Evaluation of tensile properties using...

28
2018. 03. 26. 원종호 Evaluation of tensile properties using IIT

Transcript of Evaluation of tensile properties using...

2018 03 26 원종호

Evaluation of tensile properties using IIT

2

Contents

Background

POSCO project

- Evaluation of dynamic tensile property

Yield properties of PE pipe

3

Introduction

-Suitability of new material

-Degradation

-Accident amp damage analysis

Need for nondestructive technique

to evaluate material properties

at in-field

-Verification of feasibility

-Life predictionsafety assessment

-Construction of material DB

4

Introduction

Deformation

Fracture

σYS UTS n E

KIC JIC δIC

Destructive

How can I measure the mechanical properties

I am working Do not touch

5

Introduction

Specimens for tensile test Specimens for fracture test

Not applicable for small scale testing

Large scale testing

6

Introduction

Convenient

In-situ amp In-field System

Non-destructive amp Local test

Simple amp fast

7

Introduction

Ac

Hardness

Elastic modulus

CAPH max=

Ceff A

SE2π

=

Plastic deformation

Elastic deformation

8

Algorithm for strength evaluation

diams Step 1Determining contact areataking into considerationplastic pile-upsink-in

SphericalIndentation

Stress and StrainState in Material

=

Rhnf

hh max

ITc

pile

diams Step 2Defining stress and strain statein materials underneath spherical indenteras representative stress and strain

c

maxT A

F1Ψ

σ = θξε tan=T

diams Step 3 amp 4Fitting to constitutive equation andevaluating tensile properties

True strain εΤ

True

stre

ss σ

Τ

σ=E(ε-0002) σ=Kεn

Representative stress-strain points

E

Instrumented indentation testwith a spherical indenter

Tensile propertiesTensile properties

σy IT σu IT nIT EIT

Force-depth curveof multiple unloadings

diams Step 1Determining contact areataking into considerationplastic pile-upsink-in

SphericalIndentation

Stress and StrainState in Material

=

Rhnf

hh max

ITc

pile

diams Step 2Defining stress and strain statein materials underneath spherical indenteras representative stress and strain

c

maxT A

F1Ψ

σ = θξε tan=T

diams Step 3 amp 4Fitting to constitutive equation andevaluating tensile properties

True strain εΤ

True

stre

ss σ

Τ

σ=E(ε-0002) σ=Kεn

Representative stress-strain points

E

Instrumented indentation testwith a spherical indenter

Tensile propertiesTensile properties

σy IT σu IT nIT EIT

Force-depth curveof multiple unloadings

9

Step 1

Reference plane

Elastic deflection

dh-Plastic pile-upsink-in

pileh+

R

h c h d

h max

h pile

piledc hhhh +minus= max

SLhd

maxε= ) ( max

Rhnfhpile =

-WC Oliver amp GM Pharr J Mater Res (1992) -SH Kim et al Mater Sci Eng A (2006)

10

Step 2

Indentation depth increases Stress and strain increase

γ γ

Representative Stress Definition

Ψ=σR

mPΨ Constraint Factor (about 3)

2max

cm a

LPπ

=

Representative Strain Definition

γααε tan)(1 2

=minus

=Ra

Rac

c

R

-DTabor The Hardness of Metals (1951) -JH Ahn et al JMR (2000)

11

Step 3

nKε=σ

h

L

Loading

Unloading

σ

ε

Indentation load-depth curve Derived stress-strain points

12

Step 4

)0020( minus= yny EK εε

True

stre

ss

True strain

Yield strength

AL σ=

εdA

dAd=minus=

ll

σσd

AdA

=minus

σεσ

=dd

Tensile strength

nu =ε

13

POSCO project

(Evaluation of dynamic tensile property)

14

background

Room Temperature Low Temperature

Strain rate range 0001s 1s 10s 100s 200s

Schematic diagram of strain rate regimes

Dynamic strain rage 100 ~ 104 s

15

Definition of strain rate

Representative stress-strain definition (Expanding Cavity Model)

RhRh

Ra 222020 minus

==ε21

caL

πψσ =

Representative Stress Representative Strain

indentation strain rate (Spherical indenter)

- Representative strain definition RhRh

Ra 222020 minus

==ε

- indentation strain rate dt

dεε =amp )( VRhfdt

d=

εhc depth R indenter radius

V indentation speed

16

Definition of strain rate

4 6 8 10 12 14 16 18 20 22 2404

05

06

07

08

09

10

11

stra

in ra

te [

s]

h [um]

Dynamic range (100 ~ )

rarr 압입 깊이 별 strain rate 감소

Change of strain rate

according to indentation depth

0 20 40 60 80 100 120 140 160

02

04

06

08

10

12

14 strain rate=constant strain rate=changed

V[m

mm

in]

Depth[um]

example Indentation strain rate = 001

17

Result

000 005 010 015 020 0250

100

200

300

400

500

600

700

Tensile_Static Tensile_01s Tensile_02s Tensile_1s Indentation_Static Indentation_001s Indentation_005s

True

stre

ss[M

Pa]

True strain

[S-S curve comparison]

Confirming tendency of s-s curve according to strain rate

18

Equipment improvement

Minute control

AIS3000 Hardware

0 1 2 3 4 5 6 7 8 9 1000

02

04

06

08

10

Inde

ntat

ion

stra

in ra

te [

s]

indentation speed [mmmin]

19

Dynamic hardening factor

σd f(εp) = σs f(εp) middot DHF

DHF Dynamic Hardening Factor

Experimental constant (D)

[Joon mo Choung Dynamic hardening behaviors of various marine structural steels

considering dependencies on strain rate and temperature 2013]

20

Change in DHF

1E-3 001 01 1 10

10

11

12

13 SM400 (σ0=2967MPa)

DHF

Strain Rate [s]1E-3 001 01 1 10

10

11

12

13 SM490 (σ0=3421MPa)

DHF

Strain Rate [s]

SM400 SM490

Change in DHF with strain rate (tensile test)

01 1

100

101

102

103

104

105

106

107 SM490 σ0 = 3213 MPa

DHF

Strain Rate [s]01 1

100

101

102

103

104

105

106

107 SM400 σ0= 2664MPa

DHF

Strain Rate [s]

SM400 SM490

Change in DHF with strain rate (IIT)

21

Yield properties of PE pipe

22

Introduction

Gas Water Sewage Chemicals

In Industrial In Metropolitan

bull Corrosion amp Chemical resistance

bull Long life amp Life cycle cost savings

bull Leak free joint

bull Light weight

bull Flexibiility

bull High ductility

bull Easy installation

bull Fatigue amp Seismic resistance

Advantages of PE

23

Indenter

Background

Issue (Application to PE)

R

d1

R

d2

θ1

θ2

d

Residual Indent(top view)

Ψ=σR

mP Ψ Constraint Factor (about 3)

γε sin250=T

Representation

True strain εΤ

True

stre

ss σ

Τ

σ=E(ε-0002) σ=Kεn

Representative stress-strain points

E

In order to Evaluate Strength of Polyethylene Definition of strain rate on IIT is essential It is difficult to definite strain rate using spherical indenter Because the contact area is consistently changing during indentation

24

Indenter

Approach

Using flat-ended cylindrical indenter instead of spherical indenter

Characteristics

Indenter shape

Sharp Spherical

(Conventional representation)

Flat-ended cylindrical

No self-similarity Not keeping resemblance

during indentation X O O

Fixed contact area constant contact area during

indentation X X O

Closeness to compression test X O

25

Definition of strain

0

50

100

150

200

250

300

350

0 20 40 60 80 100

load

(kg

f)

depth (um)

a=250um

a=500um

a=1000um

Load-depth curve

00

05

10

15

20

25

30

00 01 02 03 04Pm

(G

Pa)

hR

a=250um

a=500um

a=1000um

Load rArr Pm h rArr hR

Normalization

hR can be ldquoRepresentativerdquo strain

26

Strain rate

Rh

r

bullbull

minus=χ

ε 1

From flat-ended indentation for creep test

Rhqr 21

bullbull

sdot=εA

hqr

bullbull

sdot= 2ε

q1 amp q2 are constant

[PMSargent Mater Sci Technol 1992] [JLu J Mech Phys Solids 2003]

Experimental approach

In progresshellip

27

28

(Indentation strain rate definition by Doener amp Nix )

Indentation strain rate

Indentation test parameter

Plastic zone expansion rate of indentation

  • 슬라이드 번호 1
  • Contents
  • Introduction
  • Introduction
  • Introduction
  • Introduction
  • Introduction
  • Algorithm for strength evaluation
  • Step 1
  • Step 2
  • Step 3
  • Step 4
  • 슬라이드 번호 13
  • background
  • Definition of strain rate
  • Definition of strain rate
  • Result
  • Equipment improvement
  • Dynamic hardening factor
  • Change in DHF
  • 슬라이드 번호 21
  • Introduction
  • Indenter
  • Indenter
  • Definition of strain
  • Strain rate
  • 슬라이드 번호 27
  • 슬라이드 번호 28

2

Contents

Background

POSCO project

- Evaluation of dynamic tensile property

Yield properties of PE pipe

3

Introduction

-Suitability of new material

-Degradation

-Accident amp damage analysis

Need for nondestructive technique

to evaluate material properties

at in-field

-Verification of feasibility

-Life predictionsafety assessment

-Construction of material DB

4

Introduction

Deformation

Fracture

σYS UTS n E

KIC JIC δIC

Destructive

How can I measure the mechanical properties

I am working Do not touch

5

Introduction

Specimens for tensile test Specimens for fracture test

Not applicable for small scale testing

Large scale testing

6

Introduction

Convenient

In-situ amp In-field System

Non-destructive amp Local test

Simple amp fast

7

Introduction

Ac

Hardness

Elastic modulus

CAPH max=

Ceff A

SE2π

=

Plastic deformation

Elastic deformation

8

Algorithm for strength evaluation

diams Step 1Determining contact areataking into considerationplastic pile-upsink-in

SphericalIndentation

Stress and StrainState in Material

=

Rhnf

hh max

ITc

pile

diams Step 2Defining stress and strain statein materials underneath spherical indenteras representative stress and strain

c

maxT A

F1Ψ

σ = θξε tan=T

diams Step 3 amp 4Fitting to constitutive equation andevaluating tensile properties

True strain εΤ

True

stre

ss σ

Τ

σ=E(ε-0002) σ=Kεn

Representative stress-strain points

E

Instrumented indentation testwith a spherical indenter

Tensile propertiesTensile properties

σy IT σu IT nIT EIT

Force-depth curveof multiple unloadings

diams Step 1Determining contact areataking into considerationplastic pile-upsink-in

SphericalIndentation

Stress and StrainState in Material

=

Rhnf

hh max

ITc

pile

diams Step 2Defining stress and strain statein materials underneath spherical indenteras representative stress and strain

c

maxT A

F1Ψ

σ = θξε tan=T

diams Step 3 amp 4Fitting to constitutive equation andevaluating tensile properties

True strain εΤ

True

stre

ss σ

Τ

σ=E(ε-0002) σ=Kεn

Representative stress-strain points

E

Instrumented indentation testwith a spherical indenter

Tensile propertiesTensile properties

σy IT σu IT nIT EIT

Force-depth curveof multiple unloadings

9

Step 1

Reference plane

Elastic deflection

dh-Plastic pile-upsink-in

pileh+

R

h c h d

h max

h pile

piledc hhhh +minus= max

SLhd

maxε= ) ( max

Rhnfhpile =

-WC Oliver amp GM Pharr J Mater Res (1992) -SH Kim et al Mater Sci Eng A (2006)

10

Step 2

Indentation depth increases Stress and strain increase

γ γ

Representative Stress Definition

Ψ=σR

mPΨ Constraint Factor (about 3)

2max

cm a

LPπ

=

Representative Strain Definition

γααε tan)(1 2

=minus

=Ra

Rac

c

R

-DTabor The Hardness of Metals (1951) -JH Ahn et al JMR (2000)

11

Step 3

nKε=σ

h

L

Loading

Unloading

σ

ε

Indentation load-depth curve Derived stress-strain points

12

Step 4

)0020( minus= yny EK εε

True

stre

ss

True strain

Yield strength

AL σ=

εdA

dAd=minus=

ll

σσd

AdA

=minus

σεσ

=dd

Tensile strength

nu =ε

13

POSCO project

(Evaluation of dynamic tensile property)

14

background

Room Temperature Low Temperature

Strain rate range 0001s 1s 10s 100s 200s

Schematic diagram of strain rate regimes

Dynamic strain rage 100 ~ 104 s

15

Definition of strain rate

Representative stress-strain definition (Expanding Cavity Model)

RhRh

Ra 222020 minus

==ε21

caL

πψσ =

Representative Stress Representative Strain

indentation strain rate (Spherical indenter)

- Representative strain definition RhRh

Ra 222020 minus

==ε

- indentation strain rate dt

dεε =amp )( VRhfdt

d=

εhc depth R indenter radius

V indentation speed

16

Definition of strain rate

4 6 8 10 12 14 16 18 20 22 2404

05

06

07

08

09

10

11

stra

in ra

te [

s]

h [um]

Dynamic range (100 ~ )

rarr 압입 깊이 별 strain rate 감소

Change of strain rate

according to indentation depth

0 20 40 60 80 100 120 140 160

02

04

06

08

10

12

14 strain rate=constant strain rate=changed

V[m

mm

in]

Depth[um]

example Indentation strain rate = 001

17

Result

000 005 010 015 020 0250

100

200

300

400

500

600

700

Tensile_Static Tensile_01s Tensile_02s Tensile_1s Indentation_Static Indentation_001s Indentation_005s

True

stre

ss[M

Pa]

True strain

[S-S curve comparison]

Confirming tendency of s-s curve according to strain rate

18

Equipment improvement

Minute control

AIS3000 Hardware

0 1 2 3 4 5 6 7 8 9 1000

02

04

06

08

10

Inde

ntat

ion

stra

in ra

te [

s]

indentation speed [mmmin]

19

Dynamic hardening factor

σd f(εp) = σs f(εp) middot DHF

DHF Dynamic Hardening Factor

Experimental constant (D)

[Joon mo Choung Dynamic hardening behaviors of various marine structural steels

considering dependencies on strain rate and temperature 2013]

20

Change in DHF

1E-3 001 01 1 10

10

11

12

13 SM400 (σ0=2967MPa)

DHF

Strain Rate [s]1E-3 001 01 1 10

10

11

12

13 SM490 (σ0=3421MPa)

DHF

Strain Rate [s]

SM400 SM490

Change in DHF with strain rate (tensile test)

01 1

100

101

102

103

104

105

106

107 SM490 σ0 = 3213 MPa

DHF

Strain Rate [s]01 1

100

101

102

103

104

105

106

107 SM400 σ0= 2664MPa

DHF

Strain Rate [s]

SM400 SM490

Change in DHF with strain rate (IIT)

21

Yield properties of PE pipe

22

Introduction

Gas Water Sewage Chemicals

In Industrial In Metropolitan

bull Corrosion amp Chemical resistance

bull Long life amp Life cycle cost savings

bull Leak free joint

bull Light weight

bull Flexibiility

bull High ductility

bull Easy installation

bull Fatigue amp Seismic resistance

Advantages of PE

23

Indenter

Background

Issue (Application to PE)

R

d1

R

d2

θ1

θ2

d

Residual Indent(top view)

Ψ=σR

mP Ψ Constraint Factor (about 3)

γε sin250=T

Representation

True strain εΤ

True

stre

ss σ

Τ

σ=E(ε-0002) σ=Kεn

Representative stress-strain points

E

In order to Evaluate Strength of Polyethylene Definition of strain rate on IIT is essential It is difficult to definite strain rate using spherical indenter Because the contact area is consistently changing during indentation

24

Indenter

Approach

Using flat-ended cylindrical indenter instead of spherical indenter

Characteristics

Indenter shape

Sharp Spherical

(Conventional representation)

Flat-ended cylindrical

No self-similarity Not keeping resemblance

during indentation X O O

Fixed contact area constant contact area during

indentation X X O

Closeness to compression test X O

25

Definition of strain

0

50

100

150

200

250

300

350

0 20 40 60 80 100

load

(kg

f)

depth (um)

a=250um

a=500um

a=1000um

Load-depth curve

00

05

10

15

20

25

30

00 01 02 03 04Pm

(G

Pa)

hR

a=250um

a=500um

a=1000um

Load rArr Pm h rArr hR

Normalization

hR can be ldquoRepresentativerdquo strain

26

Strain rate

Rh

r

bullbull

minus=χ

ε 1

From flat-ended indentation for creep test

Rhqr 21

bullbull

sdot=εA

hqr

bullbull

sdot= 2ε

q1 amp q2 are constant

[PMSargent Mater Sci Technol 1992] [JLu J Mech Phys Solids 2003]

Experimental approach

In progresshellip

27

28

(Indentation strain rate definition by Doener amp Nix )

Indentation strain rate

Indentation test parameter

Plastic zone expansion rate of indentation

  • 슬라이드 번호 1
  • Contents
  • Introduction
  • Introduction
  • Introduction
  • Introduction
  • Introduction
  • Algorithm for strength evaluation
  • Step 1
  • Step 2
  • Step 3
  • Step 4
  • 슬라이드 번호 13
  • background
  • Definition of strain rate
  • Definition of strain rate
  • Result
  • Equipment improvement
  • Dynamic hardening factor
  • Change in DHF
  • 슬라이드 번호 21
  • Introduction
  • Indenter
  • Indenter
  • Definition of strain
  • Strain rate
  • 슬라이드 번호 27
  • 슬라이드 번호 28

