EE123 Discussion Section 3 - University of California ...

43
Recap Problems EE123 Discussion Section 3 Jon Tamir (based on slides by Frank Ong) February 8, 2016 Jon Tamir EE123 Discussion Section 3

Transcript of EE123 Discussion Section 3 - University of California ...

Page 1: EE123 Discussion Section 3 - University of California ...

RecapProblems

EE123 Discussion Section 3

Jon Tamir (based on slides by Frank Ong)

February 8, 2016

Jon Tamir EE123 Discussion Section 3

Page 2: EE123 Discussion Section 3 - University of California ...

RecapProblems

Announcements

I Submit Lab 1 by Thursday, Feb. 11 on bCourses

I Submit Homework 2 self-grade by Friday, Feb. 12 on bCourses

I Submit Homework 3 by Friday, Feb. 12 on bCourses

I Midterm 1 on Monday, Feb. 22 in class (2 hours)

Jon Tamir EE123 Discussion Section 3

Page 3: EE123 Discussion Section 3 - University of California ...

RecapProblems

Plan

I DFT problems

I DCT demo and problem

I FFT demo

Jon Tamir EE123 Discussion Section 3

Page 4: EE123 Discussion Section 3 - University of California ...

RecapProblems

The Discrete Fourier Transform

X [k] =N−1∑n=0

x [n]W knN [Analysis]

x [n] =1

N

N−1∑n=0

X [k]W−knN [Synthesis]

Equivalent interpretations of the DFT:

I Sampling the DTFT at ω = 2πN k

I The DTFT of periodically extended signalI Sampling the z-transform at z = e j

2πN k

I Direct implementation: O(N2)

I Fast implementation: O(N logN)

Jon Tamir EE123 Discussion Section 3

Page 5: EE123 Discussion Section 3 - University of California ...

RecapProblems

The Discrete Fourier Transform

X [k] =N−1∑n=0

x [n]W knN [Analysis]

x [n] =1

N

N−1∑n=0

X [k]W−knN [Synthesis]

Equivalent interpretations of the DFT:

I Sampling the DTFT at ω = 2πN k

I The DTFT of periodically extended signalI Sampling the z-transform at z = e j

2πN k

I Direct implementation: O(N2)

I Fast implementation: O(N logN)

Jon Tamir EE123 Discussion Section 3

Page 6: EE123 Discussion Section 3 - University of California ...

RecapProblems

The Discrete Fourier Transform

X [k] =N−1∑n=0

x [n]W knN [Analysis]

x [n] =1

N

N−1∑n=0

X [k]W−knN [Synthesis]

Equivalent interpretations of the DFT:

I Sampling the DTFT at ω = 2πN k

I The DTFT of periodically extended signalI Sampling the z-transform at z = e j

2πN k

I Direct implementation: O(N2)

I Fast implementation: O(N logN)

Jon Tamir EE123 Discussion Section 3

Page 7: EE123 Discussion Section 3 - University of California ...

RecapProblems

The Discrete Fourier Transform

Jon Tamir EE123 Discussion Section 3

Page 8: EE123 Discussion Section 3 - University of California ...

RecapProblems

Question 1

Given a 10-point sequence x [n], we wish to find equally spacedsamples of its Z transform X (z) on the contour as shown. Showhow to achieve this using the DFT.

π210

π220

Circle withradius = 1/2

���

���

����

����

���

���

������

������

������

������

������

������

���

���

������

������

������

������

Im

Re

z-plane

Jon Tamir EE123 Discussion Section 3

Page 9: EE123 Discussion Section 3 - University of California ...

RecapProblems

Solution 1

π210

π220

Circle withradius = 1/2

���

���

����

����

���

���

������

������

������

������

������

������

���

���

������

������

������

������

Im

Re

z-plane

I Want to find X (z)|z= 12e j(2πk/10+π/10)

I X (z)|z= 12e j(2πk/10+π/10) =

∑n x [n]0.5−ne−j πn

10 e−j 2πkn10

I =⇒ DFT{x [n]0.5−ne−j πn10 }

Jon Tamir EE123 Discussion Section 3

Page 10: EE123 Discussion Section 3 - University of California ...

