Dynamic Modelling and Optimisation of Carbon Management ......7.5.5 Set 5 – Investigation of...

70
Dynamic Modelling and Optimisation of Carbon Management Strategies in Gold Processing Pornsawan Jongpaiboonkit B.E. (Hons), B.Com. University of Western Australia This thesis is presented for the degree of Doctor of Philosophy School of Engineering AJ Parker CRC for Hydrometallurgy Murdoch University April 2003

Transcript of Dynamic Modelling and Optimisation of Carbon Management ......7.5.5 Set 5 – Investigation of...

Page 1: Dynamic Modelling and Optimisation of Carbon Management ......7.5.5 Set 5 – Investigation of adding fresh carbon to Tanks 1, 3 and 5 150 7.5.6 Comparison of Pilot Plant Costings

Dynamic Modelling and Optimisation

of Carbon Management Strategies

in Gold Processing

Pornsawan Jongpaiboonkit

B.E. (Hons), B.Com.

University of Western Australia

This thesis is presented for the degree of

Doctor of Philosophy

School of Engineering

AJ Parker CRC for Hydrometallurgy

Murdoch University

April 2003

Page 2: Dynamic Modelling and Optimisation of Carbon Management ......7.5.5 Set 5 – Investigation of adding fresh carbon to Tanks 1, 3 and 5 150 7.5.6 Comparison of Pilot Plant Costings

ii

I declare that this thesis is my own account of my research and contains as its main

content work, which has not been previously submitted for a degree at any tertiary

education institution.

Pornsawan Jongpaiboonkit

April 2003

Page 3: Dynamic Modelling and Optimisation of Carbon Management ......7.5.5 Set 5 – Investigation of adding fresh carbon to Tanks 1, 3 and 5 150 7.5.6 Comparison of Pilot Plant Costings

iii

Abstract

This thesis presents the development and application of a dynamic model of gold

adsorption onto activated carbon in gold processing. The primary aim of the model is to

investigate different carbon management strategies of the Carbon in Pulp (CIP) process.

This model is based on simple film-diffusion mass transfer and the Freundlich isotherm

to describe the equilibrium between the gold in solution and gold adsorbed onto carbon.

A major limitation in the development of a dynamic model is the availability of accurate

plant data that tracks the dynamic behaviour of the plant. This limitation is overcome

by using a pilot scale CIP gold processing plant to obtain such data. All operating

parameters of this pilot plant can be manipulated and controlled to a greater degree than

that of a full scale plant. This enables a greater amount of operating data to be obtained

and utilised.

Two independent experiments were performed to build the model. A series of

equilibrium tests were performed to obtain parameter values for the Freundlich

isotherm, and results from an experimental run of the CIP pilot plant were used to

obtain other model parameter values. The model was then verified via another

independent experiment. The results show that for a given set of operating conditions,

the simulated predictions were in good agreement with the CIP pilot plant experimental

data.

The model was then used to optimise the operations of the pilot plant. The evaluation

of the plant optimisation simulations was based on an objective function developed to

quantitatively compare different simulated conditions. This objective function was

derived from the revenue and costs of the CIP plant. The objective function costings

developed for this work were compared with published data and were found to be

within the published range. This objective function can be used to evaluate the

performance of any CIP plant from a small scale laboratory plant to a full scale gold

plant.

Page 4: Dynamic Modelling and Optimisation of Carbon Management ......7.5.5 Set 5 – Investigation of adding fresh carbon to Tanks 1, 3 and 5 150 7.5.6 Comparison of Pilot Plant Costings

iv

The model, along with its objective function, was used to investigate different carbon

management strategies and to determine the most cost effective approach. A total of 17

different carbon management strategies were investigated. An additional two

experimental runs were performed on the CIP pilot plant to verify the simulation model

and objective function developed.

Finally an application of the simulation model is discussed. The model was used to

generate plant data to develop an operational classification model of the CIP process

using machine learning algorithms. This application can then be used as part of an on-

line diagnosis tool.

Page 5: Dynamic Modelling and Optimisation of Carbon Management ......7.5.5 Set 5 – Investigation of adding fresh carbon to Tanks 1, 3 and 5 150 7.5.6 Comparison of Pilot Plant Costings

v

Table of Contents

Declaration ii Abstract iii Table of Contents v List of Figures ix List of Tables xi Acknowledgements xiii

1. Introduction 1 1.1 Overview of Gold Processing 2 1.2 Thesis Objective 5 1.3 Thesis Structure 6

2. Literature Review 7 2.1 Introduction 7 2.2 Modelling of Adsorption Kinetics 7

2.2.1 Solid Particle Analysis 8 2.2.2 Comparison of Models 9 2.2.3 Determination of the Adsorption Parameter Values 11 2.2.4 Porous Particle Analysis 13 2.2.5 Other Studies of the Factors Affecting Adsorption Kinetics 14

2.3 Modelling of CIP Process 15 2.4 Conclusions and Research Direction 22

3. Simulation Model Development 26 3.1 Introduction 26 3.2 Model Assumptions 26 3.3 Model Equations 27

3.3.1 Rate of Adsorption Expression 27 3.3.2 Mixing in the Tanks 28 3.3.3 Mass Balances 28 3.3.4 Modelling Carbon Transfers 30

3.4 Simulation Tool 31 3.5 Isotherm Determination 32 3.6 Comparisons with Published Values 33

4. Experimental Apparatus and Operation 34 4.1 Introduction 34 4.2 Pilot Plant Apparatus 34 4.3 Pulp Makeup and Pulp Tests 36

