Dynamic&p t-logic

45
Dynamic and Pass- Transistor Logic Prof. Vojin G. Oklobdzija References (used for creation of the presentation material): 1. Masaki, “Deep-Submicron CMOS Warms Up to High-Speed Logic”, IEEE Circuits and Devices Magazine, November 1992. 2. Krambeck, C.M. Lee, H.S. Law, “High-Speed Compact Circuits with CMOS”, IEEE Journal of Solid-State Circuits, Vol. SC-13, No 3, June 1982. 3. V.G. Oklobdzija, R.K. Montoye, “Design-Performance Trade-Offs in CMOS- Domino Logic”, IEEE Journal of Solid-State Circuits, Vol. SC-21, No 2, April 1986.

Transcript of Dynamic&p t-logic

Dynamic and Pass-Transistor Logic

Prof. Vojin G. Oklobdzija

References (used for creation of the presentation material):1. Masaki, “Deep-Submicron CMOS Warms Up to High-Speed Logic”, IEEE

Circuits and Devices Magazine, November 1992.

2. Krambeck, C.M. Lee, H.S. Law, “High-Speed Compact Circuits with CMOS”, IEEE Journal of Solid-State Circuits, Vol. SC-13, No 3, June 1982.

3. V.G. Oklobdzija, R.K. Montoye, “Design-Performance Trade-Offs in CMOS-Domino Logic”, IEEE Journal of Solid-State Circuits, Vol. SC-21, No 2, April 1986.

Prof. V.G. Oklobdzija Advanced Digital Integrated Circuits 2

References:

4. Goncalves, H.J. DeMan, “NORA: A Racefree Dynamic CMOS Technique for Pipelined Logic Structures”, IEEE Journal of Solid-State Circuits, Vol. SC-18, No 3, June 1983.

5. L.G. Heller, et al, “Cascode Voltage Switch Logic: A Differential CMOS Logic Family”, in 1984 Digest of Technical Papers, IEEE International Solid-State Circuits Conference, February 1984.

6. L.C.M.G. Pfennings, et al, “Differential Split-Level CMOS Logic for Subnanosecond Speeds”, IEEE Journal of Solid-State Circuits, Vol. SC-20, No 5, October 1985.

7. K.M. Chu, D.L. Pulfrey, "A Comparison of CMOS Circuit Techniques: Differential Cascode Voltage Switch Logic Versus Conventional Logic", IEEE Jouirnal of Solid-State Circuits, Vol. SC-22, No.4, August 1987.

Prof. V.G. Oklobdzija Advanced Digital Integrated Circuits 3

References:

Pass-Transistor Logic:8. S. Whitaker, “Pass-transistor networks optimize n-MOS logic”,

Electronics, September 1983. 9. K. Yano, et al, “A 3.8-ns CMOS 16x16-b Multiplier Using

Complementary Pass-Transistor Logic”, IEEE Journal of Solid-State Circuits, Vol. 25, No 2, April 1990.

10. K. Yano, et al, “Lean Integration: Achieving a Quantum Leap in Performance and Cost of Logic LSIs", Proceedings of the Custom Integrated Circuits Conference, San Diego, California, May 1-4, 1994.

11. M. Suzuki, et al, “A 1.5ns 32b CMOS ALU in Double Pass-Transistor Logic”, Journal of Solid-State Circuits, Vol. 28. No 11, November 1993.

12. N. Ohkubo, et al, “A 4.4-ns CMOS 54x54-b Multiplier Using Pass-transistor Multiplexer”, Proceedings of the Custom Integrated Circuits Conference, San Diego, California, May 1-4, 1994.

Prof. V.G. Oklobdzija Advanced Digital Integrated Circuits 4

References:

13. V. G. Oklobdzija and B. Duchêne, “Pass-Transistor Dual Value Logic For Low-Power CMOS,” Proceedings of the 1995 International Symposium on VLSI Technology, Taipei, Taiwan, May 31-June 2nd, 1995.

14. F.S. Lai, W. Hwang, “Differential Cascode Voltage Switch with the Pass-Gate (DCVSPG) Logic Tree for High Performance CMOS Digital Systems”, Proceedings of the 1993 International Symposium on VLSI Technology, Taipei, Taiwan, June 2-4, 1995

15. A. Parameswar, H. Hara, T. Sakurai, “A Swing Restored Pass-Transistor Logic Based Multiply and Accumulate Circuit for Multimedia Applications”, Proceedings of the Custom Integrated Circuits Conference, San Diego, California, May 1-4, 1994.

16. T. Fuse, et al, “0.5V SOI CMOS Pass-Gate Logic”, Digest of Technical Papers, 1996 IEEE International Solid-State Circuits Conference, San Francisco February 8, 1996.

