Elizabeth A. Edwards - ISMOS-6ismos-6.org › wp-content › uploads › 2017 › 09 ›...

15
6/8/17 1 Department of Chemical Engineering and Applied Chemistry University of Toronto Elizabeth A. Edwards Anaerobic Benzene Biodegradation Centre for Applied Bioscience and Bioengineering Acknowledgements Benzene Research team (past and current): Dr. Fei Luo, Shen Guo, Nancy Bawa, Elisse Magnuson, Johnny Xiao, Tommy Wang, Dr. Cheryl Devine, Dr. Roya Gitiafroz, Sarah McRae, Nancy Li, Julie Arrey, Dr. Ania Ulrich (now prof. at U of Alberta) 1 Sandra Dworatzek, Jennifer Webb, Jennifer Wilkinson, and others Kris Bradshaw, Rachel Peters Colleagues: Krishna Mahadevan, Alexander Yakunin and Alexei Savchenko, Anna Kushnudinova, Veronica Yim, Linda Xu, Hong Cui University of Freiburg – Enzyme Assays: Prof. Matthias Boll, Sebastian Estelmann, Dr. Brandon Morris

Transcript of Elizabeth A. Edwards - ISMOS-6ismos-6.org › wp-content › uploads › 2017 › 09 ›...

  • 6/8/17

    1

    Department of Chemical Engineering and Applied Chemistry

    University of Toronto

    Elizabeth A. Edwards

    Anaerobic Benzene Biodegradation

    Centre for Applied Bioscience and Bioengineering

    Acknowledgements

    Benzene Research team (past and current): Dr. FeiLuo, Shen Guo, Nancy Bawa, Elisse Magnuson, Johnny Xiao, Tommy Wang, Dr. Cheryl Devine, Dr. Roya Gitiafroz, Sarah McRae, Nancy Li, Julie Arrey, Dr. Ania Ulrich (now prof. at U of Alberta)

    1

    Sandra Dworatzek, Jennifer Webb, Jennifer Wilkinson, and others

    Kris Bradshaw, Rachel Peters

    Colleagues: Krishna Mahadevan, Alexander Yakunin and Alexei Savchenko, Anna Kushnudinova, Veronica Yim, Linda Xu, Hong Cui

    University of Freiburg – Enzyme Assays: Prof. Matthias Boll, Sebastian Estelmann, Dr. Brandon Morris

  • 6/8/17

    2

    Ward, D. M., Atlas, R. M., Boehm, P. D., & Calder, J. A. (1980). Microbial biodegradation and chemical evolution of oil from the Amoco spill. Ambio, 9(6), 277–283.

    CH3

    CH3 CH3

    CH3

    Benzene Toluene

    Xylene(s)Ethylbenzene

    3

    1986

    1987

    1992

  • 6/8/17

    3

    Anaerobic Publications

    0

    5

    10

    15

    20

    25

    30

    35

    40

    80 86 87 88 89 90 91 92 93 94 95 96 97 98 99 00 01 02 03 04

    Nu

    mb

    er o

    f P

    ub

    licat

    ion

    s TEX Papers

    B Papers

    Presented at the ISME Conference2004 in Cancun

    As of 2011:Identified 47 Anaerobic Benzene publications from 21

    enrichments/cultures or sites… ever

  • 6/8/17

    4

    Contaminated Site Material(20 Years of Enrichment in the Lab)

    Swamp

    Sw-NO3

    Cartwright

    Cart-NO3 Cart-SO4 Cart-CH4

    Oil Refinery (OR)

    OR-CH4

    Benzene-Degrading Enrichment Cultures

    6

    Degrade: Benzene, Benzoate, Toluene, Phenol

    Key Microbe: Peptococcaceae sp.

    Degrade: BenzeneKey Microbe: δ-Proteobacterium “ORM2”