4.3.1 Preg-Robbing Test 36 4.3.2 Pulp Suspension Tests 38 4.3.3 Pulp and Carbon Mixing Test 38

4.4 Pilot Plant Operation 38

Page 6: Dynamic Modelling and Optimisation of Carbon Management ......7.5.5 Set 5 – Investigation of adding fresh carbon to Tanks 1, 3 and 5 150 7.5.6 Comparison of Pilot Plant Costings

vi

4.4.1 Carbon Transfer 39 4.4.2 Carbon 40 4.4.3 Sampling 41

5. Initial Pilot Plant Run 42 5.1 Introduction 42 5.2 CIP Plant Operating Conditions 42 5.3 Determining the Values of the Adsorption Rate Parameters 44 5.4 Further Parameter Estimations 54

5.4.1 Parameter Estimation of Adsorption Rate Parameters and Freundlich Isotherm Parameters 54

5.4.2 Parameter Estimation of Gold in Solution Entering Tank 1, Adsorption Rate Parameters and Percentage Solids 57

5.4.3 Parameter Estimation of Gold Loading on Carbon Entering the CIP System 60

5.4.4 Investigation of Errors in Simulated Results 63 5.4.5 Parameter Estimation the Adsorption Rate Parameters Using Lower

Masses of Carbon 71 5.5 Statistical Analysis of Parameter Estimation 75 5.6 Analysis of Simulation Results 76 5.7 Verification of the Model 79 5.8 Conclusion 81

6. Sensitivity Analysis 82 6.1 Introduction 82 6.2 Simulation Conditions 82 6.3 Simulation Results 83

6.3.1 Freundlich Isotherm A 84 6.3.2 Freundlich Isotherm b 87 6.3.3 Adsorption Parameter K2 88 6.3.4 Adsorption Parameter K3 90 6.3.5 Gold in Solution Concentration Entering the CIP Plant 91 6.3.6 Mass of Carbon 92

6.4 Conclusion 94

7. Optimisation of Carbon in Pulp Process 95 7.1 Introduction 95 7.2 Objective Function Equations 95 7.3 Optimisation of the CIP Pilot Plant 100

7.3.1 Operating Conditions 101 7.3.2 Set 1 – Optimal Combination of Carbon Content and Percentage Carbon

Transferred 103 7.3.3 Set 2 – Optimal Number of Tanks 107 7.3.4 Set 3 – Optimisation of Carbon Cycle Times 109 7.3.5 Set 4 – Optimal Volume 111 7.3.6 Set 5 – Plant Recycle 114 7.3.7 Summary of Optimisation of the Pilot Plant 115

Page 7: Dynamic Modelling and Optimisation of Carbon Management ......7.5.5 Set 5 – Investigation of adding fresh carbon to Tanks 1, 3 and 5 150 7.5.6 Comparison of Pilot Plant Costings

vii

7.4 Investigation of Carbon Management Strategies 116 7.4.1 Carbon Management Strategies and Model Equations 116 7.4.2 Operating Conditions 121

7.5 Simulation of Carbon Management Strategies 122 7.5.1 Set 1 – Investigation of Carousel, Continuous, Sequential-Pull and

Sequential-Push Carbon Transfer Methods 123 7.5.2 Set 2 – Investigation of Different Combinations of Sequential Carbon

Transfer Methods 134 7.5.3 Set 3 – Investigation of Parallel Carbon Transfer Methods 139 7.5.4 Set 4 – Further Investigation Parallel Carbon Transfer Methods 145 7.5.5 Set 5 – Investigation of adding fresh carbon to Tanks 1, 3 and 5 150 7.5.6 Comparison of Pilot Plant Costings with Full Scale Plant 155 7.5.7 Conclusion of Simulation of Different Carbon Management Strategies 155

7.6 Conclusion 156

8. Experimental Verification of the Optimisation Results 157 8.1 Introduction 157 8.2 Operating Conditions 157 8.3 Experimental and Simulated Results of Runs 2 and 3 161 8.4 Analysis of the Objective Functions 169

8.4.1 The Weighting Factor 169 8.4.2 Objective Function Calculation 170 8.4.3 Objective Function Results 172 8.4.4 Comparison of all Experimental Runs 173

8.5 Conclusions 174

9. A Machine Learning Algorithm Application 175 9.1 Introduction 175 9.2 Data Mining Methods 176 9.3 Classification Modelling 176

9.3.1 WEKA and C4.5 177 9.3.2 Classification Model Example - ‘The Weather Problem’ 178

9.4 CIP Pilot Plant Application 183 9.4.1 Single Fault Classification Models 184 9.4.2 Double Fault Classification Models 188

9.5 Conclusions 195

10. Conclusions and Further Work 196 10.1 Conclusions 196 10.2 Recommendations for Further Work 198

Nomenclature 200

References 202

Page 8: Dynamic Modelling and Optimisation of Carbon Management ......7.5.5 Set 5 – Investigation of adding fresh carbon to Tanks 1, 3 and 5 150 7.5.6 Comparison of Pilot Plant Costings

viii

Appendices

Appendix A: gPROMS Code Appendix B: Equilibrium Isotherm Tests Appendix C: CIP Pilot Plant Equipment Specifications Appendix D: Sampling Frequency Appendix E: Experimental Runs Data and Calculations E.1 Experimental Runs Data E.2 Error on Experimental Data E.3 Gold Balance Calculations Appendix F: Parameter Estimation Simulation Results Appendix G: Batch Test Appendix H: Sensitivity Analysis Simulation Results Appendix I: Cost Functions of the Objective Function I.1 Tanks Costs I.2 Pump Costs I.3 Elution Costs Appendix J: CIP Model Datasheet Appendix K: Calculations for Weighted Objective Functions K.1 Weighting Factor for Experimental Runs K.2 Sample Weighted Objective Function Calculation Appendix L: Equivalent Values Gold in Ore and T1.Xin