3

Introduction

-Suitability of new material

-Degradation

-Accident amp damage analysis

Need for nondestructive technique

to evaluate material properties

at in-field

-Verification of feasibility

-Life predictionsafety assessment

-Construction of material DB

4

Introduction

Deformation

Fracture

σYS UTS n E

KIC JIC δIC

Destructive

How can I measure the mechanical properties

I am working Do not touch

5

Introduction

Specimens for tensile test Specimens for fracture test

Not applicable for small scale testing

Large scale testing

6

Introduction

Convenient

In-situ amp In-field System

Non-destructive amp Local test

Simple amp fast

7

Introduction

Ac

Hardness

Elastic modulus

CAPH max=

Ceff A

SE2π

=

Plastic deformation

Elastic deformation

8

Algorithm for strength evaluation

diams Step 1Determining contact areataking into considerationplastic pile-upsink-in

SphericalIndentation

Stress and StrainState in Material

=

Rhnf

hh max

ITc

pile

diams Step 2Defining stress and strain statein materials underneath spherical indenteras representative stress and strain

c

maxT A

F1Ψ

σ = θξε tan=T

diams Step 3 amp 4Fitting to constitutive equation andevaluating tensile properties

True strain εΤ

True

stre

ss σ

Τ

σ=E(ε-0002) σ=Kεn

Representative stress-strain points

E

Instrumented indentation testwith a spherical indenter

Tensile propertiesTensile properties

σy IT σu IT nIT EIT

Force-depth curveof multiple unloadings

diams Step 1Determining contact areataking into considerationplastic pile-upsink-in

SphericalIndentation

Stress and StrainState in Material

=

Rhnf

hh max

ITc

pile

diams Step 2Defining stress and strain statein materials underneath spherical indenteras representative stress and strain

c

maxT A

F1Ψ

σ = θξε tan=T

diams Step 3 amp 4Fitting to constitutive equation andevaluating tensile properties

True strain εΤ

True

stre

ss σ

Τ

σ=E(ε-0002) σ=Kεn

Representative stress-strain points

E

Instrumented indentation testwith a spherical indenter

Tensile propertiesTensile properties

σy IT σu IT nIT EIT

Force-depth curveof multiple unloadings

9

Step 1

Reference plane

Elastic deflection

dh-Plastic pile-upsink-in

pileh+

R

h c h d

h max

h pile

piledc hhhh +minus= max

SLhd

maxε= ) ( max

Rhnfhpile =

-WC Oliver amp GM Pharr J Mater Res (1992) -SH Kim et al Mater Sci Eng A (2006)

10

Step 2

Indentation depth increases Stress and strain increase

γ γ

Representative Stress Definition

Ψ=σR

mPΨ Constraint Factor (about 3)

2max

cm a

LPπ

=

Representative Strain Definition

γααε tan)(1 2

=minus

=Ra

Rac

c

R

-DTabor The Hardness of Metals (1951) -JH Ahn et al JMR (2000)

11

Step 3

nKε=σ

h

L

Loading

Unloading

σ

ε

Indentation load-depth curve Derived stress-strain points

12

Step 4

)0020( minus= yny EK εε

True

stre

ss

True strain

Yield strength

AL σ=

εdA

dAd=minus=

ll

σσd

AdA

=minus

σεσ

=dd

Tensile strength

nu =ε

13

POSCO project

(Evaluation of dynamic tensile property)

14

background

Room Temperature Low Temperature

Strain rate range 0001s 1s 10s 100s 200s

Schematic diagram of strain rate regimes

Dynamic strain rage 100 ~ 104 s

15

Definition of strain rate

Representative stress-strain definition (Expanding Cavity Model)

RhRh

Ra 222020 minus

==ε21

caL

πψσ =

Representative Stress Representative Strain

indentation strain rate (Spherical indenter)

- Representative strain definition RhRh

Ra 222020 minus

==ε

- indentation strain rate dt

dεε =amp )( VRhfdt

d=

εhc depth R indenter radius

V indentation speed

16

Definition of strain rate

4 6 8 10 12 14 16 18 20 22 2404

05

06

07

08

09

10

11

stra

in ra

te [

s]

h [um]

Dynamic range (100 ~ )

rarr 압입 깊이 별 strain rate 감소

Change of strain rate

according to indentation depth

0 20 40 60 80 100 120 140 160

02

04

06

08

10

12

14 strain rate=constant strain rate=changed

V[m

mm

in]

Depth[um]

example Indentation strain rate = 001

17

Result

000 005 010 015 020 0250

100

200

300

400

500

600

700

Tensile_Static Tensile_01s Tensile_02s Tensile_1s Indentation_Static Indentation_001s Indentation_005s

True

stre

ss[M

Pa]

True strain

[S-S curve comparison]

Confirming tendency of s-s curve according to strain rate

18

Equipment improvement

Minute control

AIS3000 Hardware

0 1 2 3 4 5 6 7 8 9 1000

02

04

06

08

10

Inde

ntat

ion

stra

in ra

te [

s]

indentation speed [mmmin]

19

Dynamic hardening factor

σd f(εp) = σs f(εp) middot DHF

DHF Dynamic Hardening Factor

Experimental constant (D)

[Joon mo Choung Dynamic hardening behaviors of various marine structural steels

considering dependencies on strain rate and temperature 2013]

20

Change in DHF

1E-3 001 01 1 10

10

11

12

13 SM400 (σ0=2967MPa)

DHF

Strain Rate [s]1E-3 001 01 1 10

10

11

12

13 SM490 (σ0=3421MPa)

DHF

Strain Rate [s]

SM400 SM490

Change in DHF with strain rate (tensile test)

01 1

100

101

102

103

104

105

106

107 SM490 σ0 = 3213 MPa

DHF

Strain Rate [s]01 1

100

101

102

103

104

105

106

107 SM400 σ0= 2664MPa

DHF

Strain Rate [s]

SM400 SM490

Change in DHF with strain rate (IIT)

21

Yield properties of PE pipe

22

Introduction

Gas Water Sewage Chemicals

In Industrial In Metropolitan

bull Corrosion amp Chemical resistance

bull Long life amp Life cycle cost savings

bull Leak free joint

bull Light weight

bull Flexibiility

bull High ductility

bull Easy installation

bull Fatigue amp Seismic resistance

Advantages of PE

23

Indenter

Background

Issue (Application to PE)

R

d1

R

d2

θ1

θ2

d

Residual Indent(top view)

Ψ=σR

mP Ψ Constraint Factor (about 3)

γε sin250=T

Representation

True strain εΤ

True

stre

ss σ

Τ

σ=E(ε-0002) σ=Kεn

Representative stress-strain points

E

In order to Evaluate Strength of Polyethylene Definition of strain rate on IIT is essential It is difficult to definite strain rate using spherical indenter Because the contact area is consistently changing during indentation

24

Indenter

Approach

Using flat-ended cylindrical indenter instead of spherical indenter

Characteristics

Indenter shape

Sharp Spherical

(Conventional representation)

Flat-ended cylindrical

No self-similarity Not keeping resemblance

during indentation X O O

Fixed contact area constant contact area during

indentation X X O

Closeness to compression test X O

25

Definition of strain

0

50

100

150

200

250

300

350

0 20 40 60 80 100

load

(kg

f)

depth (um)

a=250um

a=500um

a=1000um

Load-depth curve

00

05

10

15

20

25

30

00 01 02 03 04Pm

(G

Pa)

hR

a=250um

a=500um

a=1000um

Load rArr Pm h rArr hR

Normalization

hR can be ldquoRepresentativerdquo strain

26

Strain rate

Rh

r

bullbull

minus=χ

ε 1

From flat-ended indentation for creep test

Rhqr 21

bullbull

sdot=εA

hqr

bullbull

sdot= 2ε

q1 amp q2 are constant

[PMSargent Mater Sci Technol 1992] [JLu J Mech Phys Solids 2003]

Experimental approach

In progresshellip

27

28

(Indentation strain rate definition by Doener amp Nix )

Indentation strain rate

Indentation test parameter

Plastic zone expansion rate of indentation

  • 슬라이드 번호 1
  • Contents
  • Introduction
  • Introduction
  • Introduction
  • Introduction
  • Introduction
  • Algorithm for strength evaluation
  • Step 1
  • Step 2
  • Step 3
  • Step 4
  • 슬라이드 번호 13
  • background
  • Definition of strain rate
  • Definition of strain rate
  • Result
  • Equipment improvement
  • Dynamic hardening factor
  • Change in DHF
  • 슬라이드 번호 21
  • Introduction
  • Indenter
  • Indenter
  • Definition of strain
  • Strain rate
  • 슬라이드 번호 27
  • 슬라이드 번호 28

4

Introduction

Deformation

Fracture

σYS UTS n E

KIC JIC δIC

Destructive

How can I measure the mechanical properties

I am working Do not touch

5

Introduction

Specimens for tensile test Specimens for fracture test

Not applicable for small scale testing

Large scale testing

6

Introduction

Convenient

In-situ amp In-field System

Non-destructive amp Local test

Simple amp fast

7

Introduction

Ac

Hardness

Elastic modulus

CAPH max=

Ceff A

SE2π

=

Plastic deformation

Elastic deformation

8

Algorithm for strength evaluation

diams Step 1Determining contact areataking into considerationplastic pile-upsink-in

SphericalIndentation

Stress and StrainState in Material

=

Rhnf

hh max

ITc

pile

diams Step 2Defining stress and strain statein materials underneath spherical indenteras representative stress and strain

c

maxT A

F1Ψ

σ = θξε tan=T

diams Step 3 amp 4Fitting to constitutive equation andevaluating tensile properties

True strain εΤ

True

stre

ss σ

Τ

σ=E(ε-0002) σ=Kεn

Representative stress-strain points

E

Instrumented indentation testwith a spherical indenter

Tensile propertiesTensile properties

σy IT σu IT nIT EIT

Force-depth curveof multiple unloadings

diams Step 1Determining contact areataking into considerationplastic pile-upsink-in

SphericalIndentation

Stress and StrainState in Material

=

Rhnf

hh max

ITc

pile

diams Step 2Defining stress and strain statein materials underneath spherical indenteras representative stress and strain

c

maxT A

F1Ψ

σ = θξε tan=T

diams Step 3 amp 4Fitting to constitutive equation andevaluating tensile properties

True strain εΤ

True

stre

ss σ

Τ

σ=E(ε-0002) σ=Kεn

Representative stress-strain points

E

Instrumented indentation testwith a spherical indenter

Tensile propertiesTensile properties

σy IT σu IT nIT EIT

Force-depth curveof multiple unloadings

9

Step 1

Reference plane

Elastic deflection

dh-Plastic pile-upsink-in

pileh+

R

h c h d

h max

h pile

piledc hhhh +minus= max

SLhd

maxε= ) ( max

Rhnfhpile =

-WC Oliver amp GM Pharr J Mater Res (1992) -SH Kim et al Mater Sci Eng A (2006)

10

Step 2

Indentation depth increases Stress and strain increase

γ γ

Representative Stress Definition

Ψ=σR

mPΨ Constraint Factor (about 3)

2max

cm a

LPπ

=

Representative Strain Definition

γααε tan)(1 2

=minus

=Ra

Rac

c

R

-DTabor The Hardness of Metals (1951) -JH Ahn et al JMR (2000)

11

Step 3

nKε=σ

h

L

Loading

Unloading

σ

ε

Indentation load-depth curve Derived stress-strain points

12

Step 4

)0020( minus= yny EK εε

True

stre

ss

True strain

Yield strength

AL σ=

εdA

dAd=minus=

ll

σσd

AdA

=minus

σεσ

=dd

Tensile strength

nu =ε

13

POSCO project

(Evaluation of dynamic tensile property)

14

background

Room Temperature Low Temperature

Strain rate range 0001s 1s 10s 100s 200s

Schematic diagram of strain rate regimes

Dynamic strain rage 100 ~ 104 s

15

Definition of strain rate

Representative stress-strain definition (Expanding Cavity Model)

RhRh

Ra 222020 minus

==ε21

caL

πψσ =

Representative Stress Representative Strain

indentation strain rate (Spherical indenter)

- Representative strain definition RhRh

Ra 222020 minus

==ε

- indentation strain rate dt

dεε =amp )( VRhfdt

d=

εhc depth R indenter radius

V indentation speed

16

Definition of strain rate

4 6 8 10 12 14 16 18 20 22 2404

05

06

07

08

09

10

11

stra

in ra

te [

s]

h [um]

Dynamic range (100 ~ )

rarr 압입 깊이 별 strain rate 감소

Change of strain rate

according to indentation depth

0 20 40 60 80 100 120 140 160

02

04

06

08

10

12

14 strain rate=constant strain rate=changed

V[m

mm

in]

Depth[um]

example Indentation strain rate = 001

17

Result

000 005 010 015 020 0250

100

200

300

400

500

600

700

Tensile_Static Tensile_01s Tensile_02s Tensile_1s Indentation_Static Indentation_001s Indentation_005s

True

stre

ss[M

Pa]

True strain

[S-S curve comparison]

Confirming tendency of s-s curve according to strain rate

18

Equipment improvement

Minute control

AIS3000 Hardware

0 1 2 3 4 5 6 7 8 9 1000

02

04

06

08

10

Inde

ntat

ion

stra

in ra

te [

s]

indentation speed [mmmin]

19

Dynamic hardening factor

σd f(εp) = σs f(εp) middot DHF

DHF Dynamic Hardening Factor

Experimental constant (D)

[Joon mo Choung Dynamic hardening behaviors of various marine structural steels

considering dependencies on strain rate and temperature 2013]

20

Change in DHF

1E-3 001 01 1 10

10

11

12

13 SM400 (σ0=2967MPa)

DHF

Strain Rate [s]1E-3 001 01 1 10

10

11

12

13 SM490 (σ0=3421MPa)

DHF

Strain Rate [s]

SM400 SM490

Change in DHF with strain rate (tensile test)

01 1

100

101

102

103

104

105

106

107 SM490 σ0 = 3213 MPa

DHF

Strain Rate [s]01 1

100

101

102

103

104

105

106

107 SM400 σ0= 2664MPa

DHF

Strain Rate [s]

SM400 SM490

Change in DHF with strain rate (IIT)

21

Yield properties of PE pipe

22

Introduction

Gas Water Sewage Chemicals

In Industrial In Metropolitan

bull Corrosion amp Chemical resistance

bull Long life amp Life cycle cost savings

bull Leak free joint

bull Light weight

bull Flexibiility

bull High ductility

bull Easy installation

bull Fatigue amp Seismic resistance

Advantages of PE

23

Indenter

Background

Issue (Application to PE)

R

d1

R

d2

θ1

θ2

d

Residual Indent(top view)

Ψ=σR

mP Ψ Constraint Factor (about 3)

γε sin250=T

Representation

True strain εΤ

True

stre

ss σ

Τ

σ=E(ε-0002) σ=Kεn

Representative stress-strain points

E

In order to Evaluate Strength of Polyethylene Definition of strain rate on IIT is essential It is difficult to definite strain rate using spherical indenter Because the contact area is consistently changing during indentation

24

Indenter

Approach

Using flat-ended cylindrical indenter instead of spherical indenter

Characteristics

Indenter shape

Sharp Spherical

(Conventional representation)

Flat-ended cylindrical

No self-similarity Not keeping resemblance

during indentation X O O

Fixed contact area constant contact area during

indentation X X O

Closeness to compression test X O

25

Definition of strain

0

50

100

150

200

250

300

350

0 20 40 60 80 100

load

(kg

f)

depth (um)

a=250um

a=500um

a=1000um

Load-depth curve

00

05

10

15

20

25

30

00 01 02 03 04Pm

(G

Pa)

hR

a=250um

a=500um

a=1000um

Load rArr Pm h rArr hR

Normalization

hR can be ldquoRepresentativerdquo strain

26

Strain rate

Rh

r

bullbull

minus=χ

ε 1

From flat-ended indentation for creep test

Rhqr 21

bullbull

sdot=εA

hqr

bullbull

sdot= 2ε

q1 amp q2 are constant

[PMSargent Mater Sci Technol 1992] [JLu J Mech Phys Solids 2003]

Experimental approach

In progresshellip

27

28

(Indentation strain rate definition by Doener amp Nix )

Indentation strain rate

Indentation test parameter

Plastic zone expansion rate of indentation

  • 슬라이드 번호 1
  • Contents
  • Introduction
  • Introduction
  • Introduction
  • Introduction
  • Introduction
  • Algorithm for strength evaluation
  • Step 1
  • Step 2
  • Step 3
  • Step 4
  • 슬라이드 번호 13
  • background
  • Definition of strain rate
  • Definition of strain rate
  • Result
  • Equipment improvement
  • Dynamic hardening factor
  • Change in DHF
  • 슬라이드 번호 21
  • Introduction
  • Indenter
  • Indenter
  • Definition of strain
  • Strain rate
  • 슬라이드 번호 27
  • 슬라이드 번호 28

5

Introduction

Specimens for tensile test Specimens for fracture test

Not applicable for small scale testing

Large scale testing

6

Introduction

Convenient

In-situ amp In-field System

Non-destructive amp Local test

Simple amp fast

7

Introduction

Ac

Hardness

Elastic modulus

CAPH max=

Ceff A

SE2π

=

Plastic deformation

Elastic deformation

8

Algorithm for strength evaluation

diams Step 1Determining contact areataking into considerationplastic pile-upsink-in

