to get boundary conditions (free surface, absorbing) accurate ¾„brute

35Computational seismology - applications

Synthethic experiment: source inversion

Page 36: Finite Differences - LMUigel/Lectures/NMG/... · 2010. 7. 14. · ¾Compact codes ¾Easy to parallelize ¾Hard to get boundary conditions (free surface, absorbing) accurate ¾„brute

36Computational seismology - applications

True source

Page 37: Finite Differences - LMUigel/Lectures/NMG/... · 2010. 7. 14. · ¾Compact codes ¾Easy to parallelize ¾Hard to get boundary conditions (free surface, absorbing) accurate ¾„brute

37Computational seismology - applications

Seismograms

Page 38: Finite Differences - LMUigel/Lectures/NMG/... · 2010. 7. 14. · ¾Compact codes ¾Easy to parallelize ¾Hard to get boundary conditions (free surface, absorbing) accurate ¾„brute

38Computational seismology - applications

Time reversal – point source

Page 39: Finite Differences - LMUigel/Lectures/NMG/... · 2010. 7. 14. · ¾Compact codes ¾Easy to parallelize ¾Hard to get boundary conditions (free surface, absorbing) accurate ¾„brute

39Computational seismology - applications

Time reversal: real network

Page 40: Finite Differences - LMUigel/Lectures/NMG/... · 2010. 7. 14. · ¾Compact codes ¾Easy to parallelize ¾Hard to get boundary conditions (free surface, absorbing) accurate ¾„brute

40Computational seismology - applications

Time reversal: ideal network

Page 41: Finite Differences - LMUigel/Lectures/NMG/... · 2010. 7. 14. · ¾Compact codes ¾Easy to parallelize ¾Hard to get boundary conditions (free surface, absorbing) accurate ¾„brute

41Computational seismology - applications

Real data: Tottori earthquake

Page 42: Finite Differences - LMUigel/Lectures/NMG/... · 2010. 7. 14. · ¾Compact codes ¾Easy to parallelize ¾Hard to get boundary conditions (free surface, absorbing) accurate ¾„brute

42Computational seismology - applications

Reverse movie

Page 43: Finite Differences - LMUigel/Lectures/NMG/... · 2010. 7. 14. · ¾Compact codes ¾Easy to parallelize ¾Hard to get boundary conditions (free surface, absorbing) accurate ¾„brute

43Computational seismology - applications

Focus time

Page 44: Finite Differences - LMUigel/Lectures/NMG/... · 2010. 7. 14. · ¾Compact codes ¾Easy to parallelize ¾Hard to get boundary conditions (free surface, absorbing) accurate ¾„brute

44Computational seismology - applications

Projection on fault

Page 45: Finite Differences - LMUigel/Lectures/NMG/... · 2010. 7. 14. · ¾Compact codes ¾Easy to parallelize ¾Hard to get boundary conditions (free surface, absorbing) accurate ¾„brute

45Computational seismology - applications

Spectral element methodspherical regular grids

Page 46: Finite Differences - LMUigel/Lectures/NMG/... · 2010. 7. 14. · ¾Compact codes ¾Easy to parallelize ¾Hard to get boundary conditions (free surface, absorbing) accurate ¾„brute

46Computational seismology - applications

Simple example

Page 47: Finite Differences - LMUigel/Lectures/NMG/... · 2010. 7. 14. · ¾Compact codes ¾Easy to parallelize ¾Hard to get boundary conditions (free surface, absorbing) accurate ¾„brute

47Computational seismology - applications

Ray coverage – initial model

Page 48: Finite Differences - LMUigel/Lectures/NMG/... · 2010. 7. 14. · ¾Compact codes ¾Easy to parallelize ¾Hard to get boundary conditions (free surface, absorbing) accurate ¾„brute

48Computational seismology - applications

Sensitivity kernels

S velocity P velocity Density

Page 49: Finite Differences - LMUigel/Lectures/NMG/... · 2010. 7. 14. · ¾Compact codes ¾Easy to parallelize ¾Hard to get boundary conditions (free surface, absorbing) accurate ¾„brute

49Computational seismology - applications

Final model

Page 50: Finite Differences - LMUigel/Lectures/NMG/... · 2010. 7. 14. · ¾Compact codes ¾Easy to parallelize ¾Hard to get boundary conditions (free surface, absorbing) accurate ¾„brute

50Computational seismology - applications

Before - After

Page 51: Finite Differences - LMUigel/Lectures/NMG/... · 2010. 7. 14. · ¾Compact codes ¾Easy to parallelize ¾Hard to get boundary conditions (free surface, absorbing) accurate ¾„brute