    Nitrate-reducing Sulfate-reducing or methanogenic

    Site 1 Site 2 Site 3

    20 years

    Known Anaerobic Benzene-DegradersArchaea

    Betaproteobacteria

    Firmicutes

    Deltaproteobacteria

    7

    Ferroglobus_placidus_NR_074531

    Pepto_BpP102

    Thermincola_NR_074717

    Azoarcus_AN9_AB241406

    Pelotomaculum_NR_040948

    Pelotomaculum_NR_041320

    Pepto_culture_BF

    Pepto_Edlab

    Geobacter_metallireducens

    Azoarcus_NR_029266

    Azoarcus_DN11_AB241403

    Geobacter_Ben

    Geobacter_daltonii

    Desulfatitalea_NR_113315

    Syntrophus_NR_102776

    Desulfatiglans_NR_126176

    HasdaA

    ORM2

    SB-21

    BznS295

    0.05

    Iron (III)-reducing

    Sulphate-reducing

    Nitrate-reducing

    Methanogenic

  • 6/8/17

    5

    Known Anaerobic Benzene-DegradersArchaea

    Betaproteobacteria

    Firmicutes

    Deltaproteobacteria

    8

    Ferroglobus_placidus_NR_074531

    Pepto_BpP102

    Thermincola_NR_074717

    Azoarcus_AN9_AB241406

    Pelotomaculum_NR_040948

    Pelotomaculum_NR_041320

    Pepto_culture_BF

    Pepto_Edlab

    Geobacter_metallireducens

    Azoarcus_NR_029266

    Azoarcus_DN11_AB241403

    Geobacter_Ben

    Geobacter_daltonii

    Desulfatitalea_NR_113315

    Syntrophus_NR_102776

    Desulfatiglans_NR_126176

    HasdaA

    ORM2

    SB-21

    BznS295

    0.05

    Iron (III)-reducing

    Sulphate-reducing

    Nitrate-reducing

    Methanogenic

    Gulf of California, Mexico

    Oil refinery, U.S.

    Coal gasification site, Poland

    Gasoline station, Canada

    River sediment, Japan

    Coal gasification site, Poland

    Marine hydrothermal system, Italy

    Petroleum contaminated site, Bemidji, U.S.Petroleum contaminated site, Bemidji, U.S.

    Mediterranean lagoon, France

    Gas contaminated aquifer, Japan

    Gas contaminated aquifer, Japan

    BTEX Degrading Enrichment Cultures: Rates

    9

    Enrichment Culture

    Substrates Main Organism Rate (mg/L/day)

    Doubling Time

    OR-CH4 Benzene/CO2 DeltaproteobacteriumORM20.3-2.0

    20-30 daysCart-SO4 Benzene/SO4 DeltaproteobacteriumORM2

    0.1-0.3

    Sw-NO3 Benzene/NO3 Peptococcaceae sp. 0.1-0.4

    Pen-CH4 Toluene and o-Xylene/CO2

    Pelotomaculum sp. >10

  • 6/8/17

    6

    Questions I had posed in 2004• Why is it so difficult to obtain cultures capable of anaerobic

    benzene degradation?Benzene Thermodynamically ~equivalent to Toluene

    • Organisms/Processes don’t exist?• Organisms uncommon? (kinetic barrier?)• Inappropriate laboratory enrichment and culturing technique?

    Where we are now in 2017?

    B T

    Questions I had posed in 2004• Why is it so difficult to obtain cultures capable of anaerobic

    benzene degradation?Benzene Thermodynamically ~equivalent to Toluene

    • Organisms/Processes don’t exist?• Organisms uncommon? (kinetic barrier?) YES; low abundance• Inappropriate laboratory enrichment and culturing technique? YES

    Where we are now in 2017?

  • 6/8/17

    7

    In Search of Elusive Anaerobic Benzene Activation Mechanisms

    12

    OH

    CH3

    COOH

    COSCoA

    HO

    CH3 CO, CoA

    CO2

    ?

    Hydroxylation to phenol

    Methylation to toluene

    Carbonylation to benzaldehyde

    Carboxylation to benzoate

    Other????

    bssA

    ppsA, ppcA

    bclABenzoyl-CoA is a central metaboliteabcA

    1. Nitrate-Reducing Cultures

    13

  • 6/8/17

    8

    BenzenePeptococcaceae

    Fermentation products, Acetate + Hydrogen

    Carbon dioxideNH4+

    N2 NO3-

    NO2-AzoarcusBurkholderiaAnammox

    Syntrophy innitrate-reducingenrichmentcultures(SwampandCartwright)

    BenzenePeptococcaceae

    Fermentation products, Acetate + Hydrogen

    Carbon dioxideNH4+

    N2 NO3-

    NO2-AzoarcusBurkholderiaAnammox

    BenzoateAzoarcus

    , Toluene or Phenol

    CulturebecomesdominatedbyAzoarcus iffedbenzoate,tolueneorphenol

  • 6/8/17

    9

    16

    CulturebecomesdominatedbyAzoarcus iffedbenzoate,tolueneorphenolwithnitrate

    Anaerobic Pathways clearly established in Azoarcus

    Rela

    tive

    abun

    danc

    e

    AzoarcusAzoarcusAzoarcus

    Pepto

    The anaerobic benzene carboxylase gene neighborhood in Peptococaccea

    17

    + CO2AbcDA

    COOH

    + CoA

    COSCoA

    Putative carboxylase

    BzlA

    Prenyl TransferaseBUT: Not yet biochemically proven!