SphericalIndentation

Stress and StrainState in Material

=

Rhnf

hh max

ITc

pile

diams Step 2Defining stress and strain statein materials underneath spherical indenteras representative stress and strain

c

maxT A

F1Ψ

σ = θξε tan=T

diams Step 3 amp 4Fitting to constitutive equation andevaluating tensile properties

True strain εΤ

True

stre

ss σ

Τ

σ=E(ε-0002) σ=Kεn

Representative stress-strain points

E

Instrumented indentation testwith a spherical indenter

Tensile propertiesTensile properties

σy IT σu IT nIT EIT

Force-depth curveof multiple unloadings

diams Step 1Determining contact areataking into considerationplastic pile-upsink-in

SphericalIndentation

Stress and StrainState in Material

=

Rhnf

hh max

ITc

pile

diams Step 2Defining stress and strain statein materials underneath spherical indenteras representative stress and strain

c

maxT A

F1Ψ

σ = θξε tan=T

diams Step 3 amp 4Fitting to constitutive equation andevaluating tensile properties

True strain εΤ

True

stre

ss σ

Τ

σ=E(ε-0002) σ=Kεn

Representative stress-strain points

E

Instrumented indentation testwith a spherical indenter

Tensile propertiesTensile properties

σy IT σu IT nIT EIT

Force-depth curveof multiple unloadings

9

Step 1

Reference plane

Elastic deflection

dh-Plastic pile-upsink-in

pileh+

R

h c h d

h max

h pile

piledc hhhh +minus= max

SLhd

maxε= ) ( max

Rhnfhpile =

-WC Oliver amp GM Pharr J Mater Res (1992) -SH Kim et al Mater Sci Eng A (2006)

10

Step 2

Indentation depth increases Stress and strain increase

γ γ

Representative Stress Definition

Ψ=σR

mPΨ Constraint Factor (about 3)

2max

cm a

LPπ

=

Representative Strain Definition

γααε tan)(1 2

=minus

=Ra

Rac

c

R

-DTabor The Hardness of Metals (1951) -JH Ahn et al JMR (2000)

11

Step 3

nKε=σ

h

L

Loading

Unloading

σ

ε

Indentation load-depth curve Derived stress-strain points

12

Step 4

)0020( minus= yny EK εε

True

stre

ss

True strain

Yield strength

AL σ=

εdA

dAd=minus=

ll

σσd

AdA

=minus

σεσ

=dd

Tensile strength

nu =ε

13

POSCO project

(Evaluation of dynamic tensile property)

14

background

Room Temperature Low Temperature

Strain rate range 0001s 1s 10s 100s 200s

Schematic diagram of strain rate regimes

Dynamic strain rage 100 ~ 104 s

15

Definition of strain rate

Representative stress-strain definition (Expanding Cavity Model)

RhRh

Ra 222020 minus

==ε21

caL

πψσ =

Representative Stress Representative Strain

indentation strain rate (Spherical indenter)

- Representative strain definition RhRh

Ra 222020 minus

==ε

- indentation strain rate dt

dεε =amp )( VRhfdt

d=

εhc depth R indenter radius

V indentation speed

16

Definition of strain rate

4 6 8 10 12 14 16 18 20 22 2404

05

06

07

08

09

10

11

stra

in ra

te [

s]

h [um]

Dynamic range (100 ~ )

rarr 압입 깊이 별 strain rate 감소

Change of strain rate

according to indentation depth

0 20 40 60 80 100 120 140 160

02

04

06

08

10

12

14 strain rate=constant strain rate=changed

V[m

mm

in]

Depth[um]

example Indentation strain rate = 001

17

Result

000 005 010 015 020 0250

100

200

300

400

500

600

700

Tensile_Static Tensile_01s Tensile_02s Tensile_1s Indentation_Static Indentation_001s Indentation_005s

True

stre

ss[M

Pa]

True strain

[S-S curve comparison]

Confirming tendency of s-s curve according to strain rate

18

Equipment improvement

Minute control

AIS3000 Hardware

0 1 2 3 4 5 6 7 8 9 1000

02

04

06

08

10

Inde

ntat

ion

stra

in ra

te [

s]

indentation speed [mmmin]

19

Dynamic hardening factor

σd f(εp) = σs f(εp) middot DHF

DHF Dynamic Hardening Factor

Experimental constant (D)

[Joon mo Choung Dynamic hardening behaviors of various marine structural steels

considering dependencies on strain rate and temperature 2013]

20

Change in DHF

1E-3 001 01 1 10

10

11

12

13 SM400 (σ0=2967MPa)

DHF

Strain Rate [s]1E-3 001 01 1 10

10

11

12

13 SM490 (σ0=3421MPa)

DHF

Strain Rate [s]

SM400 SM490

Change in DHF with strain rate (tensile test)

01 1

100

101

102

103

104

105

106

107 SM490 σ0 = 3213 MPa

DHF

Strain Rate [s]01 1

100

101

102

103

104

105

106

107 SM400 σ0= 2664MPa

DHF

Strain Rate [s]

SM400 SM490

Change in DHF with strain rate (IIT)

21

Yield properties of PE pipe

22

Introduction

Gas Water Sewage Chemicals

In Industrial In Metropolitan

bull Corrosion amp Chemical resistance

bull Long life amp Life cycle cost savings

bull Leak free joint

bull Light weight

bull Flexibiility

bull High ductility

bull Easy installation

bull Fatigue amp Seismic resistance

Advantages of PE

23

Indenter

Background

Issue (Application to PE)

R

d1

R

d2

θ1

θ2

d

Residual Indent(top view)

Ψ=σR

mP Ψ Constraint Factor (about 3)

γε sin250=T

Representation

True strain εΤ

True

stre

ss σ

Τ

σ=E(ε-0002) σ=Kεn

Representative stress-strain points

E

In order to Evaluate Strength of Polyethylene Definition of strain rate on IIT is essential It is difficult to definite strain rate using spherical indenter Because the contact area is consistently changing during indentation

24

Indenter

Approach

Using flat-ended cylindrical indenter instead of spherical indenter

Characteristics

Indenter shape

Sharp Spherical

(Conventional representation)

Flat-ended cylindrical

No self-similarity Not keeping resemblance

during indentation X O O

Fixed contact area constant contact area during

indentation X X O

Closeness to compression test X O

25

Definition of strain

0

50

100

150

200

250

300

350

0 20 40 60 80 100

load

(kg

f)

depth (um)

a=250um

a=500um

a=1000um

Load-depth curve

00

05

10

15

20

25

30

00 01 02 03 04Pm

(G

Pa)

hR

a=250um

a=500um

a=1000um

Load rArr Pm h rArr hR

Normalization

hR can be ldquoRepresentativerdquo strain

26

Strain rate

Rh

r

bullbull

minus=χ

ε 1

From flat-ended indentation for creep test

Rhqr 21

bullbull

sdot=εA

hqr

bullbull

sdot= 2ε

q1 amp q2 are constant

[PMSargent Mater Sci Technol 1992] [JLu J Mech Phys Solids 2003]

Experimental approach

In progresshellip

27

28

(Indentation strain rate definition by Doener amp Nix )

Indentation strain rate

Indentation test parameter

Plastic zone expansion rate of indentation

  • 슬라이드 번호 1
  • Contents
  • Introduction
  • Introduction
  • Introduction
  • Introduction
  • Introduction
  • Algorithm for strength evaluation
  • Step 1
  • Step 2
  • Step 3
  • Step 4
  • 슬라이드 번호 13
  • background
  • Definition of strain rate
  • Definition of strain rate
  • Result
  • Equipment improvement
  • Dynamic hardening factor
  • Change in DHF
  • 슬라이드 번호 21
  • Introduction
  • Indenter
  • Indenter
  • Definition of strain
  • Strain rate
  • 슬라이드 번호 27
  • 슬라이드 번호 28

6

Introduction

Convenient

In-situ amp In-field System

Non-destructive amp Local test

Simple amp fast

7

Introduction

Ac

Hardness

Elastic modulus

CAPH max=

Ceff A

SE2π

=

Plastic deformation

Elastic deformation

8

Algorithm for strength evaluation

diams Step 1Determining contact areataking into considerationplastic pile-upsink-in

SphericalIndentation

Stress and StrainState in Material

=

Rhnf

hh max

ITc

pile

diams Step 2Defining stress and strain statein materials underneath spherical indenteras representative stress and strain

c

maxT A

F1Ψ

σ = θξε tan=T

diams Step 3 amp 4Fitting to constitutive equation andevaluating tensile properties

True strain εΤ

True

stre

ss σ

Τ

σ=E(ε-0002) σ=Kεn

Representative stress-strain points

E

Instrumented indentation testwith a spherical indenter

Tensile propertiesTensile properties

σy IT σu IT nIT EIT

Force-depth curveof multiple unloadings

diams Step 1Determining contact areataking into considerationplastic pile-upsink-in

SphericalIndentation

Stress and StrainState in Material

=

Rhnf

hh max

ITc

pile

diams Step 2Defining stress and strain statein materials underneath spherical indenteras representative stress and strain

c

maxT A

F1Ψ

σ = θξε tan=T

diams Step 3 amp 4Fitting to constitutive equation andevaluating tensile properties

True strain εΤ

True

stre

ss σ

Τ

σ=E(ε-0002) σ=Kεn

Representative stress-strain points

E

Instrumented indentation testwith a spherical indenter

Tensile propertiesTensile properties

σy IT σu IT nIT EIT

Force-depth curveof multiple unloadings

9

Step 1

Reference plane

Elastic deflection

dh-Plastic pile-upsink-in

pileh+

R

h c h d

h max

h pile

piledc hhhh +minus= max

SLhd

maxε= ) ( max

Rhnfhpile =

-WC Oliver amp GM Pharr J Mater Res (1992) -SH Kim et al Mater Sci Eng A (2006)

10

Step 2

Indentation depth increases Stress and strain increase

γ γ

Representative Stress Definition

Ψ=σR

mPΨ Constraint Factor (about 3)

2max

cm a

LPπ

=

Representative Strain Definition

γααε tan)(1 2

=minus

=Ra

Rac

c

R

-DTabor The Hardness of Metals (1951) -JH Ahn et al JMR (2000)

11

Step 3

nKε=σ

h

L

Loading

Unloading

σ

ε

Indentation load-depth curve Derived stress-strain points

12

Step 4

)0020( minus= yny EK εε

True

stre

ss

True strain

Yield strength

AL σ=

εdA

dAd=minus=

ll

σσd

AdA

=minus

σεσ

=dd

Tensile strength

nu =ε

13

POSCO project

(Evaluation of dynamic tensile property)

14

background

Room Temperature Low Temperature

Strain rate range 0001s 1s 10s 100s 200s

Schematic diagram of strain rate regimes

Dynamic strain rage 100 ~ 104 s

15

Definition of strain rate

Representative stress-strain definition (Expanding Cavity Model)

RhRh

Ra 222020 minus

==ε21

caL

πψσ =

Representative Stress Representative Strain

indentation strain rate (Spherical indenter)

- Representative strain definition RhRh

Ra 222020 minus

==ε

- indentation strain rate dt

dεε =amp )( VRhfdt

d=

εhc depth R indenter radius

V indentation speed

16

Definition of strain rate

4 6 8 10 12 14 16 18 20 22 2404

05

06

07

08

09

10

11

stra

in ra

te [

s]

h [um]

Dynamic range (100 ~ )

rarr 압입 깊이 별 strain rate 감소

Change of strain rate

according to indentation depth

0 20 40 60 80 100 120 140 160

02

04

06

08

10

12

14 strain rate=constant strain rate=changed

V[m

mm

in]

Depth[um]

example Indentation strain rate = 001

17

Result

000 005 010 015 020 0250

100

200

300

400

500

600

700

Tensile_Static Tensile_01s Tensile_02s Tensile_1s Indentation_Static Indentation_001s Indentation_005s

True

stre

ss[M

Pa]

True strain

[S-S curve comparison]

Confirming tendency of s-s curve according to strain rate

18

Equipment improvement

Minute control

AIS3000 Hardware

0 1 2 3 4 5 6 7 8 9 1000

02

04

06

08

10

Inde

ntat

ion

stra

in ra

te [

s]

indentation speed [mmmin]

19

Dynamic hardening factor

σd f(εp) = σs f(εp) middot DHF

DHF Dynamic Hardening Factor

Experimental constant (D)

[Joon mo Choung Dynamic hardening behaviors of various marine structural steels

considering dependencies on strain rate and temperature 2013]

20

Change in DHF

1E-3 001 01 1 10

10

11

12

13 SM400 (σ0=2967MPa)

DHF

Strain Rate [s]1E-3 001 01 1 10

10

11

12

13 SM490 (σ0=3421MPa)

DHF

Strain Rate [s]

SM400 SM490

Change in DHF with strain rate (tensile test)

01 1

100

101

102

103

104

105

106

107 SM490 σ0 = 3213 MPa

DHF

Strain Rate [s]01 1

100

101

102

103

104

105

106

107 SM400 σ0= 2664MPa

DHF

Strain Rate [s]

SM400 SM490

Change in DHF with strain rate (IIT)

21

Yield properties of PE pipe

22

Introduction

Gas Water Sewage Chemicals

In Industrial In Metropolitan

bull Corrosion amp Chemical resistance

bull Long life amp Life cycle cost savings

bull Leak free joint

bull Light weight

bull Flexibiility

bull High ductility

bull Easy installation

bull Fatigue amp Seismic resistance

Advantages of PE

23

Indenter

Background

Issue (Application to PE)

R

d1

R

d2

θ1

θ2

d

Residual Indent(top view)

Ψ=σR

mP Ψ Constraint Factor (about 3)

γε sin250=T

Representation

True strain εΤ

True

stre

ss σ

Τ

σ=E(ε-0002) σ=Kεn

Representative stress-strain points

E

In order to Evaluate Strength of Polyethylene Definition of strain rate on IIT is essential It is difficult to definite strain rate using spherical indenter Because the contact area is consistently changing during indentation

24

Indenter

Approach

Using flat-ended cylindrical indenter instead of spherical indenter

Characteristics

Indenter shape

Sharp Spherical

(Conventional representation)

Flat-ended cylindrical

No self-similarity Not keeping resemblance

during indentation X O O

Fixed contact area constant contact area during

indentation X X O

Closeness to compression test X O

25

Definition of strain

0

50

100

150

200

250

300

350

0 20 40 60 80 100

load

(kg

f)

depth (um)

a=250um

a=500um

a=1000um

Load-depth curve

00

05

10

15

20

25

30

00 01 02 03 04Pm

(G

Pa)

hR

a=250um

a=500um

a=1000um

Load rArr Pm h rArr hR

Normalization

hR can be ldquoRepresentativerdquo strain

26

Strain rate

Rh

r

bullbull

minus=χ

ε 1

From flat-ended indentation for creep test

Rhqr 21

bullbull

sdot=εA

hqr

bullbull

sdot= 2ε

q1 amp q2 are constant

[PMSargent Mater Sci Technol 1992] [JLu J Mech Phys Solids 2003]

Experimental approach

In progresshellip

27

28

(Indentation strain rate definition by Doener amp Nix )

Indentation strain rate

Indentation test parameter

Plastic zone expansion rate of indentation

  • 슬라이드 번호 1
  • Contents
  • Introduction
  • Introduction
  • Introduction
  • Introduction
  • Introduction
  • Algorithm for strength evaluation
  • Step 1
  • Step 2
  • Step 3
  • Step 4
  • 슬라이드 번호 13
  • background
  • Definition of strain rate
  • Definition of strain rate
  • Result
  • Equipment improvement
  • Dynamic hardening factor
  • Change in DHF
  • 슬라이드 번호 21
  • Introduction
  • Indenter
  • Indenter
  • Definition of strain
  • Strain rate
  • 슬라이드 번호 27
  • 슬라이드 번호 28

7

Introduction

Ac

Hardness

Elastic modulus

CAPH max=

Ceff A

SE2π

=

Plastic deformation

Elastic deformation

8

Algorithm for strength evaluation

diams Step 1Determining contact areataking into considerationplastic pile-upsink-in

SphericalIndentation

Stress and StrainState in Material

=

Rhnf

hh max

ITc

pile

diams Step 2Defining stress and strain statein materials underneath spherical indenteras representative stress and strain

c

maxT A

F1Ψ

σ = θξε tan=T

diams Step 3 amp 4Fitting to constitutive equation andevaluating tensile properties

True strain εΤ

True

stre

ss σ

Τ

σ=E(ε-0002) σ=Kεn

Representative stress-strain points

E

Instrumented indentation testwith a spherical indenter

Tensile propertiesTensile properties

σy IT σu IT nIT EIT

Force-depth curveof multiple unloadings

diams Step 1Determining contact areataking into considerationplastic pile-upsink-in

SphericalIndentation

Stress and StrainState in Material

=

Rhnf

hh max

ITc

pile

diams Step 2Defining stress and strain statein materials underneath spherical indenteras representative stress and strain

c

maxT A

F1Ψ

σ = θξε tan=T

diams Step 3 amp 4Fitting to constitutive equation andevaluating tensile properties

True strain εΤ

True

stre

ss σ

Τ

σ=E(ε-0002) σ=Kεn

Representative stress-strain points

E

Instrumented indentation testwith a spherical indenter

Tensile propertiesTensile properties

σy IT σu IT nIT EIT

Force-depth curveof multiple unloadings

9

Step 1

Reference plane

Elastic deflection

dh-Plastic pile-upsink-in

pileh+

R

h c h d

h max

h pile

piledc hhhh +minus= max

SLhd

maxε= ) ( max

Rhnfhpile =

-WC Oliver amp GM Pharr J Mater Res (1992) -SH Kim et al Mater Sci Eng A (2006)

