Electrolyte Thermodynamics - OLI Support Center - Electolyte...Electrolyte Thermodynamics: A...

37
Electrolyte Thermodynamics: A Crystallization Tool for Engineering Materials From the Nanoscale to the Microscale Richard E. Riman and Eugene Zlotnikov Department of Materials Engineering Rutgers, The State University of New Jersey 607 Taylor Road Piscataway, NJ 08854-8065

Transcript of Electrolyte Thermodynamics - OLI Support Center - Electolyte...Electrolyte Thermodynamics: A...

Page 1: Electrolyte Thermodynamics - OLI Support Center - Electolyte...Electrolyte Thermodynamics: A Crystallization Tool for Engineering Materials From the Nanoscale to the Microscale Richard

Electrolyte Thermodynamics:A Crystallization Tool for Engineering Materials

From the Nanoscale to the Microscale

Richard E. Riman and Eugene ZlotnikovDepartment of Materials Engineering

Rutgers, The State University of New Jersey607 Taylor Road

Piscataway, NJ 08854-8065

Page 2: Electrolyte Thermodynamics - OLI Support Center - Electolyte...Electrolyte Thermodynamics: A Crystallization Tool for Engineering Materials From the Nanoscale to the Microscale Richard

Sponsors

• Office of Naval Research• Defense Advanced Projects Research

Agency• National Science Foundation• New Jersey Commission on Science and

Technology• PPG Industries, Inc.• Ceramare Corporation

Page 3: Electrolyte Thermodynamics - OLI Support Center - Electolyte...Electrolyte Thermodynamics: A Crystallization Tool for Engineering Materials From the Nanoscale to the Microscale Richard

Outline

• Hydrothermal-derived ceramic materials• Rational approach to low temperature

hydrothermal synthesis• Thermochemistry-engineering the reaction

medium for ceramic materials synthesis

Page 4: Electrolyte Thermodynamics - OLI Support Center - Electolyte...Electrolyte Thermodynamics: A Crystallization Tool for Engineering Materials From the Nanoscale to the Microscale Richard

Current Research Areas

• Processing Science– Hydrothermal/Solvothermal Crystallization – Mixing– Assembly

• Functional Areas– Biomedical(tissue engineering)– Electronic (piezoelectric, dielectric) – Optical (amplifiers, lasers, taggants,

chameleon optics)– Structural (corrosion, ferroelastics)

Page 5: Electrolyte Thermodynamics - OLI Support Center - Electolyte...Electrolyte Thermodynamics: A Crystallization Tool for Engineering Materials From the Nanoscale to the Microscale Richard

Hydrothermal Synthesis• Chemical precursors are heterogeneous slurries, gel and or

homogeneous solutions, acid or base mineralizer required

• Aqueous, mixed solvent or solvothermal solution medium

• Focus is on mild reaction conditions (T<300oC, P<250 atm)

• Anhydrous oxides form in a single process step

• P-T-H2O interaction => unique phase equilibria

• Solution-mediated reaction => labile reaction kinetics relative to solid state reaction

• Controlled nucleation, growth and aging => controlled size and morphology

• Inexpensive processes

Page 6: Electrolyte Thermodynamics - OLI Support Center - Electolyte...Electrolyte Thermodynamics: A Crystallization Tool for Engineering Materials From the Nanoscale to the Microscale Richard

Hydrothermal Reactor

Thickness

(m)

Density

(kg/m3)

Heat

Conductivity5

Wt/(m deg)

Heat

Capacity5

(kJ /(kg deg)

Mass

(kg)

Outer

Surface

(m2)

Stainless steel 304 0.008 7900 0.502 3.27 0.04

Teflon 0.011 2120

16.0

0.26 0.350 0.44 0.02

Parr 4748 Autoclave, 125 ml, < 240°C

Page 7: Electrolyte Thermodynamics - OLI Support Center - Electolyte...Electrolyte Thermodynamics: A Crystallization Tool for Engineering Materials From the Nanoscale to the Microscale Richard

Batch Hydrothermal Crystallizers

Parr Instrument Company: Model 4530Hastalloy C276 alloy

Temperatures < 350˚CStirring Speed < 1700 rpm

Parr Instrument Company: Model 4530Hastalloy C276 alloy

Temperatures < 350˚CStirring Speed < 1700 rpm

Page 8: Electrolyte Thermodynamics - OLI Support Center - Electolyte...Electrolyte Thermodynamics: A Crystallization Tool for Engineering Materials From the Nanoscale to the Microscale Richard