Page 9: Dynamic Modelling and Optimisation of Carbon Management ......7.5.5 Set 5 – Investigation of adding fresh carbon to Tanks 1, 3 and 5 150 7.5.6 Comparison of Pilot Plant Costings

ix

List of Figures

Figure 1.1: Flowsheet of Kalgoorlie Consolidated Gold Mines Fimiston Gold Plant 2 Figure 3.1: Exchanges between the tanks in the CIP circuit 29 Figure 3.2: Hierarchical model decomposition in gPROMS of the adsorption process 31 Figure 3.3: Plot of equilibrium isotherm test data and the calculated Freundlich Isotherm 32 Figure 4.1: Experimental apparatus 35 Figure 4.2: Schematic of CIP experimental apparatus 35 Figure 4.3: Schematic of adsorption tank (Pleysier, 1998) 36 Figure 5.1: gEST 1-1 Results for Tanks 1 and 2. : Simulation, � Measured data. 48 Figure 5.2: gEST 1-3 Results for Tanks 1 and 2. : Simulation, � Measured data 50 Figure 5.3: gEST 1-4 Gold in solution concentration for Tank 1 52 Figure 5.4: gEST 2-1 - Gold in solution concentrations for Tanks 4 to 6 57 Figure 5.5: Measured gold in solution concentrations for Tanks 4 to 6 66 Figure 5.6: gEST 5-3 - Gold loading on carbon and gold in solution concentration. 74 Figure 5.7: 95% Confidence Ellipsoid for K2 and K3 for gEST 5-3 76 Figure 5.8: Simulated adsorption rates for CIP Pilot Plant Run 78 Figure 5.9: Plot of results of the batch test to verify the simulation model 80 Figure 6.1: Sensitivity analysis of Freundlich Parameter A. Fraction of A: 0.5 – 1.5. 85 Figure 6.2: Sensitivity analysis of Freundlich Parameter A. Fraction of A: 0.8 – 1.5 85 Figure 6.3: Sensitivity analysis of Freundlich Parameter A. %change in gold loading on

carbon and gold in solution concentration with changes in A. 86 Figure 6.4: Sensitivity analysis of Freundlich Parameter b. Fraction of b: 0.5 – 1.5. 87 Figure 6.5: Sensitivity analysis of Freundlich Parameter b. %change in gold loading on

carbon and gold in solution concentration with changes in b. 88 Figure 6.6 Sensitivity analysis of Adsorption Parameter K2. Fraction of K2: 0.5 – 1.5. 88 Figure 6.7 Sensitivity analysis of Adsorption Parameter K2. %change in gold loading on

carbon and gold in solution concentration with changes in K2. 89 Figure 6.8: Sensitivity analysis of Adsorption Parameter K3. Fraction of K3: 0.5 – 1.5. 90 Figure 6.9: Sensitivity analysis of Adsorption Parameter K3. %change in gold loading on

carbon and gold in solution concentration with changes in K3. 91 Figure 6.10: Sensitivity analysis of T1.Xin. Fraction of T1.Xin: 0.5 – 1.5. 91 Figure 6.11: Sensitivity analysis of T1.Xin. %change in gold loading on carbon and gold

in solution concentration with changes in T1.Xin 92 Figure 6.12: Sensitivity analysis of carbon mass. Carbon content: 2 – 16g/L. 93 Figure 6.13: Sensitivity analysis of carbon mass. 93 Figure 6.14: Sensitivity analysis of carbon mass. 93 Figure 7.1: Operating point of the CIP pilot plant 102 Figure 7.2: Optimisation simulation results for 6 tanks, 12h carbon cycles 104 Figure 7.3: Optimisation simulation results for 6 tanks, 12h carbon cycles 104 Figure 7.4: Optimisation simulation results for 6 tanks, 12h carbon cycles with no capital

costs in the objective function 106 Figure 7.5: Effect of the price of carbon on the objective function and operational

objective function. 106 Figure 7.6: Optimal objective function (A) and operational objective function (B) values

for different numbers of CIP tanks at 6, 12, 18, 24h carbon cycles times. 108

Page 10: Dynamic Modelling and Optimisation of Carbon Management ......7.5.5 Set 5 – Investigation of adding fresh carbon to Tanks 1, 3 and 5 150 7.5.6 Comparison of Pilot Plant Costings

x

Figure 7.7: Optimal objective functions and mass of carbon transferred for 6 tanks at 6-48h cycle times 110

Figure 7.8: Objective function for 6 tanks, 4g/L carbon content, 60% carbon transfer at 6-48h cycle times 111

Figure 7.9: Objective function for different numbers of tanks and volumes at 12h carbon cycle time 113

Figure 7.10: Objective function and total CIP plant volume for each number of tanks 113 Figure 7.11: Diagram of recirculating pulp proposal 114 Figure 7.12: Plant recycle simulations: Objective Function (A), Operational Objective

Function (B) 115 Figure 7.13: Flow streams of carbon and solution for the carousel method 118 Figure 7.14: Flow streams of carbon and solution for the continuous and sequential

method 120 Figure 7.15: Objective function, gold revenue and total cost per annum for the Carousel,

Continuous, Sequential-Pull and Sequential-Push carbon transfer methods 123 Figure 7.16: Gold loading on carbon for the last cycle and during carbon transfer for the

Sequential-Pull and Sequential-Push carbon transfer methods 125 Figure 7.17: Carousel Carbon Transfer Method 126 Figure 7.18: Continuous Carbon Transfer Method 127 Figure 7.19: Sequential-Pull Carbon Transfer Method 128 Figure 7.20: Sequential-Push Carbon Transfer Method 129 Figure 7.21: Objective function, gold revenue and gold lost per annum for different

combinations of the sequential carbon transfer method 135 Figure 7.22: Example of the Parallel carbon transfer method 139 Figure 7.23: Objective function, gold revenue and gold lost per annum of different

combinations of the 3 tank parallel carbon transfer method 140 Figure 7.24: Objective function, gold revenue and gold lost per annum of Sequential-Pull,

