dynamical Asteroseismologycourse.physastro.iastate.edu/astro580/Asteroseismology-A580S20.pdf ·...

19
Asteroseismology Steve Kawaler Iowa State University observed pulsations operate on the dynamical time scale accessible on convenient time scale probe global and local structure periods change on ‘evolutionary’ time scale (thermal or nuclear) - depend on global properties amplitudes change on ~ ‘local’ thermal time scale 2 dynamical stability “stable” configuration represents a stable mean configuration on short time scale, oscillations occur, but the mean value is fixed on longer time scales simple example: a pendulum (single mode) most likely position - extrema mean position is at zero displacement with no damping would oscillate forever more complex example: a vibrating string multiple modes with different frequencies enumerated by number of nodes 3 a more complex example: a star multiple oscillation modes radial modes - enumerated by number of nodes between center and surface non-radial modes - nodes also across surface of constant radius modes frequencies determined by solution of the appropriate wave equation 4

Transcript of dynamical Asteroseismologycourse.physastro.iastate.edu/astro580/Asteroseismology-A580S20.pdf ·...

Page 1: dynamical Asteroseismologycourse.physastro.iastate.edu/astro580/Asteroseismology-A580S20.pdf · Asteroseismology Steve Kawaler Iowa State University observed pulsations •operate

Asteroseismology

Steve KawalerIowa State University

observed pulsations• operate on the dynamical time scale

• accessible on convenient time scale

• probe global and local structure

• periods change on ‘evolutionary’ time scale (thermal or nuclear) - depend on global properties

• amplitudes change on ~ ‘local’ thermal time scale

2

dynamical stability• “stable” configuration represents a stable

mean configuration

• on short time scale, oscillations occur, but the mean value is fixed on longer time scales

• simple example: a pendulum (single mode)• most likely position - extrema• mean position is at zero displacement• with no damping would oscillate forever

• more complex example: a vibrating string• multiple modes with different frequencies• enumerated by number of nodes

3

a more complex example: a star

• multiple oscillation modes

• radial modes - enumerated by number of nodes between center and surface

• non-radial modes - nodes also across surface of constant radius

• modes frequencies determined by solution of the appropriate wave equation

4

Page 2: dynamical Asteroseismologycourse.physastro.iastate.edu/astro580/Asteroseismology-A580S20.pdf · Asteroseismology Steve Kawaler Iowa State University observed pulsations •operate

stability, damping, and driving

• zero energy change: constant amplitude oscillation

• energy loss via pulsation: oscillation amplitude drops with time

• if net energy input: amplitude increases with time (if properly phased)

5

Okay, start your engines...•PG 1159: light curve

• what kind of star might this be?

• what kind of star can this not possibly be?

• what about the amplitude over the run?

•PG 1336 light curve

• huh? what time scale(s) are involved

• what kind of star (or stars)?

• tell us everything you can about this!

6

Multimode pulsation

• Oscillations at “normal mode” frequencies

• mode = specific eigensolution of equations of motion within the confines of a stellar structure

• normal mode frequencies parallel structural properties

• simple example: radial fundamental is one mode, 1st overtone (a node within) is another mode

7

towards the wave equation I • continuity equation:

• equation of motion (HSE when RHS=0):

• perturb r, P, and ρ:

• and assume δx << x so we can linearize

8

@2r

@t2= �GMr

r2� 4⇡r2 @P

@Mr

@Mr

@r= 4⇡r2⇢

x(t, Mr) = xo(Mr)1 +

�x(t, Mr)xo(Mr)

Page 3: dynamical Asteroseismologycourse.physastro.iastate.edu/astro580/Asteroseismology-A580S20.pdf · Asteroseismology Steve Kawaler Iowa State University observed pulsations •operate

• replace x with x+δx in the two equations, subtract off the equilibrium equations, and keep only 1st-order terms to find:

• linearized continuity equation

• linearized equation of motion

9

�⇢

⇢o= �3

�r

ro� ro

@(�r/ro)@ro

⇢orod2�r/ro

dt2= �

✓4�r

ro+

�P

Po

◆@Po

@ro� Po

@(�P/Po)@ro

towards the wave equation II • assume adiabatic relationship between P and ρ

• combine continuity and equation of motion:

• assume exponential (complex) time dependence

10

towards the wave equation III

�r(t, ro)ro

=�r(ro)

roei�t = ⌘(ro)ei�t

�1 =✓

@ lnP

@ ln ⇢

ad

so�P

Po= �1

�⇢

⇢o

@2⌘

@t2=

1⇢r4

@

@r

✓�1Pr4 @⌘

@r

◆+ ⌘

1r⇢

⇢@

@r[(3�1 � 4) P ]

• substitute to yield the Linear Adiabatic Wave Equation (LAWE):

• This is a wave equation: L(η) = σ2η in the displacement η.