Rational Approach to Low Temperature Hydrothermal Synthesis

• Compute thermodynamic equilibria as a function of the processing variables for phase of interest

• Generate equilibrium diagrams to map processing variable space for phase of interest

• Design hydrothermal experiments to test and validate computed diagrams

• Utilize processing variable space maps to explore opportunities for control of reaction and crystallization kinetics

Page 9: Electrolyte Thermodynamics - OLI Support Center - Electolyte...Electrolyte Thermodynamics: A Crystallization Tool for Engineering Materials From the Nanoscale to the Microscale Richard

Equilibria of Ca(OH)2-H3PO4-NH4OH-HNO3-H2O System1. H2O = H+1 + OH-1

2. HP2O7-3 = H+1 + P2O7

-4

3. H2P2O7-2 = H+1 + HP2O7

-3

4. H3P2O7-1 = H+1 + H2P2O7

-2

5. H4P2O7 (aq) = H+1 + H3P2O7-1

6. HPO4-2 = H+1 + PO4

-3

7. H2PO4-1 = H+1 + HPO4

-2

8. 2 H2PO4-1 = (H2PO4)2

-2

9. H3PO4 (aq) = H+1 + H2PO4-1

10. HNO3 (aq) = H+1 + NO3-1

11. NH3 (aq) + H2O = NH4+1 + OH-1

12. NH4NO3 (aq) = NH4+1 + NO3

-1

13. CaH2PO4+1 = Ca+2 + H2PO4

-1

14. CaNO3+1 = Ca+2 + NO3

-1

15. CaOH+1 = Ca+2 + OH-1

16. CaPO4-1 = Ca+2 + PO4

-3

17. CaHPO4 (aq) = Ca+2 + HPO4-2

18. Ca(OH)2 (aq) = Ca+2 + 2OH-1

19. Ca(NO3)2 (aq) = Ca+2 + 2NO3-1

20. Ca5(OH)(PO4)3 s = 5Ca+2 + OH-1+ 3PO4-3

21. CaHPO4 (s) = Ca+2 + HPO4-2

22. CaHPO4.2•H2O (s) = Ca+2 + HPO4-2+ 2H2O

23. Ca3(PO4)2 (s) = 3Ca+2 + 2PO4-3

24. Ca(H2PO4)2 • H2O (s) = Ca+2 + 2H2PO4-1 + H2O

25. Ca(H2PO4)2 (s) = Ca+2 + 2H2PO4-1

26. Ca4O(PO4)2 (s) + H2O = 4Ca+2 + 2OH-1 + 2PO4-3

27. Ca10O(PO4)6 (s) + H2O = 10Ca+2 + 2OH-1 + 6PO4-3

28. Ca4H(PO4)3 (s) = 4Ca+2 + HPO4-2 + 2PO4

-3

29. Ca8H2(PO4)6.5 • H2O (s) = 8Ca+2 + 2HPO4-2 + 4PO4

-3 + 5H2O

30. Ca(NO3)2.3 H2O (s) = Ca+2 + 2NO3-1 + 3H2O

31. Ca(NO3)2.4 H2O (s) = Ca+2 + 2NO3-1 + 4H2O

32. Ca(NO3)2 (s) = Ca+2 + 2NO3-1

33. Ca(OH)2 (s) = Ca+2 + 2OH-1

34. (NH4)2HPO4.2H2O (s) = 2NH4+1 + HPO4

-2+ 2H2O

35. (NH4)2HPO4 (s) = 2NH4+1 + HPO4

-2

36. (NH4)3PO4.3 • 3H2O (s) = 3NH4+1 + PO4

-3+ 3H2O

37. (NH4)H2PO4 (s) = NH4+1 + H2PO4

-1

38. (NH4)NO3 (s) = NH4+1 + NO3

-1

39. H2O (v) = H2O

40. NH3 (v) = NH3 (aq)

41. HNO3 (v) = HNO3 (aq)

Page 10: Electrolyte Thermodynamics - OLI Support Center - Electolyte...Electrolyte Thermodynamics: A Crystallization Tool for Engineering Materials From the Nanoscale to the Microscale Richard

Calculated Solubility of Various Calcium Phosphates

Page 11: Electrolyte Thermodynamics - OLI Support Center - Electolyte...Electrolyte Thermodynamics: A Crystallization Tool for Engineering Materials From the Nanoscale to the Microscale Richard

