Ferroelectric Tunnel Junctions: A Theoretical Approach · Forschungszentrum Jülich Ferroelectric...

19
Forschungszentrum Jülich Ferroelectric Tunnel Junctions: A Theoretical Approach H. Kohlstedt, A. Petraru, R. Waser Forschungszentrum Jülich GmbH, Institut für Festkörperforschung and CNI, the Center of Nanoelectronic Systems and Information Technology, Germany N. A. Pertsev A. F. Ioffe Physico-Technical Institute, St. Petersburg, Russia Center of Nanoelectronic Systems Information Technology

Transcript of Ferroelectric Tunnel Junctions: A Theoretical Approach · Forschungszentrum Jülich Ferroelectric...

Forschungszentrum Jülich

Ferroelectric Tunnel Junctions: A Theoretical Approach

H. Kohlstedt, A. Petraru, R. WaserForschungszentrum Jülich GmbH,

Institut für Festkörperforschung and CNI, the Center of Nanoelectronic Systems and Information Technology, Germany

N. A. PertsevA. F. Ioffe Physico-Technical Institute, St. Petersburg, Russia

Center ofNanoelectronic Systems Information Technology

Electron Tunneling through Insulators

EWpotW )(xφW )(xφ

xt0

k xikCΨxk real xk xk real

Re BΨ

xikB

xeB=Ψxik

CxeC=Ψimaginary

x

⎪⎫⎪⎧ t

xikxA −Ψ

Re AΨ

⎪⎭

⎪⎬⎫

⎪⎩

⎪⎨⎧−= ∫ dxxmCT

t

0

)(22exp φh

AxeA=Ψ ⎭

Transmission coefficient

Electron tunneling: Current Transport Equation

Metal 1 Metal 2I

Fermi distributions of(occupied/unoccupied) states

Fermi distributions of( i d/ i d) t tj

j2-1(occupied/unoccupied) states

+ eVT

j1-2

dd

−− −=−=

jjjdirectionxdensitycurrentnvej x

1221

:

[ ] ⊥⊥

⋅−= ∫∫⊥

⊥dkkTEfEfdEej

k

kE

max)(

),(213 )()(4 hπ o 04 hπ

Tunnel Junctions: A short Survey

Me I Me Su I Su Mag I Mag Semic I Me

Egg

I IΔR/R I

V V H V

Sommerfeld/Frenkel/Holm Giaever/Josephson Jullieré/Moodera/Parkin/(Sun/Fert for oxides)

Esaki

Ultra-thin Ferroelectric Films (Recent Results)

10

TO)

)

8

Gho

sez

(BT

ma

(PZT

)

ZT)

PTO

)

T)awa

(PTO

)

asur

ed

m)

6

O)

uera

and

G

(PTO

)

Mar

ayu

(PTO

)

Tybe

ll (P

Z

nd R

abe

(P

et a

l. (P

ZT

Kar

asa

cted

/mea

esss

(nm

2

4

treiff

er (P

T

Junq

u

Stre

iffer

Per

tsev

Gho

sez

anLi

um p

redi

c

thic

kne

1996 1997 1998 1999 2000 2001 2002 2003 20040

2 StG

Min

imu

one unit cell

Ferroelectricity exists down to a few number of unit cells!El t i l d h i l ( t i ) b d diti

1996 1997 1998 1999 2000 2001 2002 2003 2004

Electrical and mechanical (strain) boundary conditions are extremely important!

Ferroelectric Tunnel Junction

High-Resolution TEM

ASrRuO3

+ + + + + + + + + + + + + + + + + + + + + + + +e-

V10 unit cells PZT

+ + + + + + + + + + + + + + + + + + + + + + + +

P

4 nm

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

SrRuO3

Quantum Mechanical

⎪⎬⎫⎪

⎨⎧

∫ dCTx1

)(22 φ

Quantum Mechanical Electron TunnelingTunneling matrix element:

⎪⎭

⎪⎬

⎪⎩

⎪⎨−= ∫ dxxmCT

x0

)(2exp φh Polarization State of PZT

Superconducting -, Magnetic-, and Ferroelectric Tunnel Junctions

Dielectric Barrier

Superconductor Superconductor Magnet Magnet

[ ]dEEfeVEfEneVEnETAeVI )()()()()(2)( 21 −−⋅−= ∫∞

h

π∫∞−h

Metal Metal

Ferroelectric tunnel junction:

Cooperative phenomenon

Ferroelectric Barrier

is in the barrier !

Ferroelectric Tunnel Junction (preliminary Work)

13 2161 (1971)

Idea: Resistive switching caused by ferroelectricity! 13, 2161 (1971).by ferroelectricity!