51Computational seismology - applications

Improvement

Page 52: Finite Differences - LMUigel/Lectures/NMG/... · 2010. 7. 14. · ¾Compact codes ¾Easy to parallelize ¾Hard to get boundary conditions (free surface, absorbing) accurate ¾„brute

52Computational seismology - applications

Spectral element methodUnstructured grids

Page 53: Finite Differences - LMUigel/Lectures/NMG/... · 2010. 7. 14. · ¾Compact codes ¾Easy to parallelize ¾Hard to get boundary conditions (free surface, absorbing) accurate ¾„brute

53Computational seismology - applications

Page 54: Finite Differences - LMUigel/Lectures/NMG/... · 2010. 7. 14. · ¾Compact codes ¾Easy to parallelize ¾Hard to get boundary conditions (free surface, absorbing) accurate ¾„brute

54Computational seismology - applications

Grenoble basin

Page 55: Finite Differences - LMUigel/Lectures/NMG/... · 2010. 7. 14. · ¾Compact codes ¾Easy to parallelize ¾Hard to get boundary conditions (free surface, absorbing) accurate ¾„brute

55Computational seismology - applications

The bridge

Page 56: Finite Differences - LMUigel/Lectures/NMG/... · 2010. 7. 14. · ¾Compact codes ¾Easy to parallelize ¾Hard to get boundary conditions (free surface, absorbing) accurate ¾„brute

56Computational seismology - applications

Soil – structure interaction

Page 57: Finite Differences - LMUigel/Lectures/NMG/... · 2010. 7. 14. · ¾Compact codes ¾Easy to parallelize ¾Hard to get boundary conditions (free surface, absorbing) accurate ¾„brute

57Computational seismology - applications

Spectral element methodGlobal wave propagation(Komatitsch and Tromp)

Page 58: Finite Differences - LMUigel/Lectures/NMG/... · 2010. 7. 14. · ¾Compact codes ¾Easy to parallelize ¾Hard to get boundary conditions (free surface, absorbing) accurate ¾„brute

58Computational seismology - applications

Cubed Sphere

Page 59: Finite Differences - LMUigel/Lectures/NMG/... · 2010. 7. 14. · ¾Compact codes ¾Easy to parallelize ¾Hard to get boundary conditions (free surface, absorbing) accurate ¾„brute

59Computational seismology - applications

Alaska, Denali, M 7.9, 2002

Page 60: Finite Differences - LMUigel/Lectures/NMG/... · 2010. 7. 14. · ¾Compact codes ¾Easy to parallelize ¾Hard to get boundary conditions (free surface, absorbing) accurate ¾„brute

60Computational seismology - applications

Observations - Synthetics

Page 61: Finite Differences - LMUigel/Lectures/NMG/... · 2010. 7. 14. · ¾Compact codes ¾Easy to parallelize ¾Hard to get boundary conditions (free surface, absorbing) accurate ¾„brute

61Computational seismology - applications

Observations - Synthetics

Page 62: Finite Differences - LMUigel/Lectures/NMG/... · 2010. 7. 14. · ¾Compact codes ¾Easy to parallelize ¾Hard to get boundary conditions (free surface, absorbing) accurate ¾„brute

62Computational seismology - applications

Discontinuous GalerkinWhy (the hell) do we need another method?

Page 63: Finite Differences - LMUigel/Lectures/NMG/... · 2010. 7. 14. · ¾Compact codes ¾Easy to parallelize ¾Hard to get boundary conditions (free surface, absorbing) accurate ¾„brute

63Computational seismology - applications

Waves on unstructured grids? tetrahedral

Page 64: Finite Differences - LMUigel/Lectures/NMG/... · 2010. 7. 14. · ¾Compact codes ¾Easy to parallelize ¾Hard to get boundary conditions (free surface, absorbing) accurate ¾„brute

64Computational seismology - applications

Arbirtrarily high-orDER - Discontinuous Galerkin

Combination of a discontinuous Galerkin methodwith ADER time integration

Piecewise polynomial approximation combined withfluxes across elements (finite volumes)

Time integration as accurate as spatialapproximation, applicable also to strongly irregularmeshes (not so usually for FD, FE, SE)

Method developed in aero-acoustics and computational fluid dynamics

The scheme is entirely local, no large matrix inversion-> efficient parallelization

Drawback: Algorithms on tetrahedral grids slowerthan spectral element schemes on hexahedra

Combination of a discontinuous Galerkin methodwith ADER time integration

Piecewise polynomial approximation combined withfluxes across elements (finite volumes)

Time integration as accurate as spatialapproximation, applicable also to strongly irregularmeshes (not so usually for FD, FE, SE)