Stability Field Diagrams for HA

Page 12: Electrolyte Thermodynamics - OLI Support Center - Electolyte...Electrolyte Thermodynamics: A Crystallization Tool for Engineering Materials From the Nanoscale to the Microscale Richard
Page 13: Electrolyte Thermodynamics - OLI Support Center - Electolyte...Electrolyte Thermodynamics: A Crystallization Tool for Engineering Materials From the Nanoscale to the Microscale Richard

Ca(OH)2 has Limited Retrograde Solubility

Page 14: Electrolyte Thermodynamics - OLI Support Center - Electolyte...Electrolyte Thermodynamics: A Crystallization Tool for Engineering Materials From the Nanoscale to the Microscale Richard

Thermochemical Validation: Alkaline Earth Titanate Perovskites

Page 15: Electrolyte Thermodynamics - OLI Support Center - Electolyte...Electrolyte Thermodynamics: A Crystallization Tool for Engineering Materials From the Nanoscale to the Microscale Richard

Minimum Mineralizer Concentrations

Page 16: Electrolyte Thermodynamics - OLI Support Center - Electolyte...Electrolyte Thermodynamics: A Crystallization Tool for Engineering Materials From the Nanoscale to the Microscale Richard
Page 17: Electrolyte Thermodynamics - OLI Support Center - Electolyte...Electrolyte Thermodynamics: A Crystallization Tool for Engineering Materials From the Nanoscale to the Microscale Richard

Increasing Pb/Ti Reduces PT Processing Space

Page 18: Electrolyte Thermodynamics - OLI Support Center - Electolyte...Electrolyte Thermodynamics: A Crystallization Tool for Engineering Materials From the Nanoscale to the Microscale Richard

Use of EDTA to Eliminate Phase Heterogeneities

No EDTA EDTA

Page 19: Electrolyte Thermodynamics - OLI Support Center - Electolyte...Electrolyte Thermodynamics: A Crystallization Tool for Engineering Materials From the Nanoscale to the Microscale Richard

Control of Phase Space Using EDTA

No EDTA

EDTA

Page 20: Electrolyte Thermodynamics - OLI Support Center - Electolyte...Electrolyte Thermodynamics: A Crystallization Tool for Engineering Materials From the Nanoscale to the Microscale Richard

Acmite Pourbaix DiagramNaOH + 2SiO2 + Fe + H2O = NaFeSi2O6 + (3/2)H2 (g)

Page 21: Electrolyte Thermodynamics - OLI Support Center - Electolyte...Electrolyte Thermodynamics: A Crystallization Tool for Engineering Materials From the Nanoscale to the Microscale Richard

Na2SiO3 Concentration Effects

0.0E+00

4.0E-06

8.0E-06

1.2E-05

1.6E-05

2.0E-05

20 40 60 80 100 120

Temperature [°C]

Con

cent

ratio

n Fe

(OH

) 4- [m]

0 mol/l

1 mol/l

2 mol/l

Solu

ble

Spec

ies

X

Page 22: Electrolyte Thermodynamics - OLI Support Center - Electolyte...Electrolyte Thermodynamics: A Crystallization Tool for Engineering Materials From the Nanoscale to the Microscale Richard

Reaction Rate Maximization

0

1

2

3

4

5

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0Na2SiO 3 [m]

T2, C2

T1, C1

[X]*

[Sili

cate

] 10-5

*m2

Page 23: Electrolyte Thermodynamics - OLI Support Center - Electolyte...Electrolyte Thermodynamics: A Crystallization Tool for Engineering Materials From the Nanoscale to the Microscale Richard

Na2SiO3 Concentration Increases Acmite Thickness

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0 0.2 0.4 0.6

Na2SiO3 [mole/kg]

R

Fe

Acmite

IIIR

)()(

110

310221 +=

Temperature 210°C, Fe(NO3)30.124 mole/kg, 11.5 h

Page 24: Electrolyte Thermodynamics - OLI Support Center - Electolyte...Electrolyte Thermodynamics: A Crystallization Tool for Engineering Materials From the Nanoscale to the Microscale Richard

Thermochemistry Breakthrough:Instant Hydrothermal

• Uses same precursors as conventional solid state reaction

• Reactions in open vessels

• Phase pure powder• Controlled size

distribution

30 s BaTiO3

Page 25: Electrolyte Thermodynamics - OLI Support Center - Electolyte...Electrolyte Thermodynamics: A Crystallization Tool for Engineering Materials From the Nanoscale to the Microscale Richard

