ENZIMI -...

69
ENZIMI

Transcript of ENZIMI -...

ENZIMI

Importanza degli enzimi in Medicina

1. Chiave per capire errori del metabolismo 2. Importanti nelle reazioni di detossificazione3. Targets di chemioterapia4. Essenziali per formulare il razionale di un farmaco5. Punto di riferimento nella diagnosi e nel monitoraggio terapeutico6. Il ruolo primario delle vitamine è svolto come cofattori di enzimi

Tutti gli enzimi sono proteine****

**** alcuni RNA catalitici o ribozimi possono essere classificati come enzimi

-hanno un peso molecolare tra 15 kDa – 1000 kDa

-mostrano le stesse proprietà fisiche e chimiche delle proteine:

1. denaturazione2. precipitazione3. sensibilità alle proteasi

Gli enzimi sono caratterizzati da tre proprietà distintive:

1. CAPACITA’ CATALITICA

2. SPECIFICITA’ DI SUBSTRATO

3. REGOLAZIONE

I residui amminoacidici che formano il sito di legame sono disposti in modo tale da reagire specificamente con il substrato mediante forze attrattive

Molti enzimi necessitano di componenti chimici addizionali detti cofattori

I cofattori possono essere

ioni inorganici (Fe2+, Mg2+, Zn2+)

coenzimi (molecole organiche ometallo-organiche)

I coenzimi legati covalentemente all’enzima sono chiamati gruppi prostetici

GRUPPO PROSTETICO + APOENZIMA = OLOENZIMA

Glutatione perossidasiSe

DinitrogenasiMo

UreasiNi2+

Ribonucleotide reduttasiMn2+

Glucosio-6-fosfatasiPiruvato chinasi

Mg2+

Anidrasi carbonicaAlcol deidrogenasiZn2+

Citocromo ossidasiCu2+

CatalasiPerossidasi

Fe2+ o Fe3+

Esempi di enzimi che contengono come cofattori ioni inorganici

transferasi C1formil, metilen, metiltetraidrofolato

carbossilasiCO2biotina

amminotransferasigruppo amminicopiridossalfosfato

decarbossilasigruppi idrossialchil.tiamina pirofosfato

acil-transferasigruppi acilicicoenzima A

deidrogenasiatomi di idrogeno

ione idruro

FAD

NAD

enzimi gruppi trasferiticoenzima

Esempi di enzimi e coenzimi che trasferiscono gruppi chimici

A P(spontanea)

-d[A]dt

v= = K[A]

La velocità è proporzionale alla concentrazione di A e K è la costante di proporzionalità o costante di velocità

Poiché v è proporzionale ad A (unico reagente), la reazione è detta reazione di primo ordine (reaz. unimolecolare)

Invece nella reazione:

A P

A + B C + D v= K[A] [B]

Poiché v è proporzionale al prodotto di due concentrazioni, la reazione è di

secondo ordine.

La reazione A + B C + D si verifica perché ad ogni istante dato

sia A che B hanno l’energia necessaria per raggiungere una condizione

reattiva nota come stato di transizione.

Energia libera media(stato iniziale)

(Energia richiestaper aumentare l’E media di una mole di reagenti)

aumento della temperatura: aggiunta di un catalizzatore:

Ci sono due modi per accelerare una reazione chimica:

P

aumenterà l’energia media dei reagentidiminuendo così l’energia necessaria araggiungere lo stato di transizione.

A P

il catalizzatore abbassa il ∆∆∆∆Gcombinandosi temporaneamente con i reagenti in modo da promuovere il loro ingresso nella condizione reattiva dello stato di transizione

CINETICA DELLE REAZIONI ENZIMATICHE

Il cambiamento nella velocità di reazione in funzione della variazione

nella concentrazione del reagente è una delle misure principali

dell’analisi cinetica

Curva di saturazione del substrato per una reazione enzimatica

A bassa [S], v è proporzionale a [S] (reazione di primo ordine)Ad alta [S], v diviene indipendente da [S] e si avvicina ad un limite massimo. Il valoredi v a questo limite è indicato come Vmax.

La reazione enzimatica obbedisce ora ad una cinetica di ordine zero, cioè la velocitàè indipendente dalla [reagente] e dipende direttamente dall’enzima.