• the eigenvalue σ2 corresponds to the oscillation frequency

11

towards the wave equation IV

L(⌘) = � 1⇢r4

@

@r

✓�1Pr4 @⌘

@r

◆� ⌘

1r⇢

⇢@

@r[(3�1 � 4) P ]

�= �2⌘

the LAWE: a simple case• assume Γ1 and η both constant throughout

the star (homologous motion)

• LAWE becomes

• now, assume a constant density, and use HSE to replace the pressure derivative to find

• look familiar?!

12

�⌘1⇢r

(3�1 � 4)@P

@r= �2⌘

⇧ =2⇡

�=

p⇡q

G⇢̄ (�1 � 43 )

Page 4: dynamical Asteroseismologycourse.physastro.iastate.edu/astro580/Asteroseismology-A580S20.pdf · Asteroseismology Steve Kawaler Iowa State University observed pulsations •operate

the LAWE: standing wave solutions

• boundary conditions:

• center: zero displacement (η = 0)

• surface: perfect wave reflection [d(δP/P)/dr = 0]

• asymptotic analysis:

• clever change of variables renders LAWE as:

• recognizing the sound speed when we see it:

13

d2w(r)dr2

+

�2⇢

�1P� �(r)

�w(r) = 0

d2w(r)dr2

+�2

c2s

� �(r)�

w(r) = 0

the LAWE: asymptotic solution

• represent the eigenfunction as: where kr is the (local) radial wavenumber and varies slowly with radius so, locally:

• for a standing wave, we need an integral number of half-wavelengths between inner and outer reflection points:

14

d2w(r)dr2

+�2

c2s

� �(r)�

w(r) = 0

w(r) / eikrr

k2r =

�2

c2s(r)

� �(r)

Z b

akr dr = (n + 1)⇡

the LAWE: asymptotic solution

• if then

• i.e. high-frequency (high overtone, n) radial modes are equally spaced in frequency, with

σo2 ≈ G<ρ>

15

Z b

akr dr = (n + 1)⇡

�2

c2s

� �

� = (n + 1)⇡

"Z b

a

dr

cs

#�1

= (n + 1) �o

k2r =

�2

c2s(r)

� �(r)where

Nonradial oscillations• preserve angular derivatives in LAWE

• similar operator structure for radial part (as before), now along with angular part

where the quantity A is:

A < 0 when radiative A > 0 when convective

(the ‘Schwarzschild A’)

16

A =d ln ⇢

dr� 1

�1

d lnP

dr=

1�P

�T

�⇢[r�rad]

d2�rdt2

= �r✓

P 0

⇢+ 0

◆+ A

�1P

⇢r · �r

Page 5: dynamical Asteroseismologycourse.physastro.iastate.edu/astro580/Asteroseismology-A580S20.pdf · Asteroseismology Steve Kawaler Iowa State University observed pulsations •operate

Decompose into Spherical Harmonics

• position perturbation decomposition

• produces (after some work):

where the operator L2 (the Legendrian) is:

• which has eigenstates Ylm such that:

17

�r = �r er + r�✓ e✓ + r sin ✓�� e�

r · �r =1r2

@(r2�r)@r

� 1�2

r2L2

✓P 0

⇢+ 0

L2 = � 1sin ✓

@

@✓

✓sin ✓

@

@✓

◆� 1

sin2 ✓

@2

@�2

L2Y ml (✓, �) = l(l + 1)Y m

l (✓, �)

l=1, m=0 l=1, m=1

i=70

l=3, m=0 l=3, m=1 l=3, m=3

Spherical Harmonics.... courtesy asteroseismology.org (Travis Metcafe)

• now we have

• expanding into components:

using Spherical Harmonics19

r · �r =1r2

@(r2�r)@r

� l(l + 1)�2r2

✓P 0

⇢+ 0

r2 d⌘t

dr=

1 +

Ag

�2

�r⌘r +

(�Ag)

r

g� 1

�r⌘t

r2 d⌘r

dr=

gr

c2s

� 2�

r⌘r + r2 l(l + 1)r2

1� �2r2

c2s

1l(l + 1)

�r⌘t

frequency-2

another frequency2

• so:

• where we’ve defined 2 “structural” frequencies

• the acoustic (Lamb) frequency Sl :