Parallel 1, 5, 6, 7 carbon transfer methods 146 Figure 7.25: Objective function, gold revenue and gold lost per annum of Sequential 3, 4,

5, 6 carbon transfer methods 150 Figure 8.1: Run 2 - Simulated and actual data for gold loading on carbon and gold in

solution concentration for all tanks. 162 Figure 8.2: Run 3 - Simulated and measured data for gold loading on carbon and gold in

solution concentration 164 Figure 8.3: Run 3 Simulated and actual data for gold in solution concentration to tailings 165 Figure 8.4 Run 3 using gEST 6-1 results - Simulated and measured data for gold loading

on carbon and gold in solution concentration 167 Figure 8.5: Comparison of all three experimental runs 174 Figure 9.1: ARFF file for the Weather Problem. 179 Figure 9.2: Output of Weka for the Weather Problem 180 Figure 9.3: Graphical display of the decision tree of the Weather Problem 181 Figure 9.4: Classification Run 1 - results of single fault data set with two classes 186 Figure 9.5: Classification Run 2 - results of single fault data set with four classes 187 Figure 9.6: Classification Run 3 - Decision tree for single and double faults data set with

seven classes 189 Figure 9.7: Classification Run 3 - Statistical data for single and double fault data set with

seven classes 190 Figure 9.8: Classification Run 4 - Results of single and double fault data set with seven

classes using reduced-error pruning 193 Figure 9.9: T6.Xout ��������SSP�EUDQFK�IRU�&ODVVLILFDWLRQ�5XQV���DQG�� 194

Page 11: Dynamic Modelling and Optimisation of Carbon Management ......7.5.5 Set 5 – Investigation of adding fresh carbon to Tanks 1, 3 and 5 150 7.5.6 Comparison of Pilot Plant Costings

xi

List of Tables

Table 3.1: Comparison of published Freundlich Isotherm parameter values 33 Table 4.1: Comparison of the preg-robbing experimental conditions for this work and

Petersen (1997). 37 Table 5.1: Summary of CIP pilot plant operating data 43 Table 5.2: Parameter Estimation Set 1 Results - Estimating K2 and K3 46 Table 5.3: gEST 1-1 Simulated Results - Estimating K2, K3 = 341.99, -0.168 48 Table 5.4: gEST 1-2 Simulated Results - Estimating K2, K3 = 345.01, -0.168 49 Table 5.5: gEST 1-3 Simulated Results - Estimating K2, K3 = 343.54 and -0.175 50 Table 5.6: gEST 1-4 Simulated Results - Estimating K2, K3 = 349.91, -0.148 51 Table 5.7: gEST 1-5 Simulated Results - Estimating K2, K3 = 342.14, -0.182 52 Table 5.8: Parameter Estimation Set 2 Results - Estimating K1, K2, K3, A, b 55 Table 5.9: Parameter Estimation Set 2 Simulated Results - Estimating K1, K2, K3, A, b 55 Table 5.10: Parameter Estimation Set 3 Results - Estimating K2, K3, T1.Xin, %solids 58 Table 5.11: Parameter Estimation Set 3 Simulated Results - Estimating K, T1.Xin, %solids 59 Table 5.12: Parameter Estimation Set 4 Results - Estimating T6.Yin 60 Table 5.13: Parameter Estimation Set 4 Simulated Results - Estimating T6.Yin 61 Table 5.14: Calculated value of T1.Xin for each cycle of the pilot plant run 64 Table 5.15: Calculated masses of carbon for all tanks during the pilot plant run 68 Table 5.16: Total gold balance calculation of the pilot plant run. 69 Table 5.17: Parameter Estimation Set 5 Results - Estimating K2 and K3 72 Table 5.18: Parameter Estimation Set 5 Simulated Results - Estimating K2 and K3 72 Table 5.19 Statistical data for gEST 5-3 75 Table 5.20: Summary of verification bottle roll test operating data 79 Table 5.21: Results of model verification batch test 80 Table 6.1: Summary of the values of A, b, K2, K3 and T1.Xin for the sensitivity analysis

simulations 83 Table 7.1: Values of the costing variables used to determine the objective function 100 Table 7.2: Summary of operating conditions for the optimisation simulations of the CIP

pilot plant 102 Table 7.3: Costs breakdown for a pilot plant operating at 4g/L carbon content, 60% carbon

transfer and at 12h carbon cycles 107 Table 7.4: Optimal carbon content, percentage carbon transferred, objective function and

operational objective function values for different numbers of CIP tanks at 6, 12, 18, 24h carbon cycles times. 108

Table 7.5: Optimal carbon content, percentage carbon transferred, objective function (A) and operational objective function (B) values for 6 tanks at 6-48h carbon cycles times. 110

Table 7.6: Optimal volume, percentage carbon transferred, carbon content, objective function values for 2 to 7 tanks at 12h carbon cycles times. 112

Table 7.7: Results of Plant Recycle. Optimal percentage carbon transferred, carbon content 115

Table 7.8: Summary of pilot plant operating conditions for the simulation of different carbon management strategies 121

Table 8.1: Operating conditions for Runs 1, 2 and 3 159 Table 8.2: CIP experimental and simulation results for all runs. 163

Page 12: Dynamic Modelling and Optimisation of Carbon Management ......7.5.5 Set 5 – Investigation of adding fresh carbon to Tanks 1, 3 and 5 150 7.5.6 Comparison of Pilot Plant Costings

xii

Table 8.3: Parameter Estimation gEST 6-1 Results - Estimating K2 and K3 using Run 3 data 166

Table 8.4: CIP experimental and simulation results for Run 3 using gEST 5-3 and gEST 6-1 results 167

Table 8.5: Run 1 - Weighted objective function for 1 and 6 carbon transfer pumps 171 Table 8.6: Runs 2 and 3 - Weighted objective function 171 Table 9.1: The Weather Problem Data (Witten and Frank, 200) 179 Table 9.2:Operating conditions of the CIP pilot plant for classification modelling 183 Table 9.3: Summary of single fault simulations 185 Table 9.4: Summary of double fault simulations 188

Page 13: Dynamic Modelling and Optimisation of Carbon Management ......7.5.5 Set 5 – Investigation of adding fresh carbon to Tanks 1, 3 and 5 150 7.5.6 Comparison of Pilot Plant Costings

xiii

Acknowledgements

I would like to thank the following who have contributed to the completion of this

project.