10

Step 2

Indentation depth increases Stress and strain increase

γ γ

Representative Stress Definition

Ψ=σR

mPΨ Constraint Factor (about 3)

2max

cm a

LPπ

=

Representative Strain Definition

γααε tan)(1 2

=minus

=Ra

Rac

c

R

-DTabor The Hardness of Metals (1951) -JH Ahn et al JMR (2000)

11

Step 3

nKε=σ

h

L

Loading

Unloading

σ

ε

Indentation load-depth curve Derived stress-strain points

12

Step 4

)0020( minus= yny EK εε

True

stre

ss

True strain

Yield strength

AL σ=

εdA

dAd=minus=

ll

σσd

AdA

=minus

σεσ

=dd

Tensile strength

nu =ε

13

POSCO project

(Evaluation of dynamic tensile property)

14

background

Room Temperature Low Temperature

Strain rate range 0001s 1s 10s 100s 200s

Schematic diagram of strain rate regimes

Dynamic strain rage 100 ~ 104 s

15

Definition of strain rate

Representative stress-strain definition (Expanding Cavity Model)

RhRh

Ra 222020 minus

==ε21

caL

πψσ =

Representative Stress Representative Strain

indentation strain rate (Spherical indenter)

- Representative strain definition RhRh

Ra 222020 minus

==ε

- indentation strain rate dt

dεε =amp )( VRhfdt

d=

εhc depth R indenter radius

V indentation speed

16

Definition of strain rate

4 6 8 10 12 14 16 18 20 22 2404

05

06

07

08

09

10

11

stra

in ra

te [

s]

h [um]

Dynamic range (100 ~ )

rarr 압입 깊이 별 strain rate 감소

Change of strain rate

according to indentation depth

0 20 40 60 80 100 120 140 160

02

04

06

08

10

12

14 strain rate=constant strain rate=changed

V[m

mm

in]

Depth[um]

example Indentation strain rate = 001

17

Result

000 005 010 015 020 0250

100

200

300

400

500

600

700

Tensile_Static Tensile_01s Tensile_02s Tensile_1s Indentation_Static Indentation_001s Indentation_005s

True

stre

ss[M

Pa]

True strain

[S-S curve comparison]

Confirming tendency of s-s curve according to strain rate

18

Equipment improvement

Minute control

AIS3000 Hardware

0 1 2 3 4 5 6 7 8 9 1000

02

04

06

08

10

Inde

ntat

ion

stra

in ra

te [

s]

indentation speed [mmmin]

19

Dynamic hardening factor

σd f(εp) = σs f(εp) middot DHF

DHF Dynamic Hardening Factor

Experimental constant (D)

[Joon mo Choung Dynamic hardening behaviors of various marine structural steels

considering dependencies on strain rate and temperature 2013]

20

Change in DHF

1E-3 001 01 1 10

10

11

12

13 SM400 (σ0=2967MPa)

DHF

Strain Rate [s]1E-3 001 01 1 10

10

11

12

13 SM490 (σ0=3421MPa)

DHF

Strain Rate [s]

SM400 SM490

Change in DHF with strain rate (tensile test)

01 1

100

101

102

103

104

105

106

107 SM490 σ0 = 3213 MPa

DHF

Strain Rate [s]01 1

100

101

102

103

104

105

106

107 SM400 σ0= 2664MPa

DHF

Strain Rate [s]

SM400 SM490

Change in DHF with strain rate (IIT)

21

Yield properties of PE pipe

22

Introduction

Gas Water Sewage Chemicals

In Industrial In Metropolitan

bull Corrosion amp Chemical resistance

bull Long life amp Life cycle cost savings

bull Leak free joint

bull Light weight

bull Flexibiility

bull High ductility

bull Easy installation

bull Fatigue amp Seismic resistance

Advantages of PE

23

Indenter

Background

Issue (Application to PE)

R

d1

R

d2

θ1

θ2

d

Residual Indent(top view)

Ψ=σR

mP Ψ Constraint Factor (about 3)

γε sin250=T

Representation

True strain εΤ

True

stre

ss σ

Τ

σ=E(ε-0002) σ=Kεn

Representative stress-strain points

E

In order to Evaluate Strength of Polyethylene Definition of strain rate on IIT is essential It is difficult to definite strain rate using spherical indenter Because the contact area is consistently changing during indentation

24

Indenter

Approach

Using flat-ended cylindrical indenter instead of spherical indenter

Characteristics

Indenter shape

Sharp Spherical

(Conventional representation)

Flat-ended cylindrical

No self-similarity Not keeping resemblance

during indentation X O O

Fixed contact area constant contact area during

indentation X X O

Closeness to compression test X O

25

Definition of strain

0

50

100

150

200

250

300

350

0 20 40 60 80 100

load

(kg

f)

depth (um)

a=250um

a=500um

a=1000um

Load-depth curve

00

05

10

15

20

25

30

00 01 02 03 04Pm

(G

Pa)

hR

a=250um

a=500um

a=1000um

Load rArr Pm h rArr hR

Normalization

hR can be ldquoRepresentativerdquo strain

26

Strain rate

Rh

r

bullbull

minus=χ

ε 1

From flat-ended indentation for creep test

Rhqr 21

bullbull

sdot=εA

hqr

bullbull

sdot= 2ε

q1 amp q2 are constant

[PMSargent Mater Sci Technol 1992] [JLu J Mech Phys Solids 2003]

Experimental approach

In progresshellip

27

28

(Indentation strain rate definition by Doener amp Nix )

Indentation strain rate

Indentation test parameter

Plastic zone expansion rate of indentation

  • 슬라이드 번호 1
  • Contents
  • Introduction
  • Introduction
  • Introduction
  • Introduction
  • Introduction
  • Algorithm for strength evaluation
  • Step 1
  • Step 2
  • Step 3
  • Step 4
  • 슬라이드 번호 13
  • background
  • Definition of strain rate
  • Definition of strain rate
  • Result
  • Equipment improvement
  • Dynamic hardening factor
  • Change in DHF
  • 슬라이드 번호 21
  • Introduction
  • Indenter
  • Indenter
  • Definition of strain
  • Strain rate
  • 슬라이드 번호 27
  • 슬라이드 번호 28

8

Algorithm for strength evaluation

diams Step 1Determining contact areataking into considerationplastic pile-upsink-in

SphericalIndentation

Stress and StrainState in Material

=

Rhnf

hh max

ITc

pile

diams Step 2Defining stress and strain statein materials underneath spherical indenteras representative stress and strain

c

maxT A

F1Ψ

σ = θξε tan=T

diams Step 3 amp 4Fitting to constitutive equation andevaluating tensile properties

True strain εΤ

True

stre

ss σ

Τ

σ=E(ε-0002) σ=Kεn

Representative stress-strain points

E

Instrumented indentation testwith a spherical indenter

Tensile propertiesTensile properties

σy IT σu IT nIT EIT

Force-depth curveof multiple unloadings

diams Step 1Determining contact areataking into considerationplastic pile-upsink-in

SphericalIndentation

Stress and StrainState in Material

=

Rhnf

hh max

ITc

pile

diams Step 2Defining stress and strain statein materials underneath spherical indenteras representative stress and strain

c

maxT A

F1Ψ

σ = θξε tan=T

diams Step 3 amp 4Fitting to constitutive equation andevaluating tensile properties

True strain εΤ

True

stre

ss σ

Τ

σ=E(ε-0002) σ=Kεn

Representative stress-strain points

E

Instrumented indentation testwith a spherical indenter

Tensile propertiesTensile properties

σy IT σu IT nIT EIT

Force-depth curveof multiple unloadings

9

Step 1

Reference plane

Elastic deflection

dh-Plastic pile-upsink-in

pileh+

R

h c h d

h max

h pile

piledc hhhh +minus= max

SLhd

maxε= ) ( max

Rhnfhpile =

-WC Oliver amp GM Pharr J Mater Res (1992) -SH Kim et al Mater Sci Eng A (2006)

10

Step 2

Indentation depth increases Stress and strain increase

γ γ

Representative Stress Definition

Ψ=σR

mPΨ Constraint Factor (about 3)

2max

cm a

LPπ

=

Representative Strain Definition

γααε tan)(1 2

=minus

=Ra

Rac

c

R

-DTabor The Hardness of Metals (1951) -JH Ahn et al JMR (2000)

11

Step 3

nKε=σ

h

L

Loading

Unloading

σ

ε

Indentation load-depth curve Derived stress-strain points

12

Step 4

)0020( minus= yny EK εε

True

stre

ss

True strain

Yield strength

AL σ=

εdA

dAd=minus=

ll

σσd

AdA

=minus

σεσ

=dd

Tensile strength

nu =ε

13

POSCO project

(Evaluation of dynamic tensile property)

14

background

Room Temperature Low Temperature

Strain rate range 0001s 1s 10s 100s 200s

Schematic diagram of strain rate regimes

Dynamic strain rage 100 ~ 104 s

15

Definition of strain rate

Representative stress-strain definition (Expanding Cavity Model)

RhRh

Ra 222020 minus

==ε21

caL

πψσ =

Representative Stress Representative Strain

indentation strain rate (Spherical indenter)

- Representative strain definition RhRh

Ra 222020 minus

==ε

- indentation strain rate dt

dεε =amp )( VRhfdt

d=

εhc depth R indenter radius

V indentation speed

16

Definition of strain rate

4 6 8 10 12 14 16 18 20 22 2404

05

06

07

08

09

10

11

stra

in ra

te [

s]

h [um]

Dynamic range (100 ~ )

rarr 압입 깊이 별 strain rate 감소

Change of strain rate

according to indentation depth

0 20 40 60 80 100 120 140 160

02

04

06

08

10

12

14 strain rate=constant strain rate=changed

V[m

mm

in]

Depth[um]

example Indentation strain rate = 001

17

Result

000 005 010 015 020 0250

100

200

300

400

500

600

700

Tensile_Static Tensile_01s Tensile_02s Tensile_1s Indentation_Static Indentation_001s Indentation_005s

True

stre

ss[M

Pa]

True strain

[S-S curve comparison]

Confirming tendency of s-s curve according to strain rate

18

Equipment improvement

Minute control

AIS3000 Hardware

0 1 2 3 4 5 6 7 8 9 1000

02

04

06

08

10

Inde

ntat

ion

stra

in ra

te [

s]

indentation speed [mmmin]

19

Dynamic hardening factor

σd f(εp) = σs f(εp) middot DHF

DHF Dynamic Hardening Factor

Experimental constant (D)

[Joon mo Choung Dynamic hardening behaviors of various marine structural steels

considering dependencies on strain rate and temperature 2013]

20

Change in DHF

1E-3 001 01 1 10

10

11

12

13 SM400 (σ0=2967MPa)

DHF

Strain Rate [s]1E-3 001 01 1 10

10

11

12

13 SM490 (σ0=3421MPa)

DHF

Strain Rate [s]

SM400 SM490

Change in DHF with strain rate (tensile test)

01 1

100

101

102

103

104

105

106

107 SM490 σ0 = 3213 MPa

DHF

Strain Rate [s]01 1

100

101

102

103

104

105

106

107 SM400 σ0= 2664MPa

DHF

Strain Rate [s]

SM400 SM490

Change in DHF with strain rate (IIT)

21

Yield properties of PE pipe

22

Introduction

Gas Water Sewage Chemicals

In Industrial In Metropolitan

bull Corrosion amp Chemical resistance

bull Long life amp Life cycle cost savings

bull Leak free joint

bull Light weight

bull Flexibiility

bull High ductility

bull Easy installation

bull Fatigue amp Seismic resistance

Advantages of PE

23

Indenter

Background

Issue (Application to PE)

R

d1

R

d2

θ1

θ2

d

Residual Indent(top view)

Ψ=σR

mP Ψ Constraint Factor (about 3)

γε sin250=T

Representation

True strain εΤ

True

stre

ss σ

Τ

σ=E(ε-0002) σ=Kεn

Representative stress-strain points

E

In order to Evaluate Strength of Polyethylene Definition of strain rate on IIT is essential It is difficult to definite strain rate using spherical indenter Because the contact area is consistently changing during indentation

24

Indenter

Approach

Using flat-ended cylindrical indenter instead of spherical indenter

Characteristics

Indenter shape

Sharp Spherical

(Conventional representation)

Flat-ended cylindrical

No self-similarity Not keeping resemblance

during indentation X O O

Fixed contact area constant contact area during

indentation X X O

Closeness to compression test X O

25

Definition of strain

0

50

100

150

200

250

300

350

0 20 40 60 80 100

load

(kg

f)

depth (um)

a=250um

a=500um

a=1000um

Load-depth curve

00

05

10

15

20

25

30

00 01 02 03 04Pm

(G

Pa)

hR

a=250um

a=500um

a=1000um

Load rArr Pm h rArr hR

Normalization

hR can be ldquoRepresentativerdquo strain

26

Strain rate

Rh

r

bullbull

minus=χ

ε 1

From flat-ended indentation for creep test

Rhqr 21

bullbull

sdot=εA

hqr

bullbull

sdot= 2ε

q1 amp q2 are constant

[PMSargent Mater Sci Technol 1992] [JLu J Mech Phys Solids 2003]

Experimental approach

In progresshellip

27

28

(Indentation strain rate definition by Doener amp Nix )

Indentation strain rate

Indentation test parameter

Plastic zone expansion rate of indentation

  • 슬라이드 번호 1
  • Contents
  • Introduction
  • Introduction
  • Introduction
  • Introduction
  • Introduction
  • Algorithm for strength evaluation
  • Step 1
  • Step 2
  • Step 3
  • Step 4
  • 슬라이드 번호 13
  • background
  • Definition of strain rate
  • Definition of strain rate
  • Result
  • Equipment improvement
  • Dynamic hardening factor
  • Change in DHF
  • 슬라이드 번호 21
  • Introduction
  • Indenter
  • Indenter
  • Definition of strain
  • Strain rate
  • 슬라이드 번호 27
  • 슬라이드 번호 28

9

Step 1

Reference plane

Elastic deflection

dh-Plastic pile-upsink-in

pileh+

R

h c h d

h max

h pile

piledc hhhh +minus= max

SLhd

maxε= ) ( max

Rhnfhpile =

-WC Oliver amp GM Pharr J Mater Res (1992) -SH Kim et al Mater Sci Eng A (2006)

10

Step 2

Indentation depth increases Stress and strain increase

γ γ

Representative Stress Definition

Ψ=σR

mPΨ Constraint Factor (about 3)

2max

cm a

LPπ

=

Representative Strain Definition

γααε tan)(1 2

=minus

=Ra

Rac

c

R

-DTabor The Hardness of Metals (1951) -JH Ahn et al JMR (2000)

11

Step 3

nKε=σ

h

L

Loading

Unloading

σ

ε

Indentation load-depth curve Derived stress-strain points

12

Step 4

)0020( minus= yny EK εε

True

stre

ss

True strain

Yield strength

AL σ=

εdA

dAd=minus=

ll

σσd

AdA

=minus

σεσ

=dd

Tensile strength

nu =ε

13

POSCO project

(Evaluation of dynamic tensile property)

14

background

Room Temperature Low Temperature

Strain rate range 0001s 1s 10s 100s 200s

Schematic diagram of strain rate regimes

Dynamic strain rage 100 ~ 104 s

15

Definition of strain rate

Representative stress-strain definition (Expanding Cavity Model)

RhRh

Ra 222020 minus

==ε21

caL

πψσ =

Representative Stress Representative Strain

indentation strain rate (Spherical indenter)

- Representative strain definition RhRh

Ra 222020 minus

==ε

- indentation strain rate dt

dεε =amp )( VRhfdt

d=

εhc depth R indenter radius

V indentation speed

16

Definition of strain rate

4 6 8 10 12 14 16 18 20 22 2404

05

06

07

08

09

10

11

stra

in ra

te [

s]

h [um]

Dynamic range (100 ~ )

rarr 압입 깊이 별 strain rate 감소

Change of strain rate

according to indentation depth

0 20 40 60 80 100 120 140 160

02

04

06

08

10

12

14 strain rate=constant strain rate=changed

V[m

mm

in]

Depth[um]

example Indentation strain rate = 001

17

Result

000 005 010 015 020 0250

100

200

300

400

500

600

700

Tensile_Static Tensile_01s Tensile_02s Tensile_1s Indentation_Static Indentation_001s Indentation_005s

True

stre

ss[M

Pa]

True strain

[S-S curve comparison]

Confirming tendency of s-s curve according to strain rate

18

Equipment improvement

Minute control

AIS3000 Hardware

0 1 2 3 4 5 6 7 8 9 1000

02

04

06

08

10

Inde

ntat

ion

stra

in ra

te [

s]

indentation speed [mmmin]

19

Dynamic hardening factor

σd f(εp) = σs f(εp) middot DHF

DHF Dynamic Hardening Factor

Experimental constant (D)

[Joon mo Choung Dynamic hardening behaviors of various marine structural steels

considering dependencies on strain rate and temperature 2013]

20

Change in DHF

1E-3 001 01 1 10

10

11

12

13 SM400 (σ0=2967MPa)

DHF

Strain Rate [s]1E-3 001 01 1 10

10

11

12

13 SM490 (σ0=3421MPa)

DHF

Strain Rate [s]

SM400 SM490

Change in DHF with strain rate (tensile test)