RecapProblems

Solution 1

π210

π220

Circle withradius = 1/2

���

���

����

����

���

���

������

������

������

������

������

������

���

���

������

������

������

������

Im

Re

z-plane

I Want to find X (z)|z= 12e j(2πk/10+π/10)

I X (z)|z= 12e j(2πk/10+π/10) =

∑n x [n]0.5−ne−j πn

10 e−j 2πkn10

I =⇒ DFT{x [n]0.5−ne−j πn10 }

Jon Tamir EE123 Discussion Section 3

Page 11: EE123 Discussion Section 3 - University of California ...

RecapProblems

Solution 1

π210

π220

Circle withradius = 1/2

���

���

����

����

���

���

������

������

������

������

������

������

���

���

������

������

������

������

Im

Re

z-plane

I Want to find X (z)|z= 12e j(2πk/10+π/10)

I X (z)|z= 12e j(2πk/10+π/10) =

∑n x [n]0.5−ne−j πn

10 e−j 2πkn10

I =⇒ DFT{x [n]0.5−ne−j πn10 }

Jon Tamir EE123 Discussion Section 3

Page 12: EE123 Discussion Section 3 - University of California ...

RecapProblems

Question 2

x [n] = {−3, 5, 4,−1,−9,−6,−8, 2}

I a) Evaluate∑7

k=0(−1)kX [k]

I b) Evaluate∑7

k=0 |X [k]|2

Jon Tamir EE123 Discussion Section 3

Page 13: EE123 Discussion Section 3 - University of California ...

RecapProblems

Solution 2

I part a)

(−1)k = e−jπk = e−j 2π4k8 = W 4k

8

x [4] =1

8

7∑k=0

X [k]W 4k8

⇒7∑

k=0

(−1)kX [k] = 8x [4] = −72

I part b) By Parseval’s Theorem,∑7k=0 |X [k]|2 = 8

∑7n=0 |x [n]|2 = 1888.

Jon Tamir EE123 Discussion Section 3

Page 14: EE123 Discussion Section 3 - University of California ...

RecapProblems

Solution 2

I part a)

(−1)k = e−jπk = e−j 2π4k8 = W 4k

8

x [4] =1

8

7∑k=0

X [k]W 4k8

⇒7∑

k=0

(−1)kX [k] = 8x [4] = −72

I part b) By Parseval’s Theorem,∑7k=0 |X [k]|2 = 8

∑7n=0 |x [n]|2 = 1888.

Jon Tamir EE123 Discussion Section 3

Page 15: EE123 Discussion Section 3 - University of California ...

RecapProblems

Solution 2

I part a)

(−1)k = e−jπk = e−j 2π4k8 = W 4k

8

x [4] =1

8

7∑k=0

X [k]W 4k8

⇒7∑

k=0

(−1)kX [k] = 8x [4] = −72

I part b) By Parseval’s Theorem,∑7k=0 |X [k]|2 = 8

∑7n=0 |x [n]|2 = 1888.

Jon Tamir EE123 Discussion Section 3

Page 16: EE123 Discussion Section 3 - University of California ...

RecapProblems

Solution 2

I part a)

(−1)k = e−jπk = e−j 2π4k8 = W 4k

8

x [4] =1

8

7∑k=0

X [k]W 4k8

⇒7∑

k=0

(−1)kX [k] = 8x [4] = −72

I part b) By Parseval’s Theorem,∑7k=0 |X [k]|2 = 8

∑7n=0 |x [n]|2 = 1888.

Jon Tamir EE123 Discussion Section 3

Page 17: EE123 Discussion Section 3 - University of California ...