To my supervisor Peter Lee for your infinite wisdom, guidance, patience and support. It

has been a privilege and an honour to work with you.

To AJ Parker CRC and the sponsors of AMIRA Project 420A for their financial and

professional support. To Anglo Gold’s Sunrise Dam Gold Plant for providing the

carbon for the experiments and the site visit opportunity.

To Bill Staunton, Simon O’Leary, Ron Pleysier, and Brendan Graham for all your time

and advice, and for answering all my annoying questions with such good grace and

humour.

To Peng Lam for your guidance and expertise in the Machine Learning application.

To Garry Downham for all the modifications you made to CIP pilot plant.

To all the Engineering staff and postgrads who made my time at Murdoch so enjoyable

and for making sure that I never missed any morning tea cake.

To my ‘baby sitters’ who gave up their time to watch over me during the experimental

runs, especially Adam Mastey, Simon Harrington, and my mum who ensured I never

starved with an endless supply of food!

To my mum, brother and sister for all their love and support throughout my life.

And finally to Matthew - thank you for your unwavering faith, love and support

throughout this entire process, and for being the best friend I have ever had.

Page 14: Dynamic Modelling and Optimisation of Carbon Management ......7.5.5 Set 5 – Investigation of adding fresh carbon to Tanks 1, 3 and 5 150 7.5.6 Comparison of Pilot Plant Costings

A-1

Appendix A gPROMS Code

Page 15: Dynamic Modelling and Optimisation of Carbon Management ......7.5.5 Set 5 – Investigation of adding fresh carbon to Tanks 1, 3 and 5 150 7.5.6 Comparison of Pilot Plant Costings

Appendix A: gPROMS Code

A-2

#====================================================================== #Sample gPROMS code used to simulate the CIP model #----------------------------------------------------------------------- DECLARE #DECLARATION of types of variables TYPE Percent =1.0:-1E25:1E25 Unit="%" CarbonContent =1.0:-1E25:1E25 Unit="g/L"#=kg/m^3 Mass =1.0:-1E25:1E25 Unit="kg" Volume =1.0:-1E25:1E25 Unit="m^3" Specificgravity =1.0:-1E25:1E25 Unit="kg/L" Flowrate =1.0:-1E25:1E25 Unit="L/h" Massflowrate =1.0:-1E25:1E25 Unit="kg/h" Concofgoldinsoln =1.0:-1E25:1E25 Unit="mg/kg soln" Goldincarbon =1.0:0:1E25 Unit="mg/kg carbon" Goldrate =1.0:-1E25:1E25 Unit="mg/kg/h" ProcessTime =1.0:-1E25:1E25 Unit="h" NoUnit =1.0:-1E25:1E25 Unit="none" Rate =1.0:-1E25:1E25 Unit="1/kgC/h" Isotherm =1.0:0:1E25 #positive number only STREAM #flow streams of pulp and carbon between the tanks Pulpstream IS Concofgoldinsoln Carbonstream IS Goldincarbon, massflowrate, NoUnit END #------------------------------------------------------------------------ #MODEL OF A SINGLE TANK MODEL OneTank VARIABLE Mc AS Mass #mass of carbon in tank [kg] C AS CarbonContent #carbon content [g/L] Y, Yin AS Goldincarbon #gold loading on carbon Xin, Xout, Xe AS Concofgoldinsoln #gold in soln in, out of tank Adsorb_rate AS Goldrate #rate of adsorption [mg/kg/h] CarbonswitchIn, CarbonswitchOut AS NoUnit2 #used to switch carbon flow on/off FcarbonIn, FCarbonOut AS MassFlowRate #flow of carbon [kg/h] K1 AS NoUnit #adsorption rate parameter STREAM PulpInlet : Xin AS Pulpstream PulpOutlet : Xout AS Pulpstream CarbonInlet : Yin, FCarbonIn, CarbonswitchIn AS Carbonstream CarbonOutlet: Y, FCarbonOut, CarbonswitchOut AS Carbonstream END #model #--------------------------------------------------------------------------- #MODEL OF TANKS IN SERIES MODEL SeriesofTanks PARAMETER #parameters do not change in NoTanks AS INTEGER #the simulation SGsolid AS REAL percentsolids AS REAL A AS NoUnit #Isotherm parameter 1 b AS NoUnit #Isotherm parameter 2 K2,K3 AS NoUnit TankCost1, TankCost2, TankCost3 AS REAL #costings in objective function PumpCapCost1, PumpCapCost2,PumpCapCost3 AS REAL ElutionCost1, ElutionCost2 AS REAL g AS REAL AnnualRate AS REAL GoldPrice, CarbonCost AS REAL #$/kg PowerCost AS REAL #$/kWh PumpHead, PumpEff AS REAL CarbonLoss AS REAL #%/year VARIABLE MFs AS Massflowrate #mass flow of solution through CIP PulpSoln AS Massflowrate #pulp solution RecircSoln AS Massflowrate SGpulp AS Specificgravity PulpFlowSwitch AS NoUnit Msoln AS Mass Vtank AS Volume # [m^3] Fpulp AS Flowrate C1Transfer AS Percent #%carbon transferred from tank TransferTime AS NoUnit2 #time for carbon transfer CarbonInTime AS NoUnit2 #time for new carbon put into system CycleTime AS NoUnit2 #time for 1 cycle RunTime AS NoUnit2 #run time Alpha AS NoUnit2 #% of flow recirculated GoldIn AS NoUnit2 #gold conc. in Tank 1 C00h AS ARRAY(NoTanks) OF CarbonContent #initial carbon content-use in obj fn calc. CarbonPumpFlow AS ARRAY(NoTanks) OF NoUnit #m^3/s PumpPower AS ARRAY(NoTanks) OF NoUnit #kW #calculated values of the objective functions [$] Obj AS NoUnit GoldRevenue, GoldLost AS NoUnit TotCapitalCost,CapitalCostFn AS NoUnit TotVariableCost, TotalCost AS NoUnit TotTankCost,TotPumpCapCost AS NoUnit TotCarbonCost AS NoUnit TotElutionCost, TotPumpVarCost AS NoUnit