  • 6/8/17

    10

    18

    Figure 6: Enzyme activity of UbiX, a prenyltransferase. UbiX bindsoxidized Flavin mononucleotide (FMN) to Dimethylallyl phosphate(DMAP), producing prenylated FMN (prFMN), an important cofactorfor UbiD in the ubiquinonecycle (White et al., 2015)

    Nature 2015

    19

    Figure 6: Enzyme activity of UbiX, a prenyltransferase. UbiX bindsoxidized Flavin mononucleotide (FMN) to Dimethylallyl phosphate(DMAP), producing prenylated FMN (prFMN), an important cofactorfor UbiD in the ubiquinonecycle (White et al., 2015)

    UbiX is a prenyltransferase:It adds a prenyl group to flavinmononucleotide (FMN)to form prenylated FMN – an important co-factor for ubiquinone biosynthesis

    White et al. (2015) Nature, 522(7557): 502

    Proposed!

  • 6/8/17

    11

    The Putative Anaerobic Benzene Carboxylase Neighborhood: Metagenomic, Metatranscriptomic and Metaproteomic Analysis

    20

    Other proteins FeS binding proteins Transcriptional regulators UbiD-like proteins UbiX-like proteins

    Expressed genes (proteomic analysis)

    transcriptome

    UbiD/UbiX Involved in Biodegradation of Aromatic Contaminants

    Peptococcaceae_benEnrichment culture BF

    ubiX(N

    RBC0

    004)

    abcA

    Geobacter Metallireducens

    ubiX(Q

    5P48

    3)

    ppsA

    ppsB

    ppcB pp

    sC

    ppcB

    ppcCpp

    cAppcD pp

    sC ppsB pp

    sA

    Azoarcus sp. EbN1

    ubiX(Q

    39TU

    0)

    phthaloyl-CoA

    decarboxylase

    ubiX(D

    5NWH

    5)

    CoA

    trans

    feras

    e

    CoA

    trans

    feras

    e

    Azoarcus sp. EbN1

    1kb

    Benzene

    Phenol

    Phthalate

  • 6/8/17

    12

    1.E+03

    1.E+04

    1.E+05

    1.E+06

    1.E+07

    1.E+08

    Gen

    e co

    pies

    /ml m

    icro

    cosm

    1.E+03

    1.E+04

    1.E+05

    1.E+06

    1.E+07

    1.E+08

    Biostimulation with Nitrate: Emergence of Indigenous Benzene-Degrader

    0.000

    0.005

    0.010

    0.015

    0 50 100 150 200

    benzene

    abcA

    Total bacteria

    21 187138

    0.000

    0.005

    0.010

    0.015

    0 50 100 150 200

    Benz

    ene

    (mm

    ol/b

    ottle

    )

    18713821

    Day Day

    Nitrate-amendment 1 Nitrate-amendment 2

    22

    Delta_ORM2: below detection limit

    Pepto-ben

    2. Methanogenic CultureRefer to previous presentation by Fei Luo; Active cultures contain Deltaproteobacterium ORM2. Genomic and Proteomic data; No evidence for AbcDA, nor UbiX

    23

  • 6/8/17

    13

    2008 - Dual Isotope Plot Suggested two Mechanisms

    24

    Mancini, S. A., Devine, C. E., Elsner, M., Nandi, M. E., Ulrich, A. C., Edwards, E. A., & Sherwood Lollar, B. (2008). Isotopic Evidence Suggests Different Initial Reaction Mechanisms for Anaerobic Benzene Biodegradation. Environmental Science & Technology, 42(22), 8290–8296.

    25

    Culture scale-up for potential use for bioaugmentation

    http://anaerobicbenzene.ca/

    Methanogenic Enrichment culture OR-CH4

    Scaled up to 100L:DGG-1

    Plan to test at a field site in 2018

  • 6/8/17

    14

    Dunja Grbic-Galic (1949-1993)

    • Professor; Stanford University Environmental Engineering and Science

    • Anaerobic microbiology• Ferrulate (lignin)• Toluene & Benzene from

    petroleum hydrocarbons• Kindness

    DGG: Dunja Grbic-Galic

    Conclusions• Anaerobic benzene degradation appears limited to a few groups of

    organisms that we can now track. Could these organisms also be specialists (like Dehalococcoides) offering hope for bioaugmentation?

    • Peptococcaceae-containing benzene-degrading cultures appear specific to slightly higher redox like nitrate-reducing & iron-reducing conditions. Initial step likely a carboxylation supported by a modified (prenylated?) FMN cofactor, although biochemical evidence lacking

    • Deltaproteobacteria (ORM2)-dominated cultures are inhibited by nitrate. These grow well under both under methanogenic and sulfate-reducing conditions. Mechanism still unknown

    • The pathways for anaerobic benzene oxidation are still not confirmed, though genomic and proteomic tools are providing new leads 27

  • 6/8/17

    15

    Thank you!

    28