01 1

100

101

102

103

104

105

106

107 SM490 σ0 = 3213 MPa

DHF

Strain Rate [s]01 1

100

101

102

103

104

105

106

107 SM400 σ0= 2664MPa

DHF

Strain Rate [s]

SM400 SM490

Change in DHF with strain rate (IIT)

21

Yield properties of PE pipe

22

Introduction

Gas Water Sewage Chemicals

In Industrial In Metropolitan

bull Corrosion amp Chemical resistance

bull Long life amp Life cycle cost savings

bull Leak free joint

bull Light weight

bull Flexibiility

bull High ductility

bull Easy installation

bull Fatigue amp Seismic resistance

Advantages of PE

23

Indenter

Background

Issue (Application to PE)

R

d1

R

d2

θ1

θ2

d

Residual Indent(top view)

Ψ=σR

mP Ψ Constraint Factor (about 3)

γε sin250=T

Representation

True strain εΤ

True

stre

ss σ

Τ

σ=E(ε-0002) σ=Kεn

Representative stress-strain points

E

In order to Evaluate Strength of Polyethylene Definition of strain rate on IIT is essential It is difficult to definite strain rate using spherical indenter Because the contact area is consistently changing during indentation

24

Indenter

Approach

Using flat-ended cylindrical indenter instead of spherical indenter

Characteristics

Indenter shape

Sharp Spherical

(Conventional representation)

Flat-ended cylindrical

No self-similarity Not keeping resemblance

during indentation X O O

Fixed contact area constant contact area during

indentation X X O

Closeness to compression test X O

25

Definition of strain

0

50

100

150

200

250

300

350

0 20 40 60 80 100

load

(kg

f)

depth (um)

a=250um

a=500um

a=1000um

Load-depth curve

00

05

10

15

20

25

30

00 01 02 03 04Pm

(G

Pa)

hR

a=250um

a=500um

a=1000um

Load rArr Pm h rArr hR

Normalization

hR can be ldquoRepresentativerdquo strain

26

Strain rate

Rh

r

bullbull

minus=χ

ε 1

From flat-ended indentation for creep test

Rhqr 21

bullbull

sdot=εA

hqr

bullbull

sdot= 2ε

q1 amp q2 are constant

[PMSargent Mater Sci Technol 1992] [JLu J Mech Phys Solids 2003]

Experimental approach

In progresshellip

27

28

(Indentation strain rate definition by Doener amp Nix )

Indentation strain rate

Indentation test parameter

Plastic zone expansion rate of indentation

  • 슬라이드 번호 1
  • Contents
  • Introduction
  • Introduction
  • Introduction
  • Introduction
  • Introduction
  • Algorithm for strength evaluation
  • Step 1
  • Step 2
  • Step 3
  • Step 4
  • 슬라이드 번호 13
  • background
  • Definition of strain rate
  • Definition of strain rate
  • Result
  • Equipment improvement
  • Dynamic hardening factor
  • Change in DHF
  • 슬라이드 번호 21
  • Introduction
  • Indenter
  • Indenter
  • Definition of strain
  • Strain rate
  • 슬라이드 번호 27
  • 슬라이드 번호 28

10

Step 2

Indentation depth increases Stress and strain increase

γ γ

Representative Stress Definition

Ψ=σR

mPΨ Constraint Factor (about 3)

2max

cm a

LPπ

=

Representative Strain Definition

γααε tan)(1 2

=minus

=Ra

Rac

c

R

-DTabor The Hardness of Metals (1951) -JH Ahn et al JMR (2000)

11

Step 3

nKε=σ

h

L

Loading

Unloading

σ

ε

Indentation load-depth curve Derived stress-strain points

12

Step 4

)0020( minus= yny EK εε

True

stre

ss

True strain

Yield strength

AL σ=

εdA

dAd=minus=

ll

σσd

AdA

=minus

σεσ

=dd

Tensile strength

nu =ε

13

POSCO project

(Evaluation of dynamic tensile property)

14

background

Room Temperature Low Temperature

Strain rate range 0001s 1s 10s 100s 200s

Schematic diagram of strain rate regimes

Dynamic strain rage 100 ~ 104 s

15

Definition of strain rate

Representative stress-strain definition (Expanding Cavity Model)

RhRh

Ra 222020 minus

==ε21

caL

πψσ =

Representative Stress Representative Strain

indentation strain rate (Spherical indenter)

- Representative strain definition RhRh

Ra 222020 minus

==ε

- indentation strain rate dt

dεε =amp )( VRhfdt

d=

εhc depth R indenter radius

V indentation speed

16

Definition of strain rate

4 6 8 10 12 14 16 18 20 22 2404

05

06

07

08

09

10

11

stra

in ra

te [

s]

h [um]

Dynamic range (100 ~ )

rarr 압입 깊이 별 strain rate 감소

Change of strain rate

according to indentation depth

0 20 40 60 80 100 120 140 160

02

04

06

08

10

12

14 strain rate=constant strain rate=changed

V[m

mm

in]

Depth[um]

example Indentation strain rate = 001

17

Result

000 005 010 015 020 0250

100

200

300

400

500

600

700

Tensile_Static Tensile_01s Tensile_02s Tensile_1s Indentation_Static Indentation_001s Indentation_005s

True

stre

ss[M

Pa]

True strain

[S-S curve comparison]

Confirming tendency of s-s curve according to strain rate

18

Equipment improvement

Minute control

AIS3000 Hardware

0 1 2 3 4 5 6 7 8 9 1000

02

04

06

08

10

Inde

ntat

ion

stra

in ra

te [

s]

indentation speed [mmmin]

19

Dynamic hardening factor

σd f(εp) = σs f(εp) middot DHF

DHF Dynamic Hardening Factor

Experimental constant (D)

[Joon mo Choung Dynamic hardening behaviors of various marine structural steels

considering dependencies on strain rate and temperature 2013]

20

Change in DHF

1E-3 001 01 1 10

10

11

12

13 SM400 (σ0=2967MPa)

DHF

Strain Rate [s]1E-3 001 01 1 10

10

11

12

13 SM490 (σ0=3421MPa)

DHF

Strain Rate [s]

SM400 SM490

Change in DHF with strain rate (tensile test)

01 1

100

101

102

103

104

105

106

107 SM490 σ0 = 3213 MPa

DHF

Strain Rate [s]01 1

100

101

102

103

104

105

106

107 SM400 σ0= 2664MPa

DHF

Strain Rate [s]

SM400 SM490

Change in DHF with strain rate (IIT)

21

Yield properties of PE pipe

22

Introduction

Gas Water Sewage Chemicals

In Industrial In Metropolitan

bull Corrosion amp Chemical resistance

bull Long life amp Life cycle cost savings

bull Leak free joint

bull Light weight

bull Flexibiility

bull High ductility

bull Easy installation

bull Fatigue amp Seismic resistance

Advantages of PE

23

Indenter

Background

Issue (Application to PE)

R

d1

R

d2

θ1

θ2

d

Residual Indent(top view)

Ψ=σR

mP Ψ Constraint Factor (about 3)

γε sin250=T

Representation

True strain εΤ

True

stre

ss σ

Τ

σ=E(ε-0002) σ=Kεn

Representative stress-strain points

E

In order to Evaluate Strength of Polyethylene Definition of strain rate on IIT is essential It is difficult to definite strain rate using spherical indenter Because the contact area is consistently changing during indentation

24

Indenter

Approach

Using flat-ended cylindrical indenter instead of spherical indenter

Characteristics

Indenter shape

Sharp Spherical

(Conventional representation)

Flat-ended cylindrical

No self-similarity Not keeping resemblance

during indentation X O O

Fixed contact area constant contact area during

indentation X X O

Closeness to compression test X O

25

Definition of strain

0

50

100

150

200

250

300

350

0 20 40 60 80 100

load

(kg

f)

depth (um)

a=250um

a=500um

a=1000um

Load-depth curve

00

05

10

15

20

25

30

00 01 02 03 04Pm

(G

Pa)

hR

a=250um

a=500um

a=1000um

Load rArr Pm h rArr hR

Normalization

hR can be ldquoRepresentativerdquo strain

26

Strain rate

Rh

r

bullbull

minus=χ

ε 1

From flat-ended indentation for creep test

Rhqr 21

bullbull

sdot=εA

hqr

bullbull

sdot= 2ε

q1 amp q2 are constant

[PMSargent Mater Sci Technol 1992] [JLu J Mech Phys Solids 2003]

Experimental approach

In progresshellip

27

28

(Indentation strain rate definition by Doener amp Nix )

Indentation strain rate

Indentation test parameter

Plastic zone expansion rate of indentation

  • 슬라이드 번호 1
  • Contents
  • Introduction
  • Introduction
  • Introduction
  • Introduction
  • Introduction
  • Algorithm for strength evaluation
  • Step 1
  • Step 2
  • Step 3
  • Step 4
  • 슬라이드 번호 13
  • background
  • Definition of strain rate
  • Definition of strain rate
  • Result
  • Equipment improvement
  • Dynamic hardening factor
  • Change in DHF
  • 슬라이드 번호 21
  • Introduction
  • Indenter
  • Indenter
  • Definition of strain
  • Strain rate
  • 슬라이드 번호 27
  • 슬라이드 번호 28

11

Step 3

nKε=σ

h

L

Loading

Unloading

σ

ε

Indentation load-depth curve Derived stress-strain points

12

Step 4

)0020( minus= yny EK εε

True

stre

ss

True strain

Yield strength

AL σ=

εdA

dAd=minus=

ll

σσd

AdA

=minus

σεσ

=dd

Tensile strength

nu =ε

13

POSCO project

(Evaluation of dynamic tensile property)

14

background

Room Temperature Low Temperature

Strain rate range 0001s 1s 10s 100s 200s

Schematic diagram of strain rate regimes

Dynamic strain rage 100 ~ 104 s

15

Definition of strain rate

Representative stress-strain definition (Expanding Cavity Model)

RhRh

Ra 222020 minus

==ε21

caL

πψσ =

Representative Stress Representative Strain

indentation strain rate (Spherical indenter)

- Representative strain definition RhRh

Ra 222020 minus

==ε

- indentation strain rate dt

dεε =amp )( VRhfdt

d=

εhc depth R indenter radius

V indentation speed

16

Definition of strain rate

4 6 8 10 12 14 16 18 20 22 2404

05

06

07

08

09

10

11

stra

in ra

te [

s]

h [um]

Dynamic range (100 ~ )

rarr 압입 깊이 별 strain rate 감소

Change of strain rate

according to indentation depth

0 20 40 60 80 100 120 140 160

02

04

06

08

10

12

14 strain rate=constant strain rate=changed

V[m

mm

in]

Depth[um]

example Indentation strain rate = 001

17

Result

000 005 010 015 020 0250

100

200

300

400

500

600

700

Tensile_Static Tensile_01s Tensile_02s Tensile_1s Indentation_Static Indentation_001s Indentation_005s

True

stre

ss[M

Pa]

True strain

[S-S curve comparison]

Confirming tendency of s-s curve according to strain rate

18

Equipment improvement

Minute control

AIS3000 Hardware

0 1 2 3 4 5 6 7 8 9 1000

02

04

06

08

10

Inde

ntat

ion

stra

in ra

te [

s]

indentation speed [mmmin]

19

Dynamic hardening factor

σd f(εp) = σs f(εp) middot DHF

DHF Dynamic Hardening Factor

Experimental constant (D)

[Joon mo Choung Dynamic hardening behaviors of various marine structural steels

considering dependencies on strain rate and temperature 2013]

20

Change in DHF

1E-3 001 01 1 10

10

11

12

13 SM400 (σ0=2967MPa)

DHF

Strain Rate [s]1E-3 001 01 1 10

10

11

12

13 SM490 (σ0=3421MPa)

DHF

Strain Rate [s]

SM400 SM490

Change in DHF with strain rate (tensile test)

01 1

100

101

102

103

104

105

106

107 SM490 σ0 = 3213 MPa

DHF

Strain Rate [s]01 1

100

101

102

103

104

105

106

107 SM400 σ0= 2664MPa

DHF

Strain Rate [s]

SM400 SM490

Change in DHF with strain rate (IIT)

21

Yield properties of PE pipe

22

Introduction

Gas Water Sewage Chemicals

In Industrial In Metropolitan

bull Corrosion amp Chemical resistance

bull Long life amp Life cycle cost savings

bull Leak free joint

bull Light weight

bull Flexibiility

bull High ductility

bull Easy installation

bull Fatigue amp Seismic resistance

Advantages of PE

23

Indenter

Background

Issue (Application to PE)

R

d1

R

d2

θ1

θ2

d

Residual Indent(top view)

Ψ=σR

mP Ψ Constraint Factor (about 3)

γε sin250=T

Representation

True strain εΤ

True

stre

ss σ

Τ

σ=E(ε-0002) σ=Kεn

Representative stress-strain points

E

In order to Evaluate Strength of Polyethylene Definition of strain rate on IIT is essential It is difficult to definite strain rate using spherical indenter Because the contact area is consistently changing during indentation

24

Indenter

Approach

Using flat-ended cylindrical indenter instead of spherical indenter

Characteristics

Indenter shape

Sharp Spherical

(Conventional representation)

Flat-ended cylindrical

No self-similarity Not keeping resemblance

during indentation X O O

Fixed contact area constant contact area during

indentation X X O

Closeness to compression test X O

25

Definition of strain

0

50

100

150

200

250

300

350

0 20 40 60 80 100

load

(kg

f)

depth (um)

a=250um

a=500um

a=1000um

Load-depth curve

00

05

10

15

20

25

30

00 01 02 03 04Pm

(G

Pa)

hR

a=250um

a=500um

a=1000um

Load rArr Pm h rArr hR

Normalization

hR can be ldquoRepresentativerdquo strain

26

Strain rate

Rh

r

bullbull

minus=χ

ε 1

From flat-ended indentation for creep test

Rhqr 21

bullbull

sdot=εA

hqr

bullbull

sdot= 2ε

q1 amp q2 are constant

[PMSargent Mater Sci Technol 1992] [JLu J Mech Phys Solids 2003]

Experimental approach

In progresshellip

27

28

(Indentation strain rate definition by Doener amp Nix )

Indentation strain rate

Indentation test parameter

Plastic zone expansion rate of indentation

  • 슬라이드 번호 1
  • Contents
  • Introduction
  • Introduction
  • Introduction
  • Introduction
  • Introduction
  • Algorithm for strength evaluation
  • Step 1
  • Step 2
  • Step 3
  • Step 4
  • 슬라이드 번호 13
  • background
  • Definition of strain rate
  • Definition of strain rate
  • Result
  • Equipment improvement
  • Dynamic hardening factor
  • Change in DHF
  • 슬라이드 번호 21
  • Introduction
  • Indenter
  • Indenter
  • Definition of strain
  • Strain rate
  • 슬라이드 번호 27
  • 슬라이드 번호 28

12

Step 4

)0020( minus= yny EK εε

True

stre

ss

True strain

Yield strength

AL σ=

εdA

dAd=minus=

ll

σσd

AdA

=minus

σεσ

=dd

Tensile strength

nu =ε

13

POSCO project

(Evaluation of dynamic tensile property)

14

background

Room Temperature Low Temperature

Strain rate range 0001s 1s 10s 100s 200s

Schematic diagram of strain rate regimes

Dynamic strain rage 100 ~ 104 s

15

Definition of strain rate

Representative stress-strain definition (Expanding Cavity Model)

RhRh

Ra 222020 minus

==ε21

caL

πψσ =

Representative Stress Representative Strain

indentation strain rate (Spherical indenter)

- Representative strain definition RhRh

Ra 222020 minus

==ε

- indentation strain rate dt

dεε =amp )( VRhfdt

d=

εhc depth R indenter radius

V indentation speed

16

Definition of strain rate

4 6 8 10 12 14 16 18 20 22 2404

05

06

07

08

09

10

11

stra

in ra

te [

s]

h [um]

Dynamic range (100 ~ )

rarr 압입 깊이 별 strain rate 감소

Change of strain rate

according to indentation depth

0 20 40 60 80 100 120 140 160

02

04

06

08

10

12

14 strain rate=constant strain rate=changed

V[m

mm

in]

Depth[um]

example Indentation strain rate = 001

17

Result

000 005 010 015 020 0250

100

200

300

400

500

600

700

Tensile_Static Tensile_01s Tensile_02s Tensile_1s Indentation_Static Indentation_001s Indentation_005s

True

stre

ss[M

Pa]

True strain

[S-S curve comparison]

Confirming tendency of s-s curve according to strain rate

18

Equipment improvement

Minute control

AIS3000 Hardware

0 1 2 3 4 5 6 7 8 9 1000

02

04

06

08

10

Inde

ntat

ion

stra

in ra

te [

s]

indentation speed [mmmin]

19

Dynamic hardening factor

σd f(εp) = σs f(εp) middot DHF

DHF Dynamic Hardening Factor

Experimental constant (D)

[Joon mo Choung Dynamic hardening behaviors of various marine structural steels

considering dependencies on strain rate and temperature 2013]

20

Change in DHF

1E-3 001 01 1 10

10

11

12

13 SM400 (σ0=2967MPa)

DHF

Strain Rate [s]1E-3 001 01 1 10

10

11

12

13 SM490 (σ0=3421MPa)

DHF

Strain Rate [s]

SM400 SM490

Change in DHF with strain rate (tensile test)