RecapProblems

Question 3

X [k] is the 9-point DFT of x [n]

I Given:

X [0] = −j ,X [2] = 1−j ,X [3] = 2−j ,X [5] = 3−j ,X [8] = 4−j

If possible, determine the remaining 4 samples with thefollowing assumptions:

I a) x [n] is real

I b) x [n] is conjugate symmetric

Jon Tamir EE123 Discussion Section 3

Page 18: EE123 Discussion Section 3 - University of California ...

RecapProblems

Solution 3

I a) x [n] is real, then X [k] is conjugate symmetric:

Jon Tamir EE123 Discussion Section 3

Page 19: EE123 Discussion Section 3 - University of California ...

RecapProblems

Solution 3

I a) x [n] is real, then X [k] is conjugate symmetric:

Jon Tamir EE123 Discussion Section 3

Page 20: EE123 Discussion Section 3 - University of California ...

RecapProblems

Solution 3

I a) x [n] is real, then X [k] is conjugate symmetric:

Jon Tamir EE123 Discussion Section 3

Page 21: EE123 Discussion Section 3 - University of California ...

RecapProblems

Solution 3

I a) x [n] is real, then X [k] is conjugate symmetric:

X [1] = X ∗[9−1] = 4+j ,X [4] = 3+j ,X [6] = 2+j ,X [7] = 1+j

BUT we also need X [0] = X ∗[0]. Clearly X [0] is not real, sothis first condition cannot be met.Not Possible.

I b) x [n] is conjugate symmetric, then X [k] is real. BUT this isnot the case.Not possible

Jon Tamir EE123 Discussion Section 3

Page 22: EE123 Discussion Section 3 - University of California ...

RecapProblems

Solution 3

I a) x [n] is real, then X [k] is conjugate symmetric:

X [1] = X ∗[9−1] = 4+j ,X [4] = 3+j ,X [6] = 2+j ,X [7] = 1+j

BUT we also need X [0] = X ∗[0]. Clearly X [0] is not real, sothis first condition cannot be met.Not Possible.

I b) x [n] is conjugate symmetric, then X [k] is real. BUT this isnot the case.Not possible

Jon Tamir EE123 Discussion Section 3

Page 23: EE123 Discussion Section 3 - University of California ...

RecapProblems

Question 4

Let x [n] be some length-N sequence. Let X [k] = DFT{x [n]}I Express x2[n] = DFT{X [k]} in terms of x[n]

I Hint: Try to match DFT{X [k]} with the equation

x [n] =1

N

N−1∑k=0

X [k]W−knN

Jon Tamir EE123 Discussion Section 3

Page 24: EE123 Discussion Section 3 - University of California ...

RecapProblems

Solution 4

x2[n] = DFT{X [k]}

=N−1∑k=0

X [k]W knN

=N−1∑k=0

(X [−k])NW−knN

= 8IDFT{(X [−k])N}= 8(x [−n])N

Jon Tamir EE123 Discussion Section 3

Page 25: EE123 Discussion Section 3 - University of California ...

RecapProblems

Solution 4

x2[n] = DFT{X [k]}

=N−1∑k=0

X [k]W knN

=N−1∑k=0

(X [−k])NW−knN

= 8IDFT{(X [−k])N}= 8(x [−n])N

Jon Tamir EE123 Discussion Section 3

Page 26: EE123 Discussion Section 3 - University of California ...

RecapProblems

Solution 4

x2[n] = DFT{X [k]}

=N−1∑k=0

X [k]W knN

=N−1∑k=0

(X [−k])NW−knN

= 8IDFT{(X [−k])N}= 8(x [−n])N

Jon Tamir EE123 Discussion Section 3

Page 27: EE123 Discussion Section 3 - University of California ...

RecapProblems

Solution 4

x2[n] = DFT{X [k]}

=N−1∑k=0

X [k]W knN

=N−1∑k=0

(X [−k])NW−knN

= 8IDFT{(X [−k])N}

= 8(x [−n])N

Jon Tamir EE123 Discussion Section 3

Page 28: EE123 Discussion Section 3 - University of California ...