Quando v non aumenta anche se [S] aumenta, il sistema è saturato dal substrato

(A)

lo stadio precoce della reazioneè mostrato in scala maggiore

E + SE + SKK11

KK--11

ESESKK22

E+PE+P

KK--22

Teoria generale di azione degli enzimi proposta daMichaelis e Menten:

l’enzima E ed il suo substrato S si associano reversibilmente per formare un complesso ES.Il prodotto si forma in un secondo stadio quando ES si rompe per dare E+P

[ ]S

S

K

vv

m+

=

max

0

L’equazione di Michaelis-Menten

Km = costante di Michaelis-Menten

Vo = velocità iniziale

Vmax = velocità allo stato stazionario

La velocità di una reazione enzimatica v in qualsiasi istante èdeterminata dal rapporto fra due costanti Km e Vmax e la concentrazione del substrato in quell’istante.

Il valore di Km è definito dalla concentrazione di substrato che dàuna velocità pari alla metà della velocità massima:

quando [S]= Km, v= Vmax/2

Km Km èè anche una misura dellanche una misura dell’’affinitaffinitàà delldell’’enzima per il suo substrato:enzima per il suo substrato:

se un enzima ha un piccolo valore di Km, vuol dire che raggiungese un enzima ha un piccolo valore di Km, vuol dire che raggiunge la la massima efficienza catalitica a basse concentrazioni di substratmassima efficienza catalitica a basse concentrazioni di substrato o

(bassa Km = alta affinit(bassa Km = alta affinitàà))

Significato della costante diSignificato della costante di MichaelisMichaelis

L’equazione di Michaelis-Menten descrive una curva chiamata iperbole rettangolare

La Commissione Internazionale sugli Enzimi definisce l’Unità Internazionale diEnzima come la quantità che catalizza la formazione di una micromole diprodotto in un minuto.

Il numero di turnover di un enzima, Kcat, è una misura della sua massima attivitàcatalitica.

Kcat = numero di molecole di substrato convertite in prodotto per molecola di enzima per unità di tempo quando l’enzima è saturato con il substrato

L’equazione di Michaelis-Menten descrive una curva chiamata iperbole rettangolare

[ ]S

S

K

vv

m+

=

max

0

A causa della forma iperbolica del grafico di v in funzione di [S]la determinazione precisa del valore di Vmax non è possibile.

Grafico dei doppi reciproci di Lineweaver-Burk

Dall’equazione di Michaelis-Menten si possono ottenere grafici lineari:prendendo i reciproci di entrambi i membri dell’equazione di M-M

[ ]S

S

K

vv

m+

=

max

0

questa equazione descriveuna linea retta

y=

x=

Il riconoscimento enzima-substrato e gli eventi catalitici che seguono sonofortemente dipendenti dal pH

L’optimum di pH può non coincidere con l’ambiente naturale in cui l’enzimasi trova: risposta al pH = regolazione intracellulare dell’attività enzimatica

Effetti della temperatura sull’attività enzimatica

La diminuzione dell’attività a temperaturesuperiori a 50° è dovuta alla denaturazione termica.

Inibizione enzimatica

inibizione reversibile

l’inibitore interagisce con l’enzima attraverso reazioni non covalentidi associazione/dissociazione

inibizione irreversibile

l’inibitore causa alterazioni covalenti stabili dell’enzima

competitiva

non competitiva

I due tipi di inibizione si possono distinguere dal particolare tipo di andamento che si ottiene quando i dati cinetici sono analizzati indiagrammi lineari di Lineweaver-Burk

La Succinato deidrogenasi – un esempio classico di inibizione competitiva

INIBIZIONE REVERSIBILE

inibizione competitiva

Km aumenta

Il substrato e l’inibitore competonoper lo stesso sito di legame sull’enzima(sito attivo)

L’aumento della [S] aumenta la probabilità che sia S a legarsi all’enzima invece dell’inibitore. Alti valori di [S] possono annullare l’effetto di I.

Vmax è invariata

La caratteristica di questo tipo diinibizione è che Vmax non èinfluenzata da I (tutte le rettemostrano la stessa intercettasull’asse y)

INIBIZIONE REVERSIBILE

inibizione non competitiva

KKmm invariata invariata VVmaxmax diminuisce diminuisce (diminuzione dell(diminuzione dell’’enzima attivo)enzima attivo)

INIBIZIONE REVERSIBILE

L’inibitore ed il substrato si legano a siti diversi dell’enzimae il legame di I non influenza illegame di S L’inibizione non può essere superata

aumentando la [S]

- l’inibitore si lega irreversibilmente all’enzima (per es. con unlegame covalente) .