Page 16: Dynamic Modelling and Optimisation of Carbon Management ......7.5.5 Set 5 – Investigation of adding fresh carbon to Tanks 1, 3 and 5 150 7.5.6 Comparison of Pilot Plant Costings

Appendix A: gPROMS Code

A-3

CarbonLossCost AS NoUnit UNIT Tank AS ARRAY(NoTanks) OF OneTank #model of OneTank is replicated EQUATION #model equations are listed #stream continuity flow equations for pulp and carbon For i:=1 TO (Notanks-1) DO Tank(i).PulpOutlet=Tank(i+1).PulpInlet; Tank(i).CarbonInlet=Tank(i+1).CarbonOutlet; END #for #MASS BALANCE Y, C, ISOTHERM, ADSORB_RATE #---------------------------------------------- #$ in front of a variable is denotes derivative of that variable with respect to time For i:=1 to (NoTanks) DO #GOLD LOADING ON CARBON BALANCE $(Tank(i).Y*Tank(i).C)*Vtank=Tank(i).FCarbonIn*Tank(i).Yin

-Tank(i).FCarbonOut*Tank(i).Y+Tank(i).Adsorb_rate*Tank(i).C*Vtank; #FCARBON MASS BALANCE in terms of carbon content $(Tank(i).C)*Vtank=Tank(i).FCarbonIn-Tank(i).FCarbonOut; #MASS OF CARBON IN TANK Tank(i).Mc=Tank(i).C*Vtank; #Isotherm - Freundlich [ppm] Tank(i).Xe=(Tank(i).Y/A)^(1/b); #ADSORPTION RATE [mg Au/kg C/h] Tank(i).Adsorb_rate=Tank(i).K1*(Tank(i).Xout-Tank(i).Xe); Tank(i).K1=K2*(Tank(i).Y)^K3; END #for #GOLD IN SOLUTION BALANCE #---------------- #CAROUSEL - NO MIXING OF PULP $(Tank(i).Xout)*Msoln=MFs*Tank(i).Xin-MFs*Tank(i).Xout-Tank(i).Adsorb_rate*Tank(i).C*Vtank; #INTERMITTENT - INCL. MIXING OF PULP #TANK 1 $(Tank(1).Xout)*Msoln=MFs*(Tank(1).Xin-Tank(1).Xout)

+CarbonSolnFlow(2)*(Tank(2).Xout-Tank(1).Xout)-Tank(1).Adsorb_rate*Tank(1).C*Vtank; #TANK (NoTanks) $(Tank(NoTanks).Xout)*Msoln=MFs*(Tank(NoTanks).Xin-Tank(NoTanks).Xout)

+CarbonSolnFlow(NoTanks)*(Tank(Notanks).Xin-Tank(NoTanks).Xout) -Tank(NoTanks).Adsorb_rate*Tank(NoTanks).C*Vtank;

#TANK (i) For i:=2 to (NoTanks-1) DO $(Tank(i).Xout)*Msoln=MFs*(Tank(i).Xin-Tank(i).Xout)

+CarbonSolnFlow(i)*(Tank(i).Xin-Tank(i).Xout) +CarbonSolnFlow(i+1)*(Tank(i+1).Xout-Tank(i).Xout)

-Tank(i).Adsorb_rate*Tank(i).C*Vtank; END #for

#CONTINUOUS #TANK 1 $(Tank(1).Xout)*Msoln=MFs*(Tank(1).Xin-Tank(1).Xout)

+CarbonSolnFlow(2)*(Tank(2).Xout-Tank(1).Xout) -Tank(1).Adsorb_rate*Tank(1).C*Vtank;

#TANK (NoTanks) $(Tank(NoTanks).Xout)*Msoln=MFs*(Tank(NoTanks).Xin-Tank(NoTanks).Xout)

+CarbonSolnFlow(NoTanks)*(Tank(Notanks).Xin-Tank(NoTanks).Xout) -Tank(NoTanks).Adsorb_rate*Tank(NoTanks).C*Vtank;

#TANK (i) For i:=2 to (NoTanks-1) DO $(Tank(i).Xout)*Msoln=MFs*(Tank(i).Xin-Tank(i).Xout)

+CarbonSolnFlow(i)*(Tank(i).Xin-Tank(i).Xout) +CarbonSolnFlow(i+1)*(Tank(i+1).Xout-Tank(i).Xout)

-Tank(i).Adsorb_rate*Tank(i).C*Vtank; END #for #MSOLN, MFS, TI.XIN EQUATIONS #-------------------------------------------------------- #set initial mass of carbon to be the same For i:=1 to (NoTanks-1) do C00h(i)=C00h(i+1); END #for #MASS OF SOLUTION IN TANK [kg] Msoln=(1-percentsolids)*Vtank*(SGpulp*1000); #SG PULP SGpulp=1/((1-percentsolids)+(percentsolids/SGsolid));