RecapProblems

Solution 4

x2[n] = DFT{X [k]}

=N−1∑k=0

X [k]W knN

=N−1∑k=0

(X [−k])NW−knN

= 8IDFT{(X [−k])N}= 8(x [−n])N

Jon Tamir EE123 Discussion Section 3

Page 29: EE123 Discussion Section 3 - University of California ...

RecapProblems

Question 5

Let x [n] be some length-N sequence. Let X [k] = DFT{x [n]}I Express x3[k] = DFT{DFT{X [k]}} in terms of X[k]

I Express x4[n] = DFT{DFT{DFT{X [k]}}} in terms of x[n]

Jon Tamir EE123 Discussion Section 3

Page 30: EE123 Discussion Section 3 - University of California ...

RecapProblems

Solution 5

I Using the DFT properties:

x2[n] = 8(x [−n])N

x3[k] = DFT{x2[n]} = 8(X [−k])N

x4[n] = DFT{x3[n]} = 64x [n]

Jon Tamir EE123 Discussion Section 3

Page 31: EE123 Discussion Section 3 - University of California ...

RecapProblems

Solution 5 continued

I Ignoring the scaling factors:

x0[n] = DFT 0{x [n]} = x [n]

x1[k] = DFT 1{x [n]} = X [k]

x2[n] = DFT 2{x [n]} = (x [−n])N

x3[k] = DFT 3{x [n]} = (X [−k])N

x4[n] = DFT 4{x [n]} = x [n]

I The usual DFT operator is four-periodic. The nth power ofthe Fourier transform can be generalized as the fractionalFourier transform, which is used in optics.

Jon Tamir EE123 Discussion Section 3

Page 32: EE123 Discussion Section 3 - University of California ...

RecapProblems

Question 6: DCT

I The Discrete Cosine Transform (DCT) is a DFT-relatedtransform that decomposes a finite signal in terms of a sum ofcosine functions

I The DCT is often used in compression schemes, such as MP3,JPEG and MPEG.

I One of the reasons is its energy compactness

Jon Tamir EE123 Discussion Section 3

Page 33: EE123 Discussion Section 3 - University of California ...

RecapProblems

DCT Demo

I DCT Demo

Jon Tamir EE123 Discussion Section 3

Page 34: EE123 Discussion Section 3 - University of California ...

RecapProblems

Question 6: DCT

Wanting to know more why DCT performs much better thanDFT, you decide to look closer at the definition of DCT

Given that the definition of the DCT (Type 2) is

Xc [k] = 2N−1∑n=0

x [n] cos(πk(2n + 1)

2N)

Express Xc [k] in terms of X [k], the 2N-point DFT of x [n]

Jon Tamir EE123 Discussion Section 3

Page 35: EE123 Discussion Section 3 - University of California ...

RecapProblems

Solution 6: DCT

Xc [k] = 2N−1∑n=0

x [n] cos(πk(2n + 1)

2N)

=N−1∑n=0

x [n](e−j πk(2n+1)2N + e j

πk(2n+1)2N )

=N−1∑n=0

x [n]e−j 2πkn2N e−j πk

2N +N−1∑n=0

x [n]e j2πkn2N e j

πk2N

= X [k]e−j πk2N + X [−k]e j

πk2N

= X [k]e−j πk2N + X ∗[k]e j

πk2N

= 2Real(X [k]e−j πk2N )

Jon Tamir EE123 Discussion Section 3

Page 36: EE123 Discussion Section 3 - University of California ...

RecapProblems

Solution 6: DCT

Xc [k] = 2N−1∑n=0

x [n] cos(πk(2n + 1)

2N)

=N−1∑n=0

x [n](e−j πk(2n+1)2N + e j

πk(2n+1)2N )

=N−1∑n=0

x [n]e−j 2πkn2N e−j πk

2N +N−1∑n=0

x [n]e j2πkn2N e j

πk2N

= X [k]e−j πk2N + X [−k]e j

πk2N

= X [k]e−j πk2N + X ∗[k]e j

πk2N

= 2Real(X [k]e−j πk2N )

Jon Tamir EE123 Discussion Section 3

Page 37: EE123 Discussion Section 3 - University of California ...