-tipo di cinetica osservata: simile all’inibizione non competitiva

- differenza: la diluizione non è efficace a dissociare il complessoE-I e non ripristina l’attività enzimatica

INIBIZIONE IRREVERSIBILE

Substrati suicidi: sono inibitori analoghi del substrato che si legano covalentemente all’enzimacon specificità ed alta affinità.

la penicillina è un inibitore irreversibile dell’enzimaglicoproteina transpeptidasi che crea i legami crociati nelle catene di peptidoglicano durante la sintesi dellaparete cellulare batterica.

La specificità è il risultato del riconoscimento molecolare

Il sito attivo dell’enzima comprende solo una parte della sua struttura, una speciale tasca complementare alla struttura del substrato

Adattamento indottoil complesso cataliticamente attivo enzima-substrato è una struttura interattiva:-la forma del sito attivo dell’enzima si modifica in seguito al legame di S -l’enzima induce il substrato ad adottare una forma che mimi lo stato di transizione della reazione

processo di riconoscimento dinamico fra E e S

Controllo dell’attività enzimatica

1. accumulo del prodotto (dimin. velocità di sintesi di P)2. disponibilità del substrato3. controllo genetico4. modifica covalente

5. isozimi6. proteine modulatrici7. enzimi allosterici

reversibile

irreversibile

Gli enzimi regolati mediante modifiche covalenti sono chiamati enzimi interconvertibili

Modificazioni Modificazioni covalenti reversibili:covalenti reversibili:

FosforilazioneFosforilazione

AdenilazioneAdenilazione

UridililazioneUridililazione

ADPADP--RibosilazioneRibosilazione

MetilazioneMetilazione

FosforilazioneFosforilazione

4.

Modificazioni covalenti irreversibili:Modificazioni covalenti irreversibili:

ProteolisiProteolisi ((zimogenizimogeni))

insulina

enzimi proteolitici del tratto digestivo

L’attivazione proteolitica del chimotripsinogeno’

coagulazione del sangue

Controllo dell’attività enzimatica

1. accumulo del prodotto2. disponibilità del substrato3. controllo genetico4. modifica covalente

5. isozimi6. proteine modulatrici7. enzimi allosterici

reversibile

irreversibile

5. IsozimiGli isozimi della lattato deidrogenasi

Numerosi enzimi esistonoin più strutture quaternarieche differiscono nelleproporzioni di associazione di due subunità A e B.

(M4)

(H4)

EnzimaEnzima

Lattico Lattico deidrogenasi deidrogenasi (infarto del miocardio, epatite virale)(infarto del miocardio, epatite virale)

Isocitrico Isocitrico deidrogenasi deidrogenasi (epatiti virali)(epatiti virali)

GlucosioGlucosio--66--fosfato fosfato deidrogenasi deidrogenasi (anemia)(anemia)

Glutammico Glutammico deidrogenasi deidrogenasi (affezioni epatiche)(affezioni epatiche)

AsparticoAspartico transaminasi transaminasi (infarto del miocardio)(infarto del miocardio)

Creatina chinasi (indice di infarto e distrofia muscolare)Creatina chinasi (indice di infarto e distrofia muscolare)

Acetilcolinesterasi Acetilcolinesterasi (anestesia)(anestesia)

Colinesterasi Colinesterasi (indice di funzionalit(indice di funzionalitàà epatica)epatica)

Fosfatasi alcalina (affezioni epatiche e dellFosfatasi alcalina (affezioni epatiche e dell’’app. scheletrico)app. scheletrico)

Enzimi di interesse clinico che si presentano in forme multipleEnzimi di interesse clinico che si presentano in forme multiple

Fattori che influenzano le attivitFattori che influenzano le attivitàà enzimatiche nel enzimatiche nel plasma negli stati patologici:plasma negli stati patologici:

•• ll’’organo o il tessuto interessato dalla malattiaorgano o il tessuto interessato dalla malattia

•• la natura della lesionela natura della lesione

•• la distribuzione degli enzimi nel tessuto interessatola distribuzione degli enzimi nel tessuto interessato