Method developed in aero-acoustics and computational fluid dynamics

The scheme is entirely local, no large matrix inversion-> efficient parallelization

Drawback: Algorithms on tetrahedral grids slowerthan spectral element schemes on hexahedra

Several articles in Geophys. J. Int., Geophysics, a.o. by Käser, Dumbser, de la Puente, and co-workers

Page 65: Finite Differences - LMUigel/Lectures/NMG/... · 2010. 7. 14. · ¾Compact codes ¾Easy to parallelize ¾Hard to get boundary conditions (free surface, absorbing) accurate ¾„brute

65Computational seismology - applications

Use high precision (i.e., high-order polynomials) only where necessary

High precision where cells are large (high velocities)

Low precision where cells are small (because of structural heterogeneities)

Use high precision (i.e., high-order polynomials) only where necessary

High precision where cells are large (high velocities)

Low precision where cells are small (because of structural heterogeneities)

O4

O5

O6

O7

Käser et al. (2006)

Dumbser, Käser and Toro, GJI, 2007

P - adaptivity

Page 66: Finite Differences - LMUigel/Lectures/NMG/... · 2010. 7. 14. · ¾Compact codes ¾Easy to parallelize ¾Hard to get boundary conditions (free surface, absorbing) accurate ¾„brute

66Computational seismology - applications

Same color means same processor

Same color means same processor

Mesh Partitioning and Parallel Computing the problem of load blancing

Page 67: Finite Differences - LMUigel/Lectures/NMG/... · 2010. 7. 14. · ¾Compact codes ¾Easy to parallelize ¾Hard to get boundary conditions (free surface, absorbing) accurate ¾„brute

67Computational seismology - applications

Topographic effects

Page 68: Finite Differences - LMUigel/Lectures/NMG/... · 2010. 7. 14. · ¾Compact codes ¾Easy to parallelize ¾Hard to get boundary conditions (free surface, absorbing) accurate ¾„brute

68Computational seismology - applications

Topographic Effects

Page 69: Finite Differences - LMUigel/Lectures/NMG/... · 2010. 7. 14. · ¾Compact codes ¾Easy to parallelize ¾Hard to get boundary conditions (free surface, absorbing) accurate ¾„brute

69Computational seismology - applications

Regional and Global Wave Propagation crust, crust, crust!

Page 70: Finite Differences - LMUigel/Lectures/NMG/... · 2010. 7. 14. · ¾Compact codes ¾Easy to parallelize ¾Hard to get boundary conditions (free surface, absorbing) accurate ¾„brute

70Computational seismology - applications

Page 71: Finite Differences - LMUigel/Lectures/NMG/... · 2010. 7. 14. · ¾Compact codes ¾Easy to parallelize ¾Hard to get boundary conditions (free surface, absorbing) accurate ¾„brute

71Computational seismology - applications

Minimum occurring wave speed

Global wave propagation … keeping the number of points per wavelength constant …

Page 72: Finite Differences - LMUigel/Lectures/NMG/... · 2010. 7. 14. · ¾Compact codes ¾Easy to parallelize ¾Hard to get boundary conditions (free surface, absorbing) accurate ¾„brute

72Computational seismology - applications

Page 73: Finite Differences - LMUigel/Lectures/NMG/... · 2010. 7. 14. · ¾Compact codes ¾Easy to parallelize ¾Hard to get boundary conditions (free surface, absorbing) accurate ¾„brute

73Computational seismology - applications

Benchmarking DG vs. SE

Page 74: Finite Differences - LMUigel/Lectures/NMG/... · 2010. 7. 14. · ¾Compact codes ¾Easy to parallelize ¾Hard to get boundary conditions (free surface, absorbing) accurate ¾„brute

74Computational seismology - applications

The sound of volcanoesEruption, 15. Juni, 2006

Page 75: Finite Differences - LMUigel/Lectures/NMG/... · 2010. 7. 14. · ¾Compact codes ¾Easy to parallelize ¾Hard to get boundary conditions (free surface, absorbing) accurate ¾„brute

75Computational seismology - applications

Reservoir applications(Schlumberger Doll Rese

task: model also steel casing!

Page 76: Finite Differences - LMUigel/Lectures/NMG/... · 2010. 7. 14. · ¾Compact codes ¾Easy to parallelize ¾Hard to get boundary conditions (free surface, absorbing) accurate ¾„brute

76Computational seismology - applications

Summary

Computational 3-D wave propagation finds isnow applications in almost all fields of Earth sciencesThere is not ONE method that works best for all problemsMaking codes work on large computers will bemore and more a challengeThe most promising methods for the comingyears seems FD (still), SE, and DG