RecapProblems

Solution 6: DCT

Xc [k] = 2N−1∑n=0

x [n] cos(πk(2n + 1)

2N)

=N−1∑n=0

x [n](e−j πk(2n+1)2N + e j

πk(2n+1)2N )

=N−1∑n=0

x [n]e−j 2πkn2N e−j πk

2N +N−1∑n=0

x [n]e j2πkn2N e j

πk2N

= X [k]e−j πk2N + X [−k]e j

πk2N

= X [k]e−j πk2N + X ∗[k]e j

πk2N

= 2Real(X [k]e−j πk2N )

Jon Tamir EE123 Discussion Section 3

Page 38: EE123 Discussion Section 3 - University of California ...

RecapProblems

Solution 6: DCT

Xc [k] = 2N−1∑n=0

x [n] cos(πk(2n + 1)

2N)

=N−1∑n=0

x [n](e−j πk(2n+1)2N + e j

πk(2n+1)2N )

=N−1∑n=0

x [n]e−j 2πkn2N e−j πk

2N +N−1∑n=0

x [n]e j2πkn2N e j

πk2N

= X [k]e−j πk2N + X [−k]e j

πk2N

= X [k]e−j πk2N + X ∗[k]e j

πk2N

= 2Real(X [k]e−j πk2N )

Jon Tamir EE123 Discussion Section 3

Page 39: EE123 Discussion Section 3 - University of California ...

RecapProblems

Solution 6: DCT

Xc [k] = 2N−1∑n=0

x [n] cos(πk(2n + 1)

2N)

=N−1∑n=0

x [n](e−j πk(2n+1)2N + e j

πk(2n+1)2N )

=N−1∑n=0

x [n]e−j 2πkn2N e−j πk

2N +N−1∑n=0

x [n]e j2πkn2N e j

πk2N

= X [k]e−j πk2N + X [−k]e j

πk2N

= X [k]e−j πk2N + X ∗[k]e j

πk2N

= 2Real(X [k]e−j πk2N )

Jon Tamir EE123 Discussion Section 3

Page 40: EE123 Discussion Section 3 - University of California ...

RecapProblems

Solution 6: DCT

Xc [k] = 2N−1∑n=0

x [n] cos(πk(2n + 1)

2N)

=N−1∑n=0

x [n](e−j πk(2n+1)2N + e j

πk(2n+1)2N )

=N−1∑n=0

x [n]e−j 2πkn2N e−j πk

2N +N−1∑n=0

x [n]e j2πkn2N e j

πk2N

= X [k]e−j πk2N + X [−k]e j

πk2N

= X [k]e−j πk2N + X ∗[k]e j

πk2N

= 2Real(X [k]e−j πk2N )

Jon Tamir EE123 Discussion Section 3

Page 41: EE123 Discussion Section 3 - University of California ...

RecapProblems

Solution 6: DCT

Key point is:

Xc [k] = X [k]e−j πk2N + X [−k]e j

πk2N

Xc [k] = e−j πk2N (X [k] + X [−k]e j

2πk2N )

xc [n] = Shift 12{x [((n))2N ] + x [((−n − 1))2N ]}

Jon Tamir EE123 Discussion Section 3

Page 42: EE123 Discussion Section 3 - University of California ...

RecapProblems

Solution 6: DCT

N

Periodicity assumed by DFT

N

Periodicity assumed by DCT

DCT symmetric extension is better because sharp transitionsrequire many coefficients to represent

Jon Tamir EE123 Discussion Section 3

Page 43: EE123 Discussion Section 3 - University of California ...

RecapProblems

FFT Demo

I FFT Demo

Jon Tamir EE123 Discussion Section 3