Setting Nucleation Targets

Page 26: Electrolyte Thermodynamics - OLI Support Center - Electolyte...Electrolyte Thermodynamics: A Crystallization Tool for Engineering Materials From the Nanoscale to the Microscale Richard
Page 27: Electrolyte Thermodynamics - OLI Support Center - Electolyte...Electrolyte Thermodynamics: A Crystallization Tool for Engineering Materials From the Nanoscale to the Microscale Richard
Page 28: Electrolyte Thermodynamics - OLI Support Center - Electolyte...Electrolyte Thermodynamics: A Crystallization Tool for Engineering Materials From the Nanoscale to the Microscale Richard

Effect of Ethanol on pH

pH vs. EtOH added to 28.8% w solution of NH4OH

11.1

11.4

11.7

12

12.3

0 4 8 12 16

[EtOH] m

pH

Page 29: Electrolyte Thermodynamics - OLI Support Center - Electolyte...Electrolyte Thermodynamics: A Crystallization Tool for Engineering Materials From the Nanoscale to the Microscale Richard

Non-ideality of Ethanol-Water-Ammonia Mixtures

K1

(1) NH3 +H2O ↔ NH4+ + OH-

K2

(2) NH3 + nC2H5OH ↔ [NH3•(C2H5OH)n]

(3) [NH3]0 =[NH3] + [NH4+] + [NH3•(C2H5OH)n]

(4) {[NH3]0 – [OH-] – [OH-]2/K1} / [OH-]2/K1 = K2 (C2H5OH)n

Page 30: Electrolyte Thermodynamics - OLI Support Center - Electolyte...Electrolyte Thermodynamics: A Crystallization Tool for Engineering Materials From the Nanoscale to the Microscale Richard

Ethanol-Ammonia Interaction Parameters

Ln-Ln Linearization for Water-Ethyl Alcohol -NH4OH

R2 = 0.97142

2.2

2.4

2.6

0 2 4Ln ([Ethyl Alcohol])

Ln(F

([OH

], [N

H4O

H]in

itial

)

n=0.13

K2=2.14

Page 31: Electrolyte Thermodynamics - OLI Support Center - Electolyte...Electrolyte Thermodynamics: A Crystallization Tool for Engineering Materials From the Nanoscale to the Microscale Richard

HA coated Titanium

Page 32: Electrolyte Thermodynamics - OLI Support Center - Electolyte...Electrolyte Thermodynamics: A Crystallization Tool for Engineering Materials From the Nanoscale to the Microscale Richard

In-Situ HA Coating/Synthesis

Non-Isothermal Phosphate Kinetcs

0

0.2

0.4

0.6

0.8

1

0 50 100 150

Time [min]

Con

vers

ion

40

80

120

160

200

Tem

pera

ture

°C

ConversionTemperature

Page 33: Electrolyte Thermodynamics - OLI Support Center - Electolyte...Electrolyte Thermodynamics: A Crystallization Tool for Engineering Materials From the Nanoscale to the Microscale Richard

HA & Ca-titanate: temperature scan

Page 34: Electrolyte Thermodynamics - OLI Support Center - Electolyte...Electrolyte Thermodynamics: A Crystallization Tool for Engineering Materials From the Nanoscale to the Microscale Richard

HA & Ca-Titanate: phosphate slow supply

Page 35: Electrolyte Thermodynamics - OLI Support Center - Electolyte...Electrolyte Thermodynamics: A Crystallization Tool for Engineering Materials From the Nanoscale to the Microscale Richard

Summary• Design of materials

– Phase pure materials– Optimization of formulations

• Design of processes– Optimization of processes– Process insight– Assessment of parametric sensitivity– Process monitoring

• Design of experiments– Feasible ranges of processing variables– Phase diagrams validation– “Go-Not Go” study

Page 36: Electrolyte Thermodynamics - OLI Support Center - Electolyte...Electrolyte Thermodynamics: A Crystallization Tool for Engineering Materials From the Nanoscale to the Microscale Richard

Conclusion

• Thermochemical modeling is an effective design tool for engineering phase assemblage, precursor and reaction kinetics

Page 37: Electrolyte Thermodynamics - OLI Support Center - Electolyte...Electrolyte Thermodynamics: A Crystallization Tool for Engineering Materials From the Nanoscale to the Microscale Richard

Questions?