•• effetti secondari su altri organieffetti secondari su altri organi

•• la velocitla velocitàà del rilascio delldel rilascio dell’’enzima da parte delle cellule enzima da parte delle cellule danneggiatedanneggiate

•• la scomparsa dellla scomparsa dell’’enzima dal circolo sanguignoenzima dal circolo sanguigno

Controllo dell’attività enzimatica

1. accumulo del prodotto2. disponibilità del substrato3. controllo genetico4. modifica covalente

5. isozimi6. proteine modulatrici7. enzimi allosterici

reversibile

irreversibile

6. Proteine modulatrici

La proteina chinasi AMP ciclico dipendente (PKA)

Controllo dell’attività enzimatica

1. accumulo del prodotto2. disponibilità del substrato3. controllo genetico4. modifica covalente

5. isozimi6. proteine modulatrici7. enzimi allosterici

reversibile

irreversibile

7. Enzimi allostericila loro cinetica non obbedisce

all’equazione di Michaelis-Menten

Grafico sigmoide di V in funzione di [S]

Il modello della regolazione enzimatica: la glicogeno fosforilasi

1. In condizioni normali, l’attività di questo enzima nel muscolo è regolataallostericamente da metaboliti che riflettono lo stato energetico cellulare(AMP, ATP, glucosio 6 fosfato)

2. In caso di stress l’adrenalina stimola una cascata di reazioni che culminano nella fosforilazione (attivazione) dell’enzima

La reazione della fosfoglucomutasi

muscolo: energia per la contrazione muscolare

fegato: glucosio che viene esportato agli altri tessuti

DIMERO DELLA GLICOGENOFOSFORILASI

STRUTTURA DEL MONOMERODELLA GLICOGENO FOSFORILASI

Curve di v in funzione di [S] per la glicogeno fosforilasi

b) L’ATP è un inibitore a feed-back che influenza l’attività dell’enzima per il substrato

c) L’AMP è effettore eterotropico positivo; si lega allo stesso sito dell’ATP (in competizione) ed influenza l’affinità dell’enzima per il substrato

Livelli significativi di AMP indicano che lo stato di energia della cellula è basso e che dovrebbe essere prodotta più energia (ATP).

I cambiamenti nelle concentrazioni cellulari di ATP e AMP e la loro competizione per il legameallo stesso sito con effetti opposti assicura che la produzione di energia sia proporzionataalle esigenze cellulari

Meccanismo della modifica covalentee della regolazione allosterica dellaglicogeno fosforilasi

1.

2.

La fosforilazione causa nella fosforilasi un drastico cambiamento conformazionale

La glicogeno fosforilasi è regolata dacascate enzimatiche

L’attivazione ormonale dell’adenilato ciclasi

La reazione dell’adenilato ciclasi

MECCANISMI DI AZIONE DEGLI ENZIMI

I tipi di meccanismi catalitici utilizzati dagli enzimi sono staI tipi di meccanismi catalitici utilizzati dagli enzimi sono stati ti

classificati come:classificati come:

�� catalisi acidocatalisi acido--basica basica

�� catalisi covalentecatalisi covalente

�� catalisi favorita da ioni metallicicatalisi favorita da ioni metallici

��catalisi favorita da effetti di prossimitcatalisi favorita da effetti di prossimitàà e di orientamentoe di orientamento

catalisi acido-basica(presente in quasi tutte le reazioni enzimatiche): la velocità aumenta se cambia il pH.

Esistono di 2 tipi di catalisi acido-basica:

catalisi acido-base specifica:gli ioni H+ o OH- accelerano la reazione(la concentrazione del tampone non haalcun effetto sulla reazione)

catalisi acido-base generaleun acido o una base, diversi da H+ o OH-

accelerano una reazione (il tampone può donare o accettare protoni, influenzando così la velocità di reazione)

Catalisi covalente: alcune reazioni enzimatiche devono gran parte dell’aumentodella loro velocità alla formazione di legami covalenti fra E ed S