• the Brunt-Väisälä (buoyancy) frequency N:

the two characteristic frequencies20

r2 d⌘r

dr=

gl(l + 1)

S2l

� 2r

�⌘r + l(l + 1)

1� �2

S2l

�r⌘t

r2 d⌘t

dr=

1� N2

�2

�r⌘r +

N2 r

g� 1

�r⌘t

S2l =

l(l + 1)r2

c2s

N2 = �Ag = �g

d ln ⇢

dr� 1

�1

d lnP

dr

Page 6: dynamical Asteroseismologycourse.physastro.iastate.edu/astro580/Asteroseismology-A580S20.pdf · Asteroseismology Steve Kawaler Iowa State University observed pulsations •operate

page

Propagation diagram, ZAMS solar model21

Sl2, l=1

N2

CZbase

NRP dispersion relation• identify the horizontal wave number(s)

• allows the wave equation(s) to reduce to a local dispersion relation, as with the radial case, to provide relationship between kr and σ:

22

k2t =

l(l + 1)r2

=S2

l

c2s

k2r =

1�2c2

s

(�2 �N2)(�2 � S2l )

asymptotic analysis

• kr2 > 0 (kr real) when

• σ2 > N2, Sl2 - or - σ2 < N2, Sl2

• kr real means oscillatory eigenfunctions

• kr2 < 0 (kr imaginary) when

• Sl2 > σ2 > N2 or Sl2 < σ2 < N2

• kr real means evanescent (exponentially decreasing or increasing) eigenfunctions

23

k2r =

1�2c2

s

(�2 �N2)(�2 � S2l )

page

Propagation diagram, ZAMS solar model24

Sl2, l=1

N2

CZbase

l=1 n=1l=1 n=2l=1 n=3l=1 n=4

Page 7: dynamical Asteroseismologycourse.physastro.iastate.edu/astro580/Asteroseismology-A580S20.pdf · Asteroseismology Steve Kawaler Iowa State University observed pulsations •operate

page 25

Sl2, l=1

N2

CZbase

l=1 n=1l=1 n=2l=1 n=3l=1 n=4

Propagation diagram, ZAMS solar model

evanescentzonesin gray

page 26

Sl2, l=1

N2

CZbase

l=1 n=1l=1 n=2l=1 n=3l=1 n=4

evanescentzonesin gray

Propagation diagram, ZAMS solar model

“low” σoscillatory

zonesin green

“high” σoscillatory

zonesin pink

the NRP LAWE: asymptotic solutions

• again, integrate dispersion relation over propagation regions:

• two classes of solutions:

• σ2 > N2, Sl2:

• “p-modes”; pressure as the restoring force

• σ2 < N2, Sl2:

• “g-modes”: buoyancy as the restoring force

27

k2r =

1�2c2

s

(�2 �N2)(�2 � S2l )

Z b

akr dr = (n + 1)⇡ where

�nl = (n + l/2)�o ; �o =Z b

a

dr

cs

⇧nl = n⇧op

l(l + 1); ⇧o = 2⇡2

"Z b

a

N

rdr

#�1

page 28

Sl2, l=1

N2

CZbase

l=1 n=1l=1 n=2l=1 n=3l=1 n=4

evanescentzonesin gray

Propagation diagram, ZAMS solar model

“low” σoscillatory

zonesin green

“high” σoscillatory

zonesin pink

l=1 n=1l=1 n=2l=1 n=3l=1 n=4

Page 8: dynamical Asteroseismologycourse.physastro.iastate.edu/astro580/Asteroseismology-A580S20.pdf · Asteroseismology Steve Kawaler Iowa State University observed pulsations •operate

page 29 page

Pulsation PeriodsPeriod of ‘radial fundamental’ ~ tff

g-modes p-modes

Periods Π > tff Π < tffrestoring force buoyancy pressure

asymptotic behavior

Π ∝ Πo x n σ ∝ σo x n

examples white dwarfs Cepheids,the Sun

p-modes: ~ equally spaced in frequency31

n n+1 n+2 n+3 n+4 n+5 n+6n-1n-2

......frequency

�nl = (n + l/2)�o ; �o =Z b

a

dr

cs

l l l l l l l l l

n-2l+1

n-1l+1

nl+1

n+1l+1

n+2l+1

n+3l+1

n+4l+1

n+5l+1

• if modes of different l present, observed spacing ~ σo / 2

p. 32

20 parts per million!