European Patent:0 657936 A1, 1994R. M. Wolf and P. W. M. Blom, Philips Electronics, Eindhoven (NL).( )

Patent drawing Measurement

Influence of Ferroelectricity on Electron Tunneling y g

Volume effects Interface effects

S33 SrRuO3BaTiO3 +

VVc-Vc

-

Barrier thicknessLattice parameter:

Band structure

Polarization charge +/-Screening effectsDifferent structureBand structure

Effective mass Potential barrier

Strain: Volume effects I

t -t 0

VC-VC

a. Variation of barrier thickness

Voltage

b Shift of the conduction and valence band edges

Vdtt o 33+=

b. Shift of the conduction and valence band edges

dzEEhmCT

t

zC ⎟⎟⎠

⎞⎜⎜⎝

⎛−π−= ∫

0

0*24exp

( )02

*2

222

2 EEmk

kkk

zCz

z

−⋅=−

+= ⊥

h

⎠⎝ 0

( )333

0

2

SEE CC

zCz

κ+=h

Deformation Potential:Brooks 1955, Herring 1956, Kane 1970

c. Change of the electron effective mass

02* == km h** Vd∂∂

a: lattice parameter, Tight binding approx.

0,2 =Δ

= kEa

mC

0

33

33

*033

33

*0

*

tVd

SmmS

Smmm

∂∂

+=∂∂

+=

Strain: Volume effects II

T i i b bilit i WKB i ti ( b d d l)• Transmission probability in WKB approximation (one-band model)

dzEEmCTt

zc ⎟⎟⎞

⎜⎜⎛

−−= ∫*24exp π

• Influence of nonzero piezoelectric constant d33

hC zc ⎟

⎠⎜⎝

∫0

p π

⎪⎨⎧

±⎟⎟⎞

⎜⎜⎛

∂∂

±−= )(112

8exp)( 33033

*

*

*0 VdtVdm

hm

ET z π⎪⎩⎨ ⎟

⎠⎜⎝ ∂

)(23

p)( 330033

*0 tSmheVz

⎪⎫⎤⎡ ⎞⎛⎞⎛2/32/3

VV

⎪⎭

⎪⎬⎫

⎥⎥⎦

⎢⎢⎣

⎡⎟⎟⎠

⎞⎜⎜⎝

⎛−−±−⎟⎟

⎞⎜⎜⎝

⎛−±×

03333

0

03333

0zczc EeV

dVdEE

dVdE κκ

Strain: Volume effects III: I-V curves

4

2

3+Vc

106 A

/cm

2 ) 3

-V +Vance

, G/G

0

Symmetric I-V

0

1

Vnt d

ensi

ty (

2

-Vc+Vc

d co

nduc

ta

-2

-1 -Vc

Cur

ren

1Nor

mal

ize

-0.4 -0.2 0.0 0.2 0.4-4

-3 (a)

-0.4 -0.2 0.0 0.2 0.4

1(b)

Voltage (V) Voltage (V)

Parameter: d33 = 50pm/VCenter ofNanoelectronic Systems forInformation Technology

33 pBarrier height: 0.5 eVThickness t0 = 3 nm

Macroscopic Interface Effect I (non-perfect Screening)p ( p g)

Screening at top and bottom equivalent

M Dawber et al J Condens Matter 15 393 (2003)

PsV=0 V=0

----

++++

---

+++

M. Dawber et al., J. Condens. Matter, 15, 393 (2003).

Edep

V 0

Eel E l

-----

+++++

-----

+++++

Ferroelectricp

Electrode Electrode(a)

Eel-+--

++

Symmetric I V curveV

Same symmetry as in case of strain induced effects

Symmetric I-V curve

0 t/2 t x3

Macroscopic Interface Effect II (non-perfect Screening)p ( p g)

Screening at top and bottom not equivalent

Ps

---

Ps

+++

EEnfEdep

---

Edep

++++Δt

Enf

t

--

Δt ++

Δt Asymmetric I-V curce

V(x3)1 ( )ttEV dep Δ−+=21

x3

( )ttEV dep Δ−−=21

Symmetric and asymmetric Barrier Structures

tI

Symmetric barrier structure

φ

φ´1φ´2

φ1 φ2

t

t`

Vφ1 φ2

Electrode Ferroelectric Electrode S t i I VElectrode Ferroelectric Electrode

I

Asymmetric barrier structure

Symmetric I-V

I

φ´

2/)( ´21 φφφ +=a

2/)( φφφ +

fixedvariable

V

φ1 φ

22/)( 21 φφφ +=b

2

Asymmetric I-V

0.4

0.6

0.8 Φ2a

Φ1a = Φ1

b

(eV)

polarisation "a" polarisation "b"