X= centro nucleofilo cheattacca un centro elettrofilo

catalisi favorita da ioni metallici: catalisi favorita da ioni metallici: alcuni enzimi richiedono ioni metallici per alcuni enzimi richiedono ioni metallici per svolgere la loro massima attivitsvolgere la loro massima attivitàà catalitica catalitica

ll’’alcol alcol deidrogenasi deidrogenasi epaticaepatica

uno ione zinco del sito attivo dell’enzimaalcol deidrogenasi stabilizza la formazione di una carica negativa sull’atomo di ossigenodell’acetaldeide, portando alla comparsa di una parziale carica positiva indotta sull’atomodi carbonio carbonilico

catalisi favorita da effetti di prossimitcatalisi favorita da effetti di prossimitàà e di orientamentoe di orientamento

le reazioni chimiche avvengono pile reazioni chimiche avvengono piùù velocemente quando i reagenti si velocemente quando i reagenti si trovano in prossimittrovano in prossimitàà, cio, cioèè vicini gli uni agli altri.vicini gli uni agli altri.

Gli enzimi non solo mantengono i substrati e i gruppi catalitici vicini gli uni agli altri, ma li orientano in modo tale da favorire la catalisi

MECCANISMI ENZIMATICI

Serina proteasi

Aspartato proteasi

Serina proteasi

classe di enzimi proteolitici il cui meccanismo catalitico è basato sulla presenza di un residuo di serina nel sito attivo.

-tripsina-chimotripsina-elastasi-trombina-plasmina-attivatore tissutale del plasminogeno

-acetil colinesterasi= non è una proteasi ma una serina esterasi il cui meccanismo d’azione è correlabile a quello delle serina proteasi. Essaidrolizza il neurotrasmettitore acetilcolina nello spazio sinaptico interneuronico.

enzimi digestivi sintetizzati nel pancreas e secreti nell’apparato digerente come proenzimi inattivi o zimogeni

Tripsina, chimotripsina ed elastasi catalizzano tutti la stessa reazione: la scissione di una catena polipeptidica.

Tripsina: agisce su aa basici(arginina, lisina)

Chimotripsina: agisce su aaaromatici

Elastasi: agisce su piccoliresidui di aa neutri

Tre residui polari (His 57, Asp102, Ser195) formano la cosiddetta triade cataliticain corrispondenza del sito attivo il quale è costituito da una depressione sullasuperficie dell’enzima.

Il diisopropilfluorofosfato reagisce con i residui di serina del sito attivo delleserina proteasi e delle serina esterasi (come l’acetilcolinesterasi) causando unainattivazione.

Le proteasi a serina sono sensibili alla inibizione da parte di fluorofosfati organici

complesso covalenteenzima-inibitore

Acetilcolinesterasi: serina esterasi che degrada il neurotrasmettitoreacetilcolina nei neuroni.

DIFP: altamente tossico perché inibisce le acetilcolinesterasi.

Sarin: molecola simile al DIFP (1995, metropolitana di Tokyo)

Gas mortale VX: 10 volte più tossico del Sarin (Inghilterra)

Aspartato proteasi

classe di enzimi proteolitici il cui meccanismo catalitico è basato sulla presenza di due residui di acido aspartico nel sito attivo.

Alcune aspartato proteasi rappresentative

Nome Sorgente Funzione

Pepsina Stomaco Digestione proteine della dieta

Catepsina D Milza, Fegato Digestione lisosomiale proteine

Renina Rene Regolazione pressione arteriosa

Proteasi HIV-1 Virus AIDS Maturazione delle proteine delvirus dell’AIDS

A differenza delle serina proteasi, le aspartato proteasi non formano legami covalenticon i loro substrati peptidici.

La proteasi del virus HIV-1 dell’AIDS è una aspartato proteasi

La proteasi HIV-1 scinde la poliproteina originando proteine diverse necessariealla crescita virale e all’infezione cellulare

Gli inibitori delle proteasi prolungano la vita dei pazienti affetti da AIDS

Terapia: inibitori proteasi + AZT

Struttura dell’AZTinibitore dellatrascrittasi inversa

CARATTERISTICHE DI UN FARMACOBiodisponibilità: capacità di raggiungere nell’organismo il luogo di azione desideratoSpecificità: per la proteasi dell’HIV nei linfociti e non per le altre proteasiNovità: per contrastare i ceppi mutanti dell’HIV resistenti agli inibitori delle proteasi (ricerche ancora in corso)

Farmaci progettati con un disegno strategico basato sulla struttura: la parte della struttura contenente il gruppo -OH si inserisce fra i due gruppi carbossilici del sito attivo della proteasi