Solar Oscillations: Full-disk photometry Frohlich et al. 1997: SOHO/VIRGO

1 hr 10 min

5 min

Page 9: dynamical Asteroseismologycourse.physastro.iastate.edu/astro580/Asteroseismology-A580S20.pdf · Asteroseismology Steve Kawaler Iowa State University observed pulsations •operate

p.Solar Oscillations: Full-disk photometry Frohlich et al. 1997: SOHO/VIRGO

33

20 parts per million!

1 hr 10 min

5 min

p. 34

How to observe all these low amplitude modes?

have your friends buy a $600,000,000 photometer!

p.

16 Cyg A and B (Metcalfe et al. 2012)35 p.

asteroseismic radius determination (i.e. Chaplin et al. 2011)

36

• νmax scales with acoustic cutoff frequency ~ gTe-1/2

• Δν measures mean density:�

��

���

�2

��

M

M�

� �R

R�

��3

��max

�max,�

��

�M

M�

� �R

R�

��2 �Te�

Te�,�

��0.5

Page 10: dynamical Asteroseismologycourse.physastro.iastate.edu/astro580/Asteroseismology-A580S20.pdf · Asteroseismology Steve Kawaler Iowa State University observed pulsations •operate

p.

Kepler 93b (Ballard et al. 2014)

37 p.

Kepler 93b (Ballard et al. 2014)

38

p. 39

Kepler 93b (Ballard et al. 2014)

g-modes: ~ equally spaced in period40

n n+1 n+2 n+3 n+4 n+5 n+6n-1n-2

......Period

n n+1 n+2 n+3 n+4 n+5 n+6n-1n-2

.........

...Period

l=1

l=2

⇧nl = n⇧op

l(l + 1); ⇧o = 2⇡2

"Z b

a

N

rdr

#�1

• spacing depends on l

Page 11: dynamical Asteroseismologycourse.physastro.iastate.edu/astro580/Asteroseismology-A580S20.pdf · Asteroseismology Steve Kawaler Iowa State University observed pulsations •operate

PG 1159-035: a g-mode pulsator

P P-390

390 0

424 34 ?

451 61 3x20.3

495 105 5x21.0

516 126 6x21.0

539 149 7x21.3

645 255 12x21.3

832 442 21x21.0

an example: hot white dwarf PG 1159-035 (Corsico et al. [WET] 2008)

in white dwarfs: Πodepends on total stellar mass

PG 1159 as an example(Winget et al. 1991)

Rotational splitting of nonradial oscillations (uniform, slow rotation)

equal frequency spacing: triplets (l=1), quintuplets (l=2) etc.

Page 12: dynamical Asteroseismologycourse.physastro.iastate.edu/astro580/Asteroseismology-A580S20.pdf · Asteroseismology Steve Kawaler Iowa State University observed pulsations •operate

page

Pulsating stars in the HR diagram

from J. Christensen-Dalsgaard

“Solar-like” oscillations• globally stable (damped) but constantly excited

• damping time τ generally ~ days

• continuously re-excited by turbulence

• frequencies locked to normal modes of star

• excited mode periods ~ minutes

• broad mode selection, low amplitude

• (integrated) velocity amplitude < meters / second

• photometric amplitude ~ parts per million

Consequences of stochasitic excitation

• lots of modes present . . . but

• coherence time of (only) days lowers peak amplitudes• reduces detectability

• phase instability broadens FT peaks• Lorentzian envelope

• reduces frequency accuracy

• confuses mode identification and rotational splitting effects

from J. C.-D.

Stochastically excited modeheat-engine mode

1/(observing time)

1/lifetime

Observational Differences

Page 13: dynamical Asteroseismologycourse.physastro.iastate.edu/astro580/Asteroseismology-A580S20.pdf · Asteroseismology Steve Kawaler Iowa State University observed pulsations •operate

1980 1990 2000 2010 2020

0.00

0.20

0.40

0.60

0.80

1.00T = 5d

1980 1990 2000 2010 2020

T = 10d

1980 1990 2000 2010 2020

T = 30d

coherent pulsators: frequency precision ~ 1/T

1980 1990 2000 2010 2020

0.00

0.20

0.40

0.60

0.80

1.00T = 5d

1980 1990 2000 2010 2020

T = 10d

1980 1990 2000 2010 2020

T = 30d

0.00

0.20

0.40

0.60

0.80

1.00T = 5d T = 10d T = 30d

0.00

0.20

0.40

0.60

0.80

1.00T = 5d T = 10d T = 30d

stochastic pulsators - freq. precision poorer than 1/T

Asymptotics of low-degree p modes

Large frequency separation:

Frequency separations:

Small frequency separations

Page 14: dynamical Asteroseismologycourse.physastro.iastate.edu/astro580/Asteroseismology-A580S20.pdf · Asteroseismology Steve Kawaler Iowa State University observed pulsations •operate

Asteroseismic HR diagram

from J. Christensen-Dalsgaard

A Search for Habitable Planets

Borucki et al. 2009 -

Kepler’s Optical Phase Curve of the Exoplanet HAT-P-7b

HAT-P7 asteroseismology HAT-P7 asteroseismology

1.40 Mo

1.45 Mo

Page 15: dynamical Asteroseismologycourse.physastro.iastate.edu/astro580/Asteroseismology-A580S20.pdf · Asteroseismology Steve Kawaler Iowa State University observed pulsations •operate

Asteroseismic HR diagram

from J. Christensen-DalsgaardSunα Cen A

HAT-P-7

HAT-P7 asteroseismology

spectroscopyPal et al. 2008

M=1.40±0.02

t = 1.6±0.4 Gyr

r = 1.94±0.05 Rsun

Xc=0.19

quick seismic fitISUEVO

Solar-like pulsators: KIC 6603624 Chaplin et al. 2010

Solar-like pulsators: KIC 3656476 Chaplin et al. 2010

Page 16: dynamical Asteroseismologycourse.physastro.iastate.edu/astro580/Asteroseismology-A580S20.pdf · Asteroseismology Steve Kawaler Iowa State University observed pulsations •operate

Solar-like pulsators: KIC 11026764 Chaplin et al. 2010

Solar-like - FTs

Sunα Cen A

HAT-P-7

Asteroseismic HR diagram

KIC 11026764 is post-MS!

p.oscillations beyond the MS w/ Kepler(Chaplin & Miglio 2013)

64

Page 17: dynamical Asteroseismologycourse.physastro.iastate.edu/astro580/Asteroseismology-A580S20.pdf · Asteroseismology Steve Kawaler Iowa State University observed pulsations •operate

p.Solar-like oscillations w/ Kepler(Chaplin & Miglio 2013)

65

MS

MS (16 Cyg A)

Subgiant

Subgiant

Base of RGB

500 1000 2000 3000 4000 uHz

p.Solar-like oscillations w/ Kepler(Chaplin & Miglio 2013)

66

MS

MS (16 Cyg A)

Subgiant

Subgiant

Base of RGB

500 1000 2000 3000 4000 uHz

p. 67

First-ascent RGB

First-ascent RGB

First-ascent RGB

Red Clump

20 40 60 80 100 uHz

oscillations beyond the MS w/ Kepler(Chaplin & Miglio 2013)

p.

scaling relations MS to RGB68

R/Rsun log g Δν [uHz] νmax

MS 1 4.44 135 3300

RGB base 5 3.04 12.1 140

RGB top 20 1.84 1.5 9 < 1/d1/wk

Page 18: dynamical Asteroseismologycourse.physastro.iastate.edu/astro580/Asteroseismology-A580S20.pdf · Asteroseismology Steve Kawaler Iowa State University observed pulsations •operate

p. 69

multiplel=1 modesper order?!

Bedding et al. (2010) Ensemble asteroseismology of solar-type stars with Kepler

Chaplin et al. 2011 (Science, today!)

• determination of Δν and νmax for ~ 500 solar-type stars

• νmax scales with acoustic cutoff frequency ~ gTe-1/2

• Δν measures mean density:�

��

���

�2

��

M

M�

� �R

R�

��3

��max

�max,�

��

�M

M�

� �R

R�

��2 �Te�

Te�,�

��0.5

Chaplin et al., Science, 7 April 2011 Chaplin et al., Science, 7 April 2011

Page 19: dynamical Asteroseismologycourse.physastro.iastate.edu/astro580/Asteroseismology-A580S20.pdf · Asteroseismology Steve Kawaler Iowa State University observed pulsations •operate

• Δν measures mean density:

• νmax scales with acoustic cutoff frequency ~ gTe-1/2

• then one can determine M and R:

• and, with Teff from multicolor photometry, one gets L

���

���

�2

��

M

M�

� �R

R�

��3

��max

�max,�

��

�M

M�

� �R

R�

��2 �Te�

Te�,�

��0.5

Chaplin et al., Science, 7 April 2011

R

R��

��max

�max,�

� ���

���

��2 �Te�

Te�,�

�0.5

M

M��

��max

�max,�

�3 ���

���

��4 �Te�

Te�,�

�1.5

Chaplin et al., Science, 7 April 2011