0

1

2

3

4

A/cm

2 )

polarisation "a" polarisation "b"

20

30

(Ω-1cm

-1)

polarisation "a" polarisation "b"Extremely

Asymmetric

-5 0 5 10 15 20 25 30 35

0.0

0.2

Ym

Φ1b

Φ

x (A) -0.2 -0.1 0.0 0.1 0.2-4

-3

-2

-1J (A

U (V)-0.2 -0.1 0.0 0.1 0.2

0

10dJ/d

U (

U (V)

0.4

0.6

0.8 Φ2a

Φ1b

eV)

polarisation "a" polarisation "b"

0 00

0.05

0.10

0.15

0.20

/cm

2 )

polarisation "a" polarisation "b"

1 01.21.41.61.82.0

(Ω-1cm

-1)

polarisation "a" polarisation "b"

Reduced Asymmetry

-5 0 5 10 15 20 25 30 35

0.0

0.2

0.4

Ym

Φ2bΦ1

aΦ (

x (A) -0.2 -0.1 0.0 0.1 0.2

-0.15

-0.10

-0.05

0.00

J (A

/

U (V)-0.2 -0.1 0.0 0.1 0.2

0.00.20.40.60.81.0

dJ/d

U (

U (V)

Asymmetry

0.4

0.6

0.8 Φ2aΦ1

b

(eV)

polarisation "a" polarisation "b"

0 00

0.05

0.10

0.15

A/cm

2 )

polarisation "a" polarisation "b"

0 6

0.8

1.0

1.2

U (Ω

-1cm

-1)

polarisation "a" polarisation "b"

Crossingpoint CP

-5 0 5 10 15 20 25 30 35

0.0

0.2

Ym

Φ1bΦ1

a

Φ

x (A) -0.2 -0.1 0.0 0.1 0.2

-0.10

-0.05

0.00

J (A

U (V)

-0.2 -0.1 0.0 0.1 0.2

0.2

0.4

0.6

dJ/d

U

U (V)

pointCP: ΔR = 0@ -Vc

0.4

0.6

0.8 Φ2aΦ1

b

Φ (e

V)

polarisation state "a" polarisation state "b"

0.00

0.05

0.10

A/cm

2 )

polarisation "a" polarisation "b"

0 6

0.8

1.0

1.2

dU (Ω

-1cm

-1)

polarisation "a" polarisation "b"

S t i-5 0 5 10 15 20 25 30 35

0.0

0.2

Ym

Φ1bΦ1

a

Φ

x (A) -0.2 -0.1 0.0 0.1 0.2

-0.10

-0.05

J (A

U (V)

-0.2 -0.1 0.0 0.1 0.20.2

0.4

0.6

dJ/d

U (V)

Symmetric

Recent Work on Ferroelectric Tunnel Junctions

Nanoscale polarization manipulation and conductance switching in ultrathin films of a ferroelectric copolymerHongwei Qu et al APL 82 4322 (2003)Hongwei Qu,et al., APL 82 4322 (2003).

out-of plane

H. Kohlstedt, N. A. Pertsev, and R. Waser, in

J Rodríguez Contreras et al

, , ,Ferroelectric Thin Films X, MRS Symposia Proceedings, 688, 161 (2002).

E

J. Rodríguez Contreras, et al.,Appl. Phys. Lett. 83, 4595 (2003).x

t

GaN: an example! Resonant Electron Tunneling in GaN/Ga1-xAlxN strained structures with spontanous polarization and piezoeffect, Phys. Of the Solid State: 43, 529 (2001).

Outlook

Experimental realization of an FTJ p

S d t / S d t / New device structuresSuperconductor/Magnet

Superconductor/Magnet

New device structures

Ferroelectric Barrier

(IETS) Inelastic electron tunneling spectrocopy to study:(IETS)- Inelastic electron tunneling spectrocopy to study:

(1) Domain structures in nm thin ferroelectric materialsor(2) Phonon spectra in ultrathin ferroelectric barriers

AcknowledgementAcknowledgement

The work was supported by the HGF-Strategiefonds “Piccolo” and the V lk F d ti P j tVolkswagen-Foundation--Project

“Nano-sized ferroelectric hybrids” under contract number I/77 737.

DFG Project: „Displacive and Conductive Phenomena in Ferroelectric Thin Films:Scaling effects and switching properties“.

Center ofNanoelectronic Systems forInformation Technologygy