01 1

100

101

102

103

104

105

106

107 SM490 σ0 = 3213 MPa

DHF

Strain Rate [s]01 1

100

101

102

103

104

105

106

107 SM400 σ0= 2664MPa

DHF

Strain Rate [s]

SM400 SM490

Change in DHF with strain rate (IIT)

21

Yield properties of PE pipe

22

Introduction

Gas Water Sewage Chemicals

In Industrial In Metropolitan

bull Corrosion amp Chemical resistance

bull Long life amp Life cycle cost savings

bull Leak free joint

bull Light weight

bull Flexibiility

bull High ductility

bull Easy installation

bull Fatigue amp Seismic resistance

Advantages of PE

23

Indenter

Background

Issue (Application to PE)

R

d1

R

d2

θ1

θ2

d

Residual Indent(top view)

Ψ=σR

mP Ψ Constraint Factor (about 3)

γε sin250=T

Representation

True strain εΤ

True

stre

ss σ

Τ

σ=E(ε-0002) σ=Kεn

Representative stress-strain points

E

In order to Evaluate Strength of Polyethylene Definition of strain rate on IIT is essential It is difficult to definite strain rate using spherical indenter Because the contact area is consistently changing during indentation

24

Indenter

Approach

Using flat-ended cylindrical indenter instead of spherical indenter

Characteristics

Indenter shape

Sharp Spherical

(Conventional representation)

Flat-ended cylindrical

No self-similarity Not keeping resemblance

during indentation X O O

Fixed contact area constant contact area during

indentation X X O

Closeness to compression test X O

25

Definition of strain

0

50

100

150

200

250

300

350

0 20 40 60 80 100

load

(kg

f)

depth (um)

a=250um

a=500um

a=1000um

Load-depth curve

00

05

10

15

20

25

30

00 01 02 03 04Pm

(G

Pa)

hR

a=250um

a=500um

a=1000um

Load rArr Pm h rArr hR

Normalization

hR can be ldquoRepresentativerdquo strain

26

Strain rate

Rh

r

bullbull

minus=χ

ε 1

From flat-ended indentation for creep test

Rhqr 21

bullbull

sdot=εA

hqr

bullbull

sdot= 2ε

q1 amp q2 are constant

[PMSargent Mater Sci Technol 1992] [JLu J Mech Phys Solids 2003]

Experimental approach

In progresshellip

27

28

(Indentation strain rate definition by Doener amp Nix )

Indentation strain rate

Indentation test parameter

Plastic zone expansion rate of indentation

  • 슬라이드 번호 1
  • Contents
  • Introduction
  • Introduction
  • Introduction
  • Introduction
  • Introduction
  • Algorithm for strength evaluation
  • Step 1
  • Step 2
  • Step 3
  • Step 4
  • 슬라이드 번호 13
  • background
  • Definition of strain rate
  • Definition of strain rate
  • Result
  • Equipment improvement
  • Dynamic hardening factor
  • Change in DHF
  • 슬라이드 번호 21
  • Introduction
  • Indenter
  • Indenter
  • Definition of strain
  • Strain rate
  • 슬라이드 번호 27
  • 슬라이드 번호 28

13

POSCO project

(Evaluation of dynamic tensile property)

14

background

Room Temperature Low Temperature

Strain rate range 0001s 1s 10s 100s 200s

Schematic diagram of strain rate regimes

Dynamic strain rage 100 ~ 104 s

15

Definition of strain rate

Representative stress-strain definition (Expanding Cavity Model)

RhRh

Ra 222020 minus

==ε21

caL

πψσ =

Representative Stress Representative Strain

indentation strain rate (Spherical indenter)

- Representative strain definition RhRh

Ra 222020 minus

==ε

- indentation strain rate dt

dεε =amp )( VRhfdt

d=

εhc depth R indenter radius

V indentation speed

16

Definition of strain rate

4 6 8 10 12 14 16 18 20 22 2404

05

06

07

08

09

10

11

stra

in ra

te [

s]

h [um]

Dynamic range (100 ~ )

rarr 압입 깊이 별 strain rate 감소

Change of strain rate

according to indentation depth

0 20 40 60 80 100 120 140 160

02

04

06

08

10

12

14 strain rate=constant strain rate=changed

V[m

mm

in]

Depth[um]

example Indentation strain rate = 001

17

Result

000 005 010 015 020 0250

100

200

300

400

500

600

700

Tensile_Static Tensile_01s Tensile_02s Tensile_1s Indentation_Static Indentation_001s Indentation_005s

True

stre

ss[M

Pa]

True strain

[S-S curve comparison]

Confirming tendency of s-s curve according to strain rate

18

Equipment improvement

Minute control

AIS3000 Hardware

0 1 2 3 4 5 6 7 8 9 1000

02

04

06

08

10

Inde

ntat

ion

stra

in ra

te [

s]

indentation speed [mmmin]

19

Dynamic hardening factor

σd f(εp) = σs f(εp) middot DHF

DHF Dynamic Hardening Factor

Experimental constant (D)

[Joon mo Choung Dynamic hardening behaviors of various marine structural steels

considering dependencies on strain rate and temperature 2013]

20

Change in DHF

1E-3 001 01 1 10

10

11

12

13 SM400 (σ0=2967MPa)

DHF

Strain Rate [s]1E-3 001 01 1 10

10

11

12

13 SM490 (σ0=3421MPa)

DHF

Strain Rate [s]

SM400 SM490

Change in DHF with strain rate (tensile test)

01 1

100

101

102

103

104

105

106

107 SM490 σ0 = 3213 MPa

DHF

Strain Rate [s]01 1

100

101

102

103

104

105

106

107 SM400 σ0= 2664MPa

DHF

Strain Rate [s]

SM400 SM490

Change in DHF with strain rate (IIT)

21

Yield properties of PE pipe

22

Introduction

Gas Water Sewage Chemicals

In Industrial In Metropolitan

bull Corrosion amp Chemical resistance

bull Long life amp Life cycle cost savings

bull Leak free joint

bull Light weight

bull Flexibiility

bull High ductility

bull Easy installation

bull Fatigue amp Seismic resistance

Advantages of PE

23

Indenter

Background

Issue (Application to PE)

R

d1

R

d2

θ1

θ2

d

Residual Indent(top view)

Ψ=σR

mP Ψ Constraint Factor (about 3)

γε sin250=T

Representation

True strain εΤ

True

stre

ss σ

Τ

σ=E(ε-0002) σ=Kεn

Representative stress-strain points

E

In order to Evaluate Strength of Polyethylene Definition of strain rate on IIT is essential It is difficult to definite strain rate using spherical indenter Because the contact area is consistently changing during indentation

24

Indenter

Approach

Using flat-ended cylindrical indenter instead of spherical indenter

Characteristics

Indenter shape

Sharp Spherical

(Conventional representation)

Flat-ended cylindrical

No self-similarity Not keeping resemblance

during indentation X O O

Fixed contact area constant contact area during

indentation X X O

Closeness to compression test X O

25

Definition of strain

0

50

100

150

200

250

300

350

0 20 40 60 80 100

load

(kg

f)

depth (um)

a=250um

a=500um

a=1000um

Load-depth curve

00

05

10

15

20

25

30

00 01 02 03 04Pm

(G

Pa)

hR

a=250um

a=500um

a=1000um

Load rArr Pm h rArr hR

Normalization

hR can be ldquoRepresentativerdquo strain

26

Strain rate

Rh

r

bullbull

minus=χ

ε 1

From flat-ended indentation for creep test

Rhqr 21

bullbull

sdot=εA

hqr

bullbull

sdot= 2ε

q1 amp q2 are constant

[PMSargent Mater Sci Technol 1992] [JLu J Mech Phys Solids 2003]

Experimental approach

In progresshellip

27

28

(Indentation strain rate definition by Doener amp Nix )

Indentation strain rate

Indentation test parameter

Plastic zone expansion rate of indentation

  • 슬라이드 번호 1
  • Contents
  • Introduction
  • Introduction
  • Introduction
  • Introduction
  • Introduction
  • Algorithm for strength evaluation
  • Step 1
  • Step 2
  • Step 3
  • Step 4
  • 슬라이드 번호 13
  • background
  • Definition of strain rate
  • Definition of strain rate
  • Result
  • Equipment improvement
  • Dynamic hardening factor
  • Change in DHF
  • 슬라이드 번호 21
  • Introduction
  • Indenter
  • Indenter
  • Definition of strain
  • Strain rate
  • 슬라이드 번호 27
  • 슬라이드 번호 28

14

background

Room Temperature Low Temperature

Strain rate range 0001s 1s 10s 100s 200s

Schematic diagram of strain rate regimes

Dynamic strain rage 100 ~ 104 s

15

Definition of strain rate

Representative stress-strain definition (Expanding Cavity Model)

RhRh

Ra 222020 minus

==ε21

caL

πψσ =

Representative Stress Representative Strain

indentation strain rate (Spherical indenter)

- Representative strain definition RhRh

Ra 222020 minus

==ε

- indentation strain rate dt

dεε =amp )( VRhfdt

d=

εhc depth R indenter radius

V indentation speed

16

Definition of strain rate

4 6 8 10 12 14 16 18 20 22 2404

05

06

07

08

09

10

11

stra

in ra

te [

s]

h [um]

Dynamic range (100 ~ )

rarr 압입 깊이 별 strain rate 감소

Change of strain rate

according to indentation depth

0 20 40 60 80 100 120 140 160

02

04

06

08

10

12

14 strain rate=constant strain rate=changed

V[m

mm

in]

Depth[um]

example Indentation strain rate = 001

17

Result

000 005 010 015 020 0250

100

200

300

400

500

600

700

Tensile_Static Tensile_01s Tensile_02s Tensile_1s Indentation_Static Indentation_001s Indentation_005s

True

stre

ss[M

Pa]

True strain

[S-S curve comparison]

Confirming tendency of s-s curve according to strain rate

18

Equipment improvement

Minute control

AIS3000 Hardware

0 1 2 3 4 5 6 7 8 9 1000

02

04

06

08

10

Inde

ntat

ion

stra

in ra

te [

s]

indentation speed [mmmin]

19

Dynamic hardening factor

σd f(εp) = σs f(εp) middot DHF

DHF Dynamic Hardening Factor

Experimental constant (D)

[Joon mo Choung Dynamic hardening behaviors of various marine structural steels

considering dependencies on strain rate and temperature 2013]

20

Change in DHF

1E-3 001 01 1 10

10

11

12

13 SM400 (σ0=2967MPa)

DHF

Strain Rate [s]1E-3 001 01 1 10

10

11

12

13 SM490 (σ0=3421MPa)

DHF

Strain Rate [s]

SM400 SM490

Change in DHF with strain rate (tensile test)

01 1

100

101

102

103

104

105

106

107 SM490 σ0 = 3213 MPa

DHF

Strain Rate [s]01 1

100

101

102

103

104

105

106

107 SM400 σ0= 2664MPa

DHF

Strain Rate [s]

SM400 SM490

Change in DHF with strain rate (IIT)

21

Yield properties of PE pipe

22

Introduction

Gas Water Sewage Chemicals

In Industrial In Metropolitan

bull Corrosion amp Chemical resistance

bull Long life amp Life cycle cost savings

bull Leak free joint

bull Light weight

bull Flexibiility

bull High ductility

bull Easy installation

bull Fatigue amp Seismic resistance

Advantages of PE

23

Indenter

Background

Issue (Application to PE)

R

d1

R

d2

θ1

θ2

d

Residual Indent(top view)

Ψ=σR

mP Ψ Constraint Factor (about 3)

γε sin250=T

Representation

True strain εΤ

True

stre

ss σ

Τ

σ=E(ε-0002) σ=Kεn

Representative stress-strain points

E

In order to Evaluate Strength of Polyethylene Definition of strain rate on IIT is essential It is difficult to definite strain rate using spherical indenter Because the contact area is consistently changing during indentation

24

Indenter

Approach

Using flat-ended cylindrical indenter instead of spherical indenter

Characteristics

Indenter shape

Sharp Spherical

(Conventional representation)

Flat-ended cylindrical

No self-similarity Not keeping resemblance

during indentation X O O

Fixed contact area constant contact area during

indentation X X O

Closeness to compression test X O

25

Definition of strain

0

50

100

150

200

250

300

350

0 20 40 60 80 100

load

(kg

f)

depth (um)

a=250um

a=500um

a=1000um

Load-depth curve

00

05

10

15

20

25

30

00 01 02 03 04Pm

(G

Pa)

hR

a=250um

a=500um

a=1000um

Load rArr Pm h rArr hR

Normalization

hR can be ldquoRepresentativerdquo strain

26

Strain rate

Rh

r

bullbull

minus=χ

ε 1

From flat-ended indentation for creep test

Rhqr 21

bullbull

sdot=εA

hqr

bullbull

sdot= 2ε

q1 amp q2 are constant

[PMSargent Mater Sci Technol 1992] [JLu J Mech Phys Solids 2003]

Experimental approach

In progresshellip

27

28

(Indentation strain rate definition by Doener amp Nix )

Indentation strain rate

Indentation test parameter

Plastic zone expansion rate of indentation

  • 슬라이드 번호 1
  • Contents
  • Introduction
  • Introduction
  • Introduction
  • Introduction
  • Introduction
  • Algorithm for strength evaluation
  • Step 1
  • Step 2
  • Step 3
  • Step 4
  • 슬라이드 번호 13
  • background
  • Definition of strain rate
  • Definition of strain rate
  • Result
  • Equipment improvement
  • Dynamic hardening factor
  • Change in DHF
  • 슬라이드 번호 21
  • Introduction
  • Indenter
  • Indenter
  • Definition of strain
  • Strain rate
  • 슬라이드 번호 27
  • 슬라이드 번호 28

15

Definition of strain rate

Representative stress-strain definition (Expanding Cavity Model)

RhRh

Ra 222020 minus

==ε21

caL

πψσ =

Representative Stress Representative Strain

indentation strain rate (Spherical indenter)

- Representative strain definition RhRh

Ra 222020 minus

==ε

- indentation strain rate dt

dεε =amp )( VRhfdt

d=

εhc depth R indenter radius

V indentation speed

16

Definition of strain rate

4 6 8 10 12 14 16 18 20 22 2404

05

06

07

08

09

10

11

stra

in ra

te [

s]

h [um]

Dynamic range (100 ~ )

rarr 압입 깊이 별 strain rate 감소

Change of strain rate

according to indentation depth

0 20 40 60 80 100 120 140 160

02

04

06

08

10

12

14 strain rate=constant strain rate=changed

V[m

mm

in]

Depth[um]

example Indentation strain rate = 001

17

Result

000 005 010 015 020 0250

100

200

300

400

500

600

700

Tensile_Static Tensile_01s Tensile_02s Tensile_1s Indentation_Static Indentation_001s Indentation_005s

True

stre

ss[M

Pa]

True strain

[S-S curve comparison]

Confirming tendency of s-s curve according to strain rate

18

Equipment improvement

Minute control

AIS3000 Hardware

0 1 2 3 4 5 6 7 8 9 1000

02

04

06

08

10

Inde

ntat

ion

stra

in ra

te [

s]

indentation speed [mmmin]

19

Dynamic hardening factor

σd f(εp) = σs f(εp) middot DHF

DHF Dynamic Hardening Factor

Experimental constant (D)

[Joon mo Choung Dynamic hardening behaviors of various marine structural steels

considering dependencies on strain rate and temperature 2013]

20

Change in DHF

1E-3 001 01 1 10

10

11

12

13 SM400 (σ0=2967MPa)

DHF

Strain Rate [s]1E-3 001 01 1 10

10

11

12

13 SM490 (σ0=3421MPa)

DHF

Strain Rate [s]

SM400 SM490

Change in DHF with strain rate (tensile test)

01 1

100

101

102

103

104

105

106

107 SM490 σ0 = 3213 MPa

DHF

Strain Rate [s]01 1

100

101

102

103

104

105

106

107 SM400 σ0= 2664MPa

DHF

Strain Rate [s]

SM400 SM490

Change in DHF with strain rate (IIT)

21

Yield properties of PE pipe

22

Introduction

Gas Water Sewage Chemicals

In Industrial In Metropolitan

bull Corrosion amp Chemical resistance

bull Long life amp Life cycle cost savings

bull Leak free joint

bull Light weight

bull Flexibiility

bull High ductility

bull Easy installation

bull Fatigue amp Seismic resistance

Advantages of PE

23

Indenter

Background

Issue (Application to PE)

R

d1

R

d2

θ1

θ2

d

Residual Indent(top view)

Ψ=σR

mP Ψ Constraint Factor (about 3)

γε sin250=T

Representation

True strain εΤ

True

stre

ss σ

Τ

σ=E(ε-0002) σ=Kεn

Representative stress-strain points

E

In order to Evaluate Strength of Polyethylene Definition of strain rate on IIT is essential It is difficult to definite strain rate using spherical indenter Because the contact area is consistently changing during indentation

24

Indenter

Approach

Using flat-ended cylindrical indenter instead of spherical indenter

Characteristics

Indenter shape

Sharp Spherical

(Conventional representation)

Flat-ended cylindrical

No self-similarity Not keeping resemblance

during indentation X O O

Fixed contact area constant contact area during

indentation X X O

Closeness to compression test X O

25

Definition of strain

0

50

100

150

200

250

300

350

0 20 40 60 80 100

load

(kg

f)

depth (um)

a=250um

a=500um

a=1000um

Load-depth curve

00

05

10

15

20

25

30

00 01 02 03 04Pm

(G

Pa)

hR

a=250um

a=500um

a=1000um

Load rArr Pm h rArr hR

Normalization

hR can be ldquoRepresentativerdquo strain

26

Strain rate

Rh

r

bullbull

minus=χ

ε 1

From flat-ended indentation for creep test

Rhqr 21

bullbull

sdot=εA

hqr

bullbull

sdot= 2ε

q1 amp q2 are constant

[PMSargent Mater Sci Technol 1992] [JLu J Mech Phys Solids 2003]