Page 17: Dynamic Modelling and Optimisation of Carbon Management ......7.5.5 Set 5 – Investigation of adding fresh carbon to Tanks 1, 3 and 5 150 7.5.6 Comparison of Pilot Plant Costings

Appendix A: gPROMS Code

A-4

#MASS FLOW OF SOLUTION- incl. recirc. soln equations[kg/h] PulpSoln=(1-percentsolids)*Fpulp*SGpulp*PulpFlowSwitch; #soln flow, incl. switch RecircSoln=MFs*Alpha; MFs=PulpSoln/(1-Alpha); #Conc.of T1.Xin - incl. recirc. soln equations [ppm] Tank(1).Xin*MFs=(GoldIn*PulpSoln)+(Tank(NoTanks).Xout*RecircSoln); #CARBON FLOWS BETWEEN TANKS - USE ONE OF THE SETS ONLY. ALL IS SHOWN FOR INFO #---------------------------------------------------------- #FOR CAROUSEL AND INTERMITTENT TRANSFER #PULP FLOW FOR CARBON TRANSFER [L/h] - use in pump costs For i:=1 to (NoTanks) Do CarbonPumpFlow(i)=Vtank*1000*(C1Transfer)/(TransferTime); #SOLN FLOW WHEN CARBON PUMP IS TURNED ON - USED IN INTERMITTENT [kg/h] CarbonSolnFlow(i)=Tank(i).CarbonswitchOut *CarbonPumpFlow(i)*SGpulp*(1-percentsolids); #kg/h #FLOW OF CARBON OUT [kg/h] Tank(i).FCarbonOut=Tank(i).CarbonswitchOut *CarbonPumpFlow(i)*C00h(i)*0.001; #kg/h END #for #New carbon in final tank [kg/h] Tank(NoTanks).FCarbonIn=Tank(NoTanks).CarbonSwitchIn*(C1Transfer*C00h(1)*Vtank)/CarbonInTime; RunTime=CycleTime-(NoTanks*TransferTime)-CarbonInTime; #CONTINUOUS #Fcin/out specified in PROCESS SECTION For i:=1 to (NoTanks) Do CarbonPumpFlow(i)=Tank(i).FCarbonOut*1000/C00h(i); #L/h CarbonSolnFlow(i)=CarbonPumpFlow(i)*SGpulp*(1-percentsolids); #kg/h END #for RunTime=CycleTime-ElutionTime; #need elution time for elution costing #OBJECTIVE FUNCTION EQUATIONS #-------------------------------------------------------- #TOTAL COST TotalCost=CapitalcostFn+TotVariablecost+GoldLost; #OBJECTIVE FUNCTION Obj=GoldRevenue-(CapitalcostFn+TotVariablecost+GoldLost); #GOLD REVENUE AND LOSS TO TAILINGS $GoldLost=GoldPrice*0.001*PulpSoln*Tank(NoTanks).Xout; $GoldRevenue=GoldPrice*0.001*Tank(1).FCarbonOut*Tank(1).CarbonswitchOut*Tank(1).Y; #CAPITAL COSTS TotTankCost=NoTanks*(TankCost1*(Vtank^TankCost2)+TankCost3); TotPumpCapCost=Sigma(PumpCapCost1*(CarbonPumpFlow^PumpCapCost2)+PumpCapCost3); TotCarbonCost=(Sigma(C00h)+C00h(1))*Vtank*CarbonCost; #incl batch in elution column TotCapitalCost=(TotTankCost+TotPumpCapCost+TotCarbonCost); $CapitalCostFn=TotCapitalCost*AnnualRate/8000; #VARIABLE COSTS $TotElutionCost=Tank(1).CarbonswitchOut*ElutionCost1

*((C1Transfer*C00h(1)*Vtank)^ElutionCost2)/TransferTime; For i:=1 to (NoTanks) DO PumpPower(i)=SGpulp*g*PumpHead*(CarbonPumpFlow(i)*0.001/3600); #kW END #for $TotPumpVarCost=Sigma(PumpPower)*PowerCost/pumpEff*Tank(1).CarbonswitchOut; $CarbonLossCost=CarbonLoss*TotCarbonCost/8000; TotVariableCost=TotElutionCost+TotPumpVarCost+CarbonLossCost; END #model #========================================================================== #task Turn Pulp flow on TASK PulpflowOn PARAMETER ATank AS MODEL SeriesofTanks SCHEDULE SEQUENCE RESET Atank.PulpFlowSwitch:=1; END END #sequence END #task #========================================================================== #task Turn Pulp flow off

Page 18: Dynamic Modelling and Optimisation of Carbon Management ......7.5.5 Set 5 – Investigation of adding fresh carbon to Tanks 1, 3 and 5 150 7.5.6 Comparison of Pilot Plant Costings