Prof. V.G. Oklobdzija Advanced Digital Integrated Circuits 5

Dynamic CMOS Logic

Prof. V.G. Oklobdzija Advanced Digital Integrated Circuits 6

(a) Dynamic CMOS Latch (a), Dynamic CMOS Master-Slave Latch (b)

Prof. V.G. Oklobdzija Advanced Digital Integrated Circuits 7

Dynamic Manchester Carry Chain

Prof. V.G. Oklobdzija Advanced Digital Integrated Circuits 8

Radiation induced charge

Prof. V.G. Oklobdzija Advanced Digital Integrated Circuits 9

Accidental charge caused by capacitive or inductive coupling between the signal lines Y and Z. (a) Prevention by inserting and inverter between the affected line and the pass-transistor switch (b)

Prof. V.G. Oklobdzija Advanced Digital Integrated Circuits 10

CMOS Domino Logic

CMOS logic block (a), Domino Logic (b)

Prof. V.G. Oklobdzija Advanced Digital Integrated Circuits 11

CMOS Domino Logic

Prof. V.G. Oklobdzija Advanced Digital Integrated Circuits 12

CMOS Domino Logic Operation

0 1

0 1

0 1

0 1

1

1

1

1

01

Dominos

Prof. V.G. Oklobdzija Advanced Digital Integrated Circuits 13

CMOS Domino Logic: Charge Re-Distribution

Prof. V.G. Oklobdzija Advanced Digital Integrated Circuits 14

Variations of CMOS Domino Logic:NORA Logic

Prof. V.G. Oklobdzija Advanced Digital Integrated Circuits 15

CVS and DCVS LogicIBM

(Heller et al. 1984)

Prof. V.G. Oklobdzija Advanced Digital Integrated Circuits 16

Cascode Voltage Switch Logic CVSIBM

Prof. V.G. Oklobdzija Advanced Digital Integrated Circuits 17

DCVS Logic (IBM)

Prof. V.G. Oklobdzija Advanced Digital Integrated Circuits 18

DCVS Logic (IBM)

Differential Cascode Voltage Switch Logic: (a) Static DCVLS (b) Dynamic DCVSL

(a) (b)

Prof. V.G. Oklobdzija Advanced Digital Integrated Circuits 19

DCVS Logic vs CMOS

DCVS Logic consisting of two shared nMOS transistor switching networks

CMOS consisting of two separate: nMOS and pMOS transistor switching networks

Prof. V.G. Oklobdzija Advanced Digital Integrated Circuits 20

Transistor sharing in DCVS Logic: Implementation of 3-input XOR function

A A A A

B BB B

C C

Q Q

Q = a ⊕ b ⊕ c

Prof. V.G. Oklobdzija Advanced Digital Integrated Circuits 21

Switching Asymmetry in DCVSL

This asymmetry causes current spikes and increased power consumption !

Prof. V.G. Oklobdzija Advanced Digital Integrated Circuits 22

Pass-Transistor Logic

Prof. V.G. Oklobdzija Advanced Digital Integrated Circuits 23

Pass-Transistor Logic

(a) XOR function implemented with pass-transistor circuit, (b) Karnaough map showing derivation of the XOR function

(a) (b)

Prof. V.G. Oklobdzija Advanced Digital Integrated Circuits 24

Pass-Transistor Logic

General topology of pass-transistor function generator

Karnaough map of 16 possible functions that can be realized

Prof. V.G. Oklobdzija Advanced Digital Integrated Circuits 25

Pass-Transistor Logic

Function generator implemented with pass-transistor logic

Prof. V.G. Oklobdzija Advanced Digital Integrated Circuits 26

Pass-Transistor Logic

Voltage drop does not exceed Vth when there are multiple transistors in the path

Threshold voltage drop at the output of the pass-transistor gate

Prof. V.G. Oklobdzija Advanced Digital Integrated Circuits 27

Pass-Transistor Logic

Elimination of the threshold voltage drop by: (a) pairing nMOS transistor with a pMOS (b) using a swing-restoring inverter

Prof. V.G. Oklobdzija Advanced Digital Integrated Circuits 28

Complementary Pass-Transistor Logic (CPL)

Prof. V.G. Oklobdzija Advanced Digital Integrated Circuits 29

Basic logic functions in CPL A ABB

B

B

A ABB

B

B

A B

A B

A A

B

B

A A

A ABB

C

C

A B

A C B C

Prof. V.G. Oklobdzija Advanced Digital Integrated Circuits 30

CPL Logic

AA

S S

A A

B

B

C

C

SS(a) (b)

B

B

Q Qb

n1 n2

n4n3

CPL provides an efficient implementation of XOR function

XOR gate

Sum circuit

Prof. V.G. Oklobdzija Advanced Digital Integrated Circuits 31

CPL Inverter

Prof. V.G. Oklobdzija Advanced Digital Integrated Circuits 32

Double Pass-Transistor Logic (DPL):

A

B

A B B A

VDD

B

A

OO

A B

A

B

A B BA

B

A

OO

B

A

B A B A

B

A

A B

XOR/XNOR

AND/NAND

Prof. V.G. Oklobdzija Advanced Digital Integrated Circuits 33

Double Pass-Transistor Logic (DPL):

XOR

One bit full-adder: Sum circuit

Prof. V.G. Oklobdzija Advanced Digital Integrated Circuits 34

Double Pass-Transistor Logic (DPL):

The critical path traverses two transistors only (not counting the buffer)

DPL Full Adder

Prof. V.G. Oklobdzija Advanced Digital Integrated Circuits 35

Formal Method for CPL Logic DerivationMarkovic et al. 2000

(a) Cover the Karnaugh-map with largest possible cubes (overlapping allowed)

(b) Express the value of the function in each cube in terms of input signals

(c) Assign one branch of transistor(s) to each of the cubes and connect all the branches to one common node, which is the output of NMOS pass-transistor network

Prof. V.G. Oklobdzija Advanced Digital Integrated Circuits 36

Formal Method for P-T Logic Derivation

Complementary function can be implemented from the same circuit structure by applying complementarity principle:

Complementarity Principle: Using the same circuit topology, with pass signals inverted, complementary logic function is constructed in CPL.