Experimental approach

In progresshellip

27

28

(Indentation strain rate definition by Doener amp Nix )

Indentation strain rate

Indentation test parameter

Plastic zone expansion rate of indentation

  • 슬라이드 번호 1
  • Contents
  • Introduction
  • Introduction
  • Introduction
  • Introduction
  • Introduction
  • Algorithm for strength evaluation
  • Step 1
  • Step 2
  • Step 3
  • Step 4
  • 슬라이드 번호 13
  • background
  • Definition of strain rate
  • Definition of strain rate
  • Result
  • Equipment improvement
  • Dynamic hardening factor
  • Change in DHF
  • 슬라이드 번호 21
  • Introduction
  • Indenter
  • Indenter
  • Definition of strain
  • Strain rate
  • 슬라이드 번호 27
  • 슬라이드 번호 28

16

Definition of strain rate

4 6 8 10 12 14 16 18 20 22 2404

05

06

07

08

09

10

11

stra

in ra

te [

s]

h [um]

Dynamic range (100 ~ )

rarr 압입 깊이 별 strain rate 감소

Change of strain rate

according to indentation depth

0 20 40 60 80 100 120 140 160

02

04

06

08

10

12

14 strain rate=constant strain rate=changed

V[m

mm

in]

Depth[um]

example Indentation strain rate = 001

17

Result

000 005 010 015 020 0250

100

200

300

400

500

600

700

Tensile_Static Tensile_01s Tensile_02s Tensile_1s Indentation_Static Indentation_001s Indentation_005s

True

stre

ss[M

Pa]

True strain

[S-S curve comparison]

Confirming tendency of s-s curve according to strain rate

18

Equipment improvement

Minute control

AIS3000 Hardware

0 1 2 3 4 5 6 7 8 9 1000

02

04

06

08

10

Inde

ntat

ion

stra

in ra

te [

s]

indentation speed [mmmin]

19

Dynamic hardening factor

σd f(εp) = σs f(εp) middot DHF

DHF Dynamic Hardening Factor

Experimental constant (D)

[Joon mo Choung Dynamic hardening behaviors of various marine structural steels

considering dependencies on strain rate and temperature 2013]

20

Change in DHF

1E-3 001 01 1 10

10

11

12

13 SM400 (σ0=2967MPa)

DHF

Strain Rate [s]1E-3 001 01 1 10

10

11

12

13 SM490 (σ0=3421MPa)

DHF

Strain Rate [s]

SM400 SM490

Change in DHF with strain rate (tensile test)

01 1

100

101

102

103

104

105

106

107 SM490 σ0 = 3213 MPa

DHF

Strain Rate [s]01 1

100

101

102

103

104

105

106

107 SM400 σ0= 2664MPa

DHF

Strain Rate [s]

SM400 SM490

Change in DHF with strain rate (IIT)

21

Yield properties of PE pipe

22

Introduction

Gas Water Sewage Chemicals

In Industrial In Metropolitan

bull Corrosion amp Chemical resistance

bull Long life amp Life cycle cost savings

bull Leak free joint

bull Light weight

bull Flexibiility

bull High ductility

bull Easy installation

bull Fatigue amp Seismic resistance

Advantages of PE

23

Indenter

Background

Issue (Application to PE)

R

d1

R

d2

θ1

θ2

d

Residual Indent(top view)

Ψ=σR

mP Ψ Constraint Factor (about 3)

γε sin250=T

Representation

True strain εΤ

True

stre

ss σ

Τ

σ=E(ε-0002) σ=Kεn

Representative stress-strain points

E

In order to Evaluate Strength of Polyethylene Definition of strain rate on IIT is essential It is difficult to definite strain rate using spherical indenter Because the contact area is consistently changing during indentation

24

Indenter

Approach

Using flat-ended cylindrical indenter instead of spherical indenter

Characteristics

Indenter shape

Sharp Spherical

(Conventional representation)

Flat-ended cylindrical

No self-similarity Not keeping resemblance

during indentation X O O

Fixed contact area constant contact area during

indentation X X O

Closeness to compression test X O

25

Definition of strain

0

50

100

150

200

250

300

350

0 20 40 60 80 100

load

(kg

f)

depth (um)

a=250um

a=500um

a=1000um

Load-depth curve

00

05

10

15

20

25

30

00 01 02 03 04Pm

(G

Pa)

hR

a=250um

a=500um

a=1000um

Load rArr Pm h rArr hR

Normalization

hR can be ldquoRepresentativerdquo strain

26

Strain rate

Rh

r

bullbull

minus=χ

ε 1

From flat-ended indentation for creep test

Rhqr 21

bullbull

sdot=εA

hqr

bullbull

sdot= 2ε

q1 amp q2 are constant

[PMSargent Mater Sci Technol 1992] [JLu J Mech Phys Solids 2003]

Experimental approach

In progresshellip

27

28

(Indentation strain rate definition by Doener amp Nix )

Indentation strain rate

Indentation test parameter

Plastic zone expansion rate of indentation

  • 슬라이드 번호 1
  • Contents
  • Introduction
  • Introduction
  • Introduction
  • Introduction
  • Introduction
  • Algorithm for strength evaluation
  • Step 1
  • Step 2
  • Step 3
  • Step 4
  • 슬라이드 번호 13
  • background
  • Definition of strain rate
  • Definition of strain rate
  • Result
  • Equipment improvement
  • Dynamic hardening factor
  • Change in DHF
  • 슬라이드 번호 21
  • Introduction
  • Indenter
  • Indenter
  • Definition of strain
  • Strain rate
  • 슬라이드 번호 27
  • 슬라이드 번호 28

17

Result

000 005 010 015 020 0250

100

200

300

400

500

600

700

Tensile_Static Tensile_01s Tensile_02s Tensile_1s Indentation_Static Indentation_001s Indentation_005s

True

stre

ss[M

Pa]

True strain

[S-S curve comparison]

Confirming tendency of s-s curve according to strain rate

18

Equipment improvement

Minute control

AIS3000 Hardware

0 1 2 3 4 5 6 7 8 9 1000

02

04

06

08

10

Inde

ntat

ion

stra

in ra

te [

s]

indentation speed [mmmin]

19

Dynamic hardening factor

σd f(εp) = σs f(εp) middot DHF

DHF Dynamic Hardening Factor

Experimental constant (D)

[Joon mo Choung Dynamic hardening behaviors of various marine structural steels

considering dependencies on strain rate and temperature 2013]

20

Change in DHF

1E-3 001 01 1 10

10

11

12

13 SM400 (σ0=2967MPa)

DHF

Strain Rate [s]1E-3 001 01 1 10

10

11

12

13 SM490 (σ0=3421MPa)

DHF

Strain Rate [s]

SM400 SM490

Change in DHF with strain rate (tensile test)

01 1

100

101

102

103

104

105

106

107 SM490 σ0 = 3213 MPa

DHF

Strain Rate [s]01 1

100

101

102

103

104

105

106

107 SM400 σ0= 2664MPa

DHF

Strain Rate [s]

SM400 SM490

Change in DHF with strain rate (IIT)

21

Yield properties of PE pipe

22

Introduction

Gas Water Sewage Chemicals

In Industrial In Metropolitan

bull Corrosion amp Chemical resistance

bull Long life amp Life cycle cost savings

bull Leak free joint

bull Light weight

bull Flexibiility

bull High ductility

bull Easy installation

bull Fatigue amp Seismic resistance

Advantages of PE

23

Indenter

Background

Issue (Application to PE)

R

d1

R

d2

θ1

θ2

d

Residual Indent(top view)

Ψ=σR

mP Ψ Constraint Factor (about 3)

γε sin250=T

Representation

True strain εΤ

True

stre

ss σ

Τ

σ=E(ε-0002) σ=Kεn

Representative stress-strain points

E

In order to Evaluate Strength of Polyethylene Definition of strain rate on IIT is essential It is difficult to definite strain rate using spherical indenter Because the contact area is consistently changing during indentation

24

Indenter

Approach

Using flat-ended cylindrical indenter instead of spherical indenter

Characteristics

Indenter shape

Sharp Spherical

(Conventional representation)

Flat-ended cylindrical

No self-similarity Not keeping resemblance

during indentation X O O

Fixed contact area constant contact area during

indentation X X O

Closeness to compression test X O

25

Definition of strain

0

50

100

150

200

250

300

350

0 20 40 60 80 100

load

(kg

f)

depth (um)

a=250um

a=500um

a=1000um

Load-depth curve

00

05

10

15

20

25

30

00 01 02 03 04Pm

(G

Pa)

hR

a=250um

a=500um

a=1000um

Load rArr Pm h rArr hR

Normalization

hR can be ldquoRepresentativerdquo strain

26

Strain rate

Rh

r

bullbull

minus=χ

ε 1

From flat-ended indentation for creep test

Rhqr 21

bullbull

sdot=εA

hqr

bullbull

sdot= 2ε

q1 amp q2 are constant

[PMSargent Mater Sci Technol 1992] [JLu J Mech Phys Solids 2003]

Experimental approach

In progresshellip

27

28

(Indentation strain rate definition by Doener amp Nix )

Indentation strain rate

Indentation test parameter

Plastic zone expansion rate of indentation

  • 슬라이드 번호 1
  • Contents
  • Introduction
  • Introduction
  • Introduction
  • Introduction
  • Introduction
  • Algorithm for strength evaluation
  • Step 1
  • Step 2
  • Step 3
  • Step 4
  • 슬라이드 번호 13
  • background
  • Definition of strain rate
  • Definition of strain rate
  • Result
  • Equipment improvement
  • Dynamic hardening factor
  • Change in DHF
  • 슬라이드 번호 21
  • Introduction
  • Indenter
  • Indenter
  • Definition of strain
  • Strain rate
  • 슬라이드 번호 27
  • 슬라이드 번호 28

18

Equipment improvement

Minute control

AIS3000 Hardware

0 1 2 3 4 5 6 7 8 9 1000

02

04

06

08

10

Inde

ntat

ion

stra

in ra

te [

s]

indentation speed [mmmin]

19

Dynamic hardening factor

σd f(εp) = σs f(εp) middot DHF

DHF Dynamic Hardening Factor

Experimental constant (D)

[Joon mo Choung Dynamic hardening behaviors of various marine structural steels

considering dependencies on strain rate and temperature 2013]

20

Change in DHF

1E-3 001 01 1 10

10

11

12

13 SM400 (σ0=2967MPa)

DHF

Strain Rate [s]1E-3 001 01 1 10

10

11

12

13 SM490 (σ0=3421MPa)

DHF

Strain Rate [s]

SM400 SM490

Change in DHF with strain rate (tensile test)

01 1

100

101

102

103

104

105

106

107 SM490 σ0 = 3213 MPa

DHF

Strain Rate [s]01 1

100

101

102

103

104

105

106

107 SM400 σ0= 2664MPa

DHF

Strain Rate [s]

SM400 SM490

Change in DHF with strain rate (IIT)

21

Yield properties of PE pipe

22

Introduction

Gas Water Sewage Chemicals

In Industrial In Metropolitan

bull Corrosion amp Chemical resistance

bull Long life amp Life cycle cost savings

bull Leak free joint

bull Light weight

bull Flexibiility

bull High ductility

bull Easy installation

bull Fatigue amp Seismic resistance

Advantages of PE

23

Indenter

Background

Issue (Application to PE)

R

d1

R

d2

θ1

θ2

d

Residual Indent(top view)

Ψ=σR

mP Ψ Constraint Factor (about 3)

γε sin250=T

Representation

True strain εΤ

True

stre

ss σ

Τ

σ=E(ε-0002) σ=Kεn

Representative stress-strain points

E

In order to Evaluate Strength of Polyethylene Definition of strain rate on IIT is essential It is difficult to definite strain rate using spherical indenter Because the contact area is consistently changing during indentation

24

Indenter

Approach

Using flat-ended cylindrical indenter instead of spherical indenter

Characteristics

Indenter shape

Sharp Spherical

(Conventional representation)

Flat-ended cylindrical

No self-similarity Not keeping resemblance

during indentation X O O

Fixed contact area constant contact area during

indentation X X O

Closeness to compression test X O

25

Definition of strain

0

50

100

150

200

250

300

350

0 20 40 60 80 100

load

(kg

f)

depth (um)

a=250um

a=500um

a=1000um

Load-depth curve

00

05

10

15

20

25

30

00 01 02 03 04Pm

(G

Pa)

hR

a=250um

a=500um

a=1000um

Load rArr Pm h rArr hR

Normalization

hR can be ldquoRepresentativerdquo strain

26

Strain rate

Rh

r

bullbull

minus=χ

ε 1

From flat-ended indentation for creep test

Rhqr 21

bullbull

sdot=εA

hqr

bullbull

sdot= 2ε

q1 amp q2 are constant

[PMSargent Mater Sci Technol 1992] [JLu J Mech Phys Solids 2003]

Experimental approach

In progresshellip

27

28

(Indentation strain rate definition by Doener amp Nix )

Indentation strain rate

Indentation test parameter

Plastic zone expansion rate of indentation

  • 슬라이드 번호 1
  • Contents
  • Introduction
  • Introduction
  • Introduction
  • Introduction
  • Introduction
  • Algorithm for strength evaluation
  • Step 1
  • Step 2
  • Step 3
  • Step 4
  • 슬라이드 번호 13
  • background
  • Definition of strain rate
  • Definition of strain rate
  • Result
  • Equipment improvement
  • Dynamic hardening factor
  • Change in DHF
  • 슬라이드 번호 21
  • Introduction
  • Indenter
  • Indenter
  • Definition of strain
  • Strain rate
  • 슬라이드 번호 27
  • 슬라이드 번호 28

19

Dynamic hardening factor

σd f(εp) = σs f(εp) middot DHF

DHF Dynamic Hardening Factor

Experimental constant (D)

[Joon mo Choung Dynamic hardening behaviors of various marine structural steels

considering dependencies on strain rate and temperature 2013]

20

Change in DHF

1E-3 001 01 1 10

10

11

12

13 SM400 (σ0=2967MPa)

DHF

Strain Rate [s]1E-3 001 01 1 10

10

11

12

13 SM490 (σ0=3421MPa)

DHF

Strain Rate [s]

SM400 SM490

Change in DHF with strain rate (tensile test)

01 1

100

101

102

103

104

105

106

107 SM490 σ0 = 3213 MPa

DHF

Strain Rate [s]01 1

100

101

102

103

104

105

106

107 SM400 σ0= 2664MPa

DHF

Strain Rate [s]

SM400 SM490

Change in DHF with strain rate (IIT)

21

Yield properties of PE pipe

22

Introduction

Gas Water Sewage Chemicals

In Industrial In Metropolitan

bull Corrosion amp Chemical resistance

bull Long life amp Life cycle cost savings

bull Leak free joint

bull Light weight

bull Flexibiility

bull High ductility

bull Easy installation

bull Fatigue amp Seismic resistance

Advantages of PE

23

Indenter

Background

Issue (Application to PE)

R

d1

R

d2

θ1

θ2

d

Residual Indent(top view)

Ψ=σR

mP Ψ Constraint Factor (about 3)

γε sin250=T

Representation

True strain εΤ

True

stre

ss σ

Τ

σ=E(ε-0002) σ=Kεn

Representative stress-strain points

E

In order to Evaluate Strength of Polyethylene Definition of strain rate on IIT is essential It is difficult to definite strain rate using spherical indenter Because the contact area is consistently changing during indentation

24

Indenter

Approach

Using flat-ended cylindrical indenter instead of spherical indenter

Characteristics

Indenter shape

Sharp Spherical

(Conventional representation)

Flat-ended cylindrical

No self-similarity Not keeping resemblance

during indentation X O O

Fixed contact area constant contact area during

indentation X X O

Closeness to compression test X O

25

Definition of strain

0

50

100

150

200

250

300

350

0 20 40 60 80 100

load

(kg

f)

depth (um)

a=250um

a=500um

a=1000um

Load-depth curve

00

05

10

15

20

25

30

00 01 02 03 04Pm

(G

Pa)

hR

a=250um

a=500um

a=1000um

Load rArr Pm h rArr hR

Normalization

hR can be ldquoRepresentativerdquo strain

26

Strain rate

Rh

r

bullbull

minus=χ

ε 1

From flat-ended indentation for creep test

Rhqr 21

bullbull

sdot=εA

hqr

bullbull

sdot= 2ε

q1 amp q2 are constant

[PMSargent Mater Sci Technol 1992] [JLu J Mech Phys Solids 2003]

Experimental approach

In progresshellip

27

28

(Indentation strain rate definition by Doener amp Nix )

Indentation strain rate

Indentation test parameter

Plastic zone expansion rate of indentation

  • 슬라이드 번호 1
  • Contents
  • Introduction
  • Introduction
  • Introduction
  • Introduction
  • Introduction
  • Algorithm for strength evaluation
  • Step 1
  • Step 2
  • Step 3
  • Step 4
  • 슬라이드 번호 13
  • background
  • Definition of strain rate
  • Definition of strain rate
  • Result
  • Equipment improvement
  • Dynamic hardening factor
  • Change in DHF
  • 슬라이드 번호 21
  • Introduction
  • Indenter
  • Indenter
  • Definition of strain
  • Strain rate
  • 슬라이드 번호 27
  • 슬라이드 번호 28

20

Change in DHF

1E-3 001 01 1 10

10

11

12

13 SM400 (σ0=2967MPa)

DHF

Strain Rate [s]1E-3 001 01 1 10

10

11

12

13 SM490 (σ0=3421MPa)

DHF

Strain Rate [s]

SM400 SM490

Change in DHF with strain rate (tensile test)

01 1

100

101

102

103

104

105

106

107 SM490 σ0 = 3213 MPa

DHF

Strain Rate [s]01 1

100

101

102

103

104

105

106

107 SM400 σ0= 2664MPa

DHF

Strain Rate [s]

SM400 SM490

Change in DHF with strain rate (IIT)

21

Yield properties of PE pipe

22

Introduction

Gas Water Sewage Chemicals

In Industrial In Metropolitan

bull Corrosion amp Chemical resistance

bull Long life amp Life cycle cost savings

bull Leak free joint

bull Light weight

bull Flexibiility

bull High ductility

bull Easy installation

bull Fatigue amp Seismic resistance

Advantages of PE

23

Indenter

Background

Issue (Application to PE)

R

d1

R

d2

θ1

θ2

d

Residual Indent(top view)

Ψ=σR

mP Ψ Constraint Factor (about 3)

γε sin250=T

Representation

True strain εΤ

True

stre

ss σ

Τ

σ=E(ε-0002) σ=Kεn

Representative stress-strain points

E

In order to Evaluate Strength of Polyethylene Definition of strain rate on IIT is essential It is difficult to definite strain rate using spherical indenter Because the contact area is consistently changing during indentation

24

Indenter

Approach

Using flat-ended cylindrical indenter instead of spherical indenter

Characteristics

Indenter shape

Sharp Spherical

(Conventional representation)

Flat-ended cylindrical

No self-similarity Not keeping resemblance

during indentation X O O

Fixed contact area constant contact area during

indentation X X O

Closeness to compression test X O

25

Definition of strain

0

50

100

150

200

250

300

350

0 20 40 60 80 100

load

(kg

f)

depth (um)

a=250um

a=500um

a=1000um

Load-depth curve

00

05

10

15

20

25

30

00 01 02 03 04Pm

(G

Pa)

hR

a=250um

a=500um

a=1000um

Load rArr Pm h rArr hR

Normalization

hR can be ldquoRepresentativerdquo strain

26

Strain rate

Rh

r

bullbull

minus=χ

ε 1

From flat-ended indentation for creep test

Rhqr 21

bullbull

sdot=εA

hqr

bullbull

sdot= 2ε

q1 amp q2 are constant

[PMSargent Mater Sci Technol 1992] [JLu J Mech Phys Solids 2003]

Experimental approach

In progresshellip

27

28

(Indentation strain rate definition by Doener amp Nix )

Indentation strain rate

Indentation test parameter

Plastic zone expansion rate of indentation

  • 슬라이드 번호 1
  • Contents
  • Introduction
  • Introduction
  • Introduction
  • Introduction
  • Introduction
  • Algorithm for strength evaluation
  • Step 1
  • Step 2
  • Step 3
  • Step 4
  • 슬라이드 번호 13
  • background
  • Definition of strain rate
  • Definition of strain rate
  • Result
  • Equipment improvement
  • Dynamic hardening factor
  • Change in DHF
  • 슬라이드 번호 21
  • Introduction
  • Indenter
  • Indenter
  • Definition of strain
  • Strain rate
  • 슬라이드 번호 27
  • 슬라이드 번호 28

21

Yield properties of PE pipe

22

Introduction

Gas Water Sewage Chemicals

In Industrial In Metropolitan

bull Corrosion amp Chemical resistance

bull Long life amp Life cycle cost savings

bull Leak free joint

bull Light weight

bull Flexibiility

bull High ductility

bull Easy installation

bull Fatigue amp Seismic resistance

Advantages of PE

23

Indenter

Background

Issue (Application to PE)

R

d1

R

d2

θ1

θ2

d

Residual Indent(top view)

Ψ=σR

mP Ψ Constraint Factor (about 3)

γε sin250=T

Representation

True strain εΤ

True

stre

ss σ

Τ

σ=E(ε-0002) σ=Kεn

Representative stress-strain points

E

In order to Evaluate Strength of Polyethylene Definition of strain rate on IIT is essential It is difficult to definite strain rate using spherical indenter Because the contact area is consistently changing during indentation

24

Indenter

Approach

Using flat-ended cylindrical indenter instead of spherical indenter

Characteristics

Indenter shape

Sharp Spherical

(Conventional representation)

Flat-ended cylindrical

No self-similarity Not keeping resemblance

during indentation X O O

Fixed contact area constant contact area during

indentation X X O

Closeness to compression test X O

25

Definition of strain

0

50

100

150

200

250

300

350

0 20 40 60 80 100

load

(kg

f)

depth (um)

a=250um

a=500um

a=1000um

Load-depth curve

00

05

10

15

20

25

30

00 01 02 03 04Pm

(G

Pa)

hR

a=250um

a=500um

a=1000um

Load rArr Pm h rArr hR

Normalization

hR can be ldquoRepresentativerdquo strain

26

Strain rate

Rh

r

bullbull

minus=χ

ε 1

From flat-ended indentation for creep test

Rhqr 21

bullbull

sdot=εA

hqr

bullbull

sdot= 2ε

q1 amp q2 are constant

[PMSargent Mater Sci Technol 1992] [JLu J Mech Phys Solids 2003]

Experimental approach

In progresshellip

27

28

(Indentation strain rate definition by Doener amp Nix )

Indentation strain rate

Indentation test parameter

Plastic zone expansion rate of indentation

  • 슬라이드 번호 1
  • Contents
  • Introduction
  • Introduction
  • Introduction
  • Introduction
  • Introduction
  • Algorithm for strength evaluation
  • Step 1
  • Step 2
  • Step 3
  • Step 4
  • 슬라이드 번호 13
  • background
  • Definition of strain rate
  • Definition of strain rate
  • Result
  • Equipment improvement
  • Dynamic hardening factor
  • Change in DHF
  • 슬라이드 번호 21
  • Introduction
  • Indenter
  • Indenter
  • Definition of strain
  • Strain rate
  • 슬라이드 번호 27
  • 슬라이드 번호 28

22

Introduction

Gas Water Sewage Chemicals

In Industrial In Metropolitan

bull Corrosion amp Chemical resistance

bull Long life amp Life cycle cost savings

bull Leak free joint

bull Light weight

bull Flexibiility

bull High ductility

bull Easy installation

bull Fatigue amp Seismic resistance

Advantages of PE

23

Indenter

Background

Issue (Application to PE)

R

d1

R

d2

θ1

θ2

d

Residual Indent(top view)

Ψ=σR

mP Ψ Constraint Factor (about 3)

γε sin250=T

Representation

True strain εΤ

True

stre

ss σ

Τ

σ=E(ε-0002) σ=Kεn

Representative stress-strain points

E

In order to Evaluate Strength of Polyethylene Definition of strain rate on IIT is essential It is difficult to definite strain rate using spherical indenter Because the contact area is consistently changing during indentation

24

Indenter

Approach

Using flat-ended cylindrical indenter instead of spherical indenter

Characteristics

Indenter shape

Sharp Spherical

(Conventional representation)

Flat-ended cylindrical

No self-similarity Not keeping resemblance

during indentation X O O

Fixed contact area constant contact area during

indentation X X O

Closeness to compression test X O

25

Definition of strain

0

50

100

150

200

250

300

350

0 20 40 60 80 100

load

(kg

f)

depth (um)

a=250um

a=500um

a=1000um

Load-depth curve

00

05

10

15

20

25

30

00 01 02 03 04Pm

(G

Pa)

hR

a=250um

a=500um

a=1000um

Load rArr Pm h rArr hR

Normalization

hR can be ldquoRepresentativerdquo strain

26

Strain rate

Rh

r

bullbull

minus=χ

ε 1

From flat-ended indentation for creep test

Rhqr 21

bullbull

sdot=εA

hqr

bullbull

sdot= 2ε

q1 amp q2 are constant

[PMSargent Mater Sci Technol 1992] [JLu J Mech Phys Solids 2003]

Experimental approach

In progresshellip

27

28

(Indentation strain rate definition by Doener amp Nix )

Indentation strain rate

Indentation test parameter

Plastic zone expansion rate of indentation

  • 슬라이드 번호 1
  • Contents
  • Introduction
  • Introduction
  • Introduction
  • Introduction
  • Introduction
  • Algorithm for strength evaluation
  • Step 1
  • Step 2
  • Step 3
  • Step 4
  • 슬라이드 번호 13
  • background
  • Definition of strain rate
  • Definition of strain rate
  • Result
  • Equipment improvement
  • Dynamic hardening factor
  • Change in DHF
  • 슬라이드 번호 21
  • Introduction
  • Indenter
  • Indenter
  • Definition of strain
  • Strain rate
  • 슬라이드 번호 27
  • 슬라이드 번호 28

23

Indenter

Background

Issue (Application to PE)

R

d1

R

d2

θ1

θ2

d

Residual Indent(top view)

Ψ=σR

mP Ψ Constraint Factor (about 3)

γε sin250=T

Representation

True strain εΤ

True

stre

ss σ

Τ

σ=E(ε-0002) σ=Kεn

Representative stress-strain points

E

In order to Evaluate Strength of Polyethylene Definition of strain rate on IIT is essential It is difficult to definite strain rate using spherical indenter Because the contact area is consistently changing during indentation

24

Indenter

Approach

Using flat-ended cylindrical indenter instead of spherical indenter

Characteristics

Indenter shape

Sharp Spherical

(Conventional representation)

Flat-ended cylindrical

No self-similarity Not keeping resemblance

during indentation X O O

Fixed contact area constant contact area during

indentation X X O

Closeness to compression test X O

25

Definition of strain

0

50

100

150

200

250

300

350

0 20 40 60 80 100

load

(kg

f)

depth (um)

a=250um

a=500um

a=1000um

Load-depth curve

00

05

10

15

20

25

30

00 01 02 03 04Pm

(G

Pa)

hR

a=250um

a=500um

a=1000um

Load rArr Pm h rArr hR

Normalization

hR can be ldquoRepresentativerdquo strain

26

Strain rate

Rh

r

bullbull

minus=χ

ε 1

From flat-ended indentation for creep test

Rhqr 21

bullbull

sdot=εA

hqr

bullbull

sdot= 2ε

q1 amp q2 are constant

[PMSargent Mater Sci Technol 1992] [JLu J Mech Phys Solids 2003]

Experimental approach

In progresshellip

27

28

(Indentation strain rate definition by Doener amp Nix )

Indentation strain rate

Indentation test parameter

Plastic zone expansion rate of indentation

  • 슬라이드 번호 1
  • Contents
  • Introduction
  • Introduction
  • Introduction
  • Introduction
  • Introduction
  • Algorithm for strength evaluation
  • Step 1
  • Step 2
  • Step 3
  • Step 4
  • 슬라이드 번호 13
  • background
  • Definition of strain rate
  • Definition of strain rate
  • Result
  • Equipment improvement
  • Dynamic hardening factor
  • Change in DHF
  • 슬라이드 번호 21
  • Introduction
  • Indenter
  • Indenter
  • Definition of strain
  • Strain rate
  • 슬라이드 번호 27
  • 슬라이드 번호 28

24

Indenter

Approach

Using flat-ended cylindrical indenter instead of spherical indenter

Characteristics

Indenter shape

Sharp Spherical

(Conventional representation)

Flat-ended cylindrical

No self-similarity Not keeping resemblance

during indentation X O O

Fixed contact area constant contact area during

indentation X X O

Closeness to compression test X O

25

Definition of strain

0

50

100

150

200

250

300

350

0 20 40 60 80 100

load

(kg

f)

depth (um)

a=250um

a=500um

a=1000um

Load-depth curve

00

05

10

15

20

25

30

00 01 02 03 04Pm

(G

Pa)

hR

a=250um

a=500um

a=1000um

Load rArr Pm h rArr hR

Normalization

hR can be ldquoRepresentativerdquo strain

26

Strain rate

Rh

r

bullbull

minus=χ

ε 1

From flat-ended indentation for creep test

Rhqr 21

bullbull

sdot=εA

hqr

bullbull

sdot= 2ε

q1 amp q2 are constant

[PMSargent Mater Sci Technol 1992] [JLu J Mech Phys Solids 2003]

Experimental approach

In progresshellip

27

28

(Indentation strain rate definition by Doener amp Nix )

Indentation strain rate

Indentation test parameter

Plastic zone expansion rate of indentation

  • 슬라이드 번호 1
  • Contents
  • Introduction
  • Introduction
  • Introduction
  • Introduction
  • Introduction
  • Algorithm for strength evaluation
  • Step 1
  • Step 2
  • Step 3
  • Step 4
  • 슬라이드 번호 13
  • background
  • Definition of strain rate
  • Definition of strain rate
  • Result
  • Equipment improvement
  • Dynamic hardening factor
  • Change in DHF
  • 슬라이드 번호 21
  • Introduction
  • Indenter
  • Indenter
  • Definition of strain
  • Strain rate
  • 슬라이드 번호 27
  • 슬라이드 번호 28

25

Definition of strain

0

50

100

150

200

250

300

350

0 20 40 60 80 100

load

(kg

f)

depth (um)

a=250um

a=500um

a=1000um

Load-depth curve

00

05

10

15

20

25

30

00 01 02 03 04Pm

(G

Pa)

hR

a=250um

a=500um

a=1000um

Load rArr Pm h rArr hR

Normalization

hR can be ldquoRepresentativerdquo strain

26

Strain rate

Rh

r

bullbull

minus=χ

ε 1

From flat-ended indentation for creep test

Rhqr 21

bullbull

sdot=εA

hqr

bullbull

sdot= 2ε

q1 amp q2 are constant

[PMSargent Mater Sci Technol 1992] [JLu J Mech Phys Solids 2003]

Experimental approach

In progresshellip

27

28

(Indentation strain rate definition by Doener amp Nix )

Indentation strain rate

Indentation test parameter

Plastic zone expansion rate of indentation

  • 슬라이드 번호 1
  • Contents
  • Introduction
  • Introduction
  • Introduction
  • Introduction
  • Introduction
  • Algorithm for strength evaluation
  • Step 1
  • Step 2
  • Step 3
  • Step 4
  • 슬라이드 번호 13
  • background
  • Definition of strain rate
  • Definition of strain rate
  • Result
  • Equipment improvement
  • Dynamic hardening factor
  • Change in DHF
  • 슬라이드 번호 21
  • Introduction
  • Indenter
  • Indenter
  • Definition of strain
  • Strain rate
  • 슬라이드 번호 27
  • 슬라이드 번호 28

26

Strain rate

Rh

r

bullbull

minus=χ

ε 1

From flat-ended indentation for creep test

Rhqr 21

bullbull

sdot=εA

hqr

bullbull

sdot= 2ε

q1 amp q2 are constant

[PMSargent Mater Sci Technol 1992] [JLu J Mech Phys Solids 2003]

Experimental approach

In progresshellip

27

28

(Indentation strain rate definition by Doener amp Nix )

Indentation strain rate

Indentation test parameter

Plastic zone expansion rate of indentation

  • 슬라이드 번호 1
  • Contents
  • Introduction
  • Introduction
  • Introduction
  • Introduction
  • Introduction
  • Algorithm for strength evaluation
  • Step 1
  • Step 2
  • Step 3
  • Step 4
  • 슬라이드 번호 13
  • background
  • Definition of strain rate
  • Definition of strain rate
  • Result
  • Equipment improvement
  • Dynamic hardening factor
  • Change in DHF
  • 슬라이드 번호 21
  • Introduction
  • Indenter
  • Indenter
  • Definition of strain
  • Strain rate
  • 슬라이드 번호 27
  • 슬라이드 번호 28

27

28

(Indentation strain rate definition by Doener amp Nix )

Indentation strain rate

Indentation test parameter

Plastic zone expansion rate of indentation

  • 슬라이드 번호 1
  • Contents
  • Introduction
  • Introduction
  • Introduction
  • Introduction
  • Introduction
  • Algorithm for strength evaluation
  • Step 1
  • Step 2
  • Step 3
  • Step 4
  • 슬라이드 번호 13
  • background
  • Definition of strain rate
  • Definition of strain rate
  • Result
  • Equipment improvement
  • Dynamic hardening factor
  • Change in DHF
  • 슬라이드 번호 21
  • Introduction
  • Indenter
  • Indenter
  • Definition of strain
  • Strain rate
  • 슬라이드 번호 27
  • 슬라이드 번호 28

28

(Indentation strain rate definition by Doener amp Nix )

Indentation strain rate

Indentation test parameter

Plastic zone expansion rate of indentation

  • 슬라이드 번호 1
  • Contents
  • Introduction
  • Introduction
  • Introduction
  • Introduction
  • Introduction
  • Algorithm for strength evaluation
  • Step 1
  • Step 2
  • Step 3
  • Step 4
  • 슬라이드 번호 13
  • background
  • Definition of strain rate
  • Definition of strain rate
  • Result
  • Equipment improvement
  • Dynamic hardening factor
  • Change in DHF
  • 슬라이드 번호 21
  • Introduction
  • Indenter
  • Indenter
  • Definition of strain
  • Strain rate
  • 슬라이드 번호 27
  • 슬라이드 번호 28