By applying duality principle, a dual function is synthesized:

Duality Principle: Using the same circuit topology, with gate signals inverted, dual logic function is constructed.

Following pairs of basic functions are dual:AND-OR (and vice-versa)

NAND-NOR (and vice-versa)XOR and XNOR are self-dual (dual to itself)

Prof. V.G. Oklobdzija Advanced Digital Integrated Circuits 37

Derivation of P-T Logic

0 0

0 1

0 1

0

1A

B

L 1 L 2

B

B

AND

A B

L 2 L 1

1 1

1 0

0 1

0

1A

B

L 1 L 2

1 1

1 0

0 1

0

1

A

B

L 1 L 2

B

B

NAND (OR)

A B

L 2 L 1

B

B

OR

A B

L 1 L 2

B

A A

B

A

B

A

B

AND NAND

OR OR

Copmplementarity: AND NAND; Duality: AND OR

Prof. V.G. Oklobdzija Advanced Digital Integrated Circuits 38

Derivation of CPL Logic

Duality: AND ORNAND NOR

0 0

0 1

BA 0 1

0

1A

B

L 1 L 2

(a)

B

B

AND

A A

B

B

OR NOR

A A

(c)

NAND

(b)

B B BB

L 2 L 1

Complementarity: AND NAND

Prof. V.G. Oklobdzija Advanced Digital Integrated Circuits 39

Derivation of CPL Logic

(a) XOR function Karnaugh map, (b) XOR/XNOR circuit

0 1

1 0

BA 0 1

0

1A

B

L 1 L 2

(a)

B

B

XOR

A A

XNOR

(b)

A A

L 2 L 1

Prof. V.G. Oklobdzija Advanced Digital Integrated Circuits 40

Synthesis of three-input CPL logic

0 0

0 0

BC

A 00 01

0

1A

C

L 3

L 2

(a)

A

B

AND

C

(b)

11 10

0 0

1 0

L 1

NAND

C

A

B

B

A B A B

L 3L 2L 1

(a) AND function Karnaugh map, (b) AND/NAND circuit

Prof. V.G. Oklobdzija Advanced Digital Integrated Circuits 41

Double Pass-Transistor Logic (DPL): Synthesis Rules

1. Two NMOS branches can not be overlapped covering logic 1s. Similarly, two PMOS branches can not be overlapped covering logic 0s.

2. Pass signals are expressed in terms of input signals or supply. Every input vector has to be covered with exactly two branches.

3. At any time, excluding transitions, exactly two transistor branches are active (any of the pairs NMOS/PMOS, NMOS/NMOS and PMOS/PMOS are possible), i.e. they both provide output current.

Prof. V.G. Oklobdzija Advanced Digital Integrated Circuits 42

Double Pass-Transistor Logic (DPL): Synthesis Rules

Complementarity Principle: Complementary logic function in DPL is generated after the following modifications:

• Exchange PMOS and NMOS devices. Invert all pass and gate signals

Duality Principle: Dual logic function in DPL is generated

when:

• PMOS and NMOS devices are exchanged, and VDD and GND signals are exchanged.

Prof. V.G. Oklobdzija Advanced Digital Integrated Circuits 43

DPL Synthesis:

0 0

0 1

BA 0 1

0

1A

B

L 1 L 2

(a)

A B

B A

(b)

L

L

3

4

BA

GND GND

AND

A B

B A

BA

NAND

+V DD +V DD

L 2L 4

L 1L 3

(a) AND function Karnaugh map (b) AND/NAND circuit

Prof. V.G. Oklobdzija Advanced Digital Integrated Circuits 44

DPL Synthesis: OR/NOR circuit

A B

BA

B A

OR

A B

B A

BA

GND GND

NOR

+V DD +V DD

Prof. V.G. Oklobdzija Advanced Digital Integrated Circuits 45

DPL Synthesis:

0 0

0 1

BA 0 1

0

1A

B

L 1 L 2

(a)

A B

B A

(b)

L

L

3

4

BA

GND GND

AND

A B

B A

BA

NAND

+V DD +V DD

L 2L 4

L 1L 3

AND function Karnaugh map AND/NAND circuit

A B

BA

B A

OR

A B

B A

BA

GND GND

NOR

+V DD +V DD Duality Principle: PMOS and NMOS devices are exchanged, and VDD and GND signals are exchanged:AND ORNAND NOR

Complementarity Principle: Exchange PMOS and NMOS devices. Invert all pass and gate signalsAND NAND