Appendix A: gPROMS Code

A-5

TASK PulpflowOff PARAMETER ATank AS MODEL SeriesofTanks SCHEDULE SEQUENCE RESET Atank.PulpFlowSwitch:=0; END END #sequence END #task #========================================================================== # task to transfer carbon Out of tanks TASK MoveCarbonout PARAMETER ATank AS MODEL SeriesofTanks TankNo AS INTEGER #Tank carbon is moved into SCHEDULE SEQUENCE RESET Atank.Tank(TankNo).CarbonswitchOut:=1; END CONTINUE FOR ATank.TransferTime RESET Atank.Tank(TankNo).CarbonswitchOut:=0; END END #sequence END #task #========================================================================== # Task to put new carbon into circuit TASK NewCarbonIn PARAMETER Atank AS MODEL SeriesofTanks SCHEDULE SEQUENCE RESET Atank.Tank(Atank.Notanks).CarbonswitchIn:=1; END CONTINUE FOR Atank.CarbonInTime; RESET Atank.Tank(Atank.NoTanks).CarbonswitchIn:=0; END END #sequence END #task #--------------------------------------------------------------------------- #Task - run 1 cycle Task OneCycleRun PARAMETER T6 AS MODEL SeriesOfTanks SCHEDULE SEQUENCE CONTINUE FOR T6.Runtime; MoveCarbonOut (Atank IS T6, TankNo IS 1); #Carbon transfer sequence MoveCarbonOut (Atank IS T6, TankNo IS 2); MoveCarbonOut (Atank IS T6, TankNo IS 3); MoveCarbonOut (Atank IS T6, TankNo IS 4); MoveCarbonOut (Atank IS T6, TankNo IS 5); MoveCarbonOut (Atank IS T6, TankNo IS 6); NewCarbonIn (Atank IS T6); END #sequence END #task #--------------------------------------------------------------------------- TASK ResetSim #task used reset sim. to starting conditions #use this to run more than one simulation back to back PARAMETER Atank AS MODEL Seriesoftanks SCHEDULE REINITIAL Atank.Tank(1).Xout, Atank.Tank(2).Xout, Atank.Tank(3).Xout, Atank.Tank(4).Xout, Atank.Tank(5).Xout, Atank.Tank(6).Xout, Atank.Tank(1).Y, Atank.Tank(2).Y, Atank.Tank(3).Y, Atank.Tank(4).Y, Atank.Tank(5).Y, Atank.Tank(6).Y, Atank.Goldlost, Atank.GoldRevenue, Atank.CapitalCostFn, Atank.TotElutionCost, Atank.TotPumpVarCost, Atank.CarbonLossCost WITH Atank.Tank(1).Xout=0; Atank.Tank(2).Xout=0; Atank.Tank(3).Xout=0; Atank.Tank(4).Xout=0; Atank.Tank(5).Xout=0; Atank.Tank(6).Xout=0; Atank.Tank(1).Y=1; Atank.Tank(2).Y=1; Atank.Tank(3).Y=1; Atank.Tank(4).Y=1; Atank.Tank(5).Y=1; Atank.Tank(6).Y=1; Atank.Goldlost=0; Atank.GoldRevenue=0; Atank.CapitalCostFn=0; Atank.TotElutionCost=0; Atank.TotPumpVarCost=0; Atank.CarbonLossCost=0; END #reinitial END #task #--------------------------------------------------------------------------- TASK ResetCarbon #change carbon content - used in optimisation simulations PARAMETER

Page 19: Dynamic Modelling and Optimisation of Carbon Management ......7.5.5 Set 5 – Investigation of adding fresh carbon to Tanks 1, 3 and 5 150 7.5.6 Comparison of Pilot Plant Costings

Appendix A: gPROMS Code

A-6

Atank AS MODEL Seriesoftanks NewC AS Real SCHEDULE SEQUENCE RESET ATANK.C00h(1):=NEWC; END #reset REINITIAL Atank.Tank(1).C, Atank.Tank(2).C, Atank.Tank(3).C, Atank.Tank(4).C, Atank.Tank(5).C, Atank.Tank(6).C WITH Atank.Tank(1).C=NewC; Atank.Tank(2).C=NewC; Atank.Tank(3).C=NewC; Atank.Tank(4).C=NewC; Atank.Tank(5).C=NewC; Atank.Tank(6).C=NewC; END #reinitial END #sequence END #task #--------------------------------------------------------------------------- TASK ResetCTransfer #change %carbon transfer - used in optimisation simulations PARAMETER Atank AS MODEL Seriesoftanks NewCT AS Real SCHEDULE RESET ATANK.C1Transfer:=NewCT; END #reset END #Task #--------------------------------------------------------------------------- TASK ResetVolume #change tank volume - used in optimisation simulations PARAMETER Atank AS MODEL Seriesoftanks NewV AS Real SCHEDULE RESET ATANK.Vtank:=NewV; END #reset END #Task #--------------------------------------------------------------------------- TASK ResetFpulp #change pulp flow - used in optimisation simulations PARAMETER Atank AS MODEL Seriesoftanks NewFpulp AS Real SCHEDULE RESET ATANK.Fpulp:=NewFpulp; END #reset END #Task #--------------------------------------------------------------------------- TASK ResetCycleTime #change carbon cycle time - used in optimisation simulations PARAMETER Atank AS MODEL Seriesoftanks NewCycleTime AS Real SCHEDULE RESET ATANK.CycleTime:=NewCycleTime; END #reset END #Task #--------------------------------------------------------------------------- TASK ResetRecircPulp #change pulp recirc - used in optimisation simulations PARAMETER Atank AS MODEL Seriesoftanks NewRecirc AS Real SCHEDULE RESET ATANK.Alpha:=NewRecirc; END #reset END #Task #--------------------------------------------------------------------------- TASK TwentyfourRuns #used in optimisation simulations #run for 24 times for 12h and 6h carbon cycles PARAMETER T6 AS MODEL Seriesoftanks SCHEDULE SEQUENCE OneCycleRun (T6 IS T6); OneCycleRun (T6 IS T6); OneCycleRun (T6 IS T6); #3 OneCycleRun (T6 IS T6); OneCycleRun (T6 IS T6); OneCycleRun (T6 IS T6); #6 OneCycleRun (T6 IS T6); OneCycleRun (T6 IS T6); OneCycleRun (T6 IS T6); #9 OneCycleRun (T6 IS T6); OneCycleRun (T6 IS T6); OneCycleRun (T6 IS T6); #12 OneCycleRun (T6 IS T6); OneCycleRun (T6 IS T6); OneCycleRun (T6 IS T6); #15 OneCycleRun (T6 IS T6); OneCycleRun (T6 IS T6); OneCycleRun (T6 IS T6); #18 OneCycleRun (T6 IS T6); OneCycleRun (T6 IS T6); OneCycleRun (T6 IS T6); #21 OneCycleRun (T6 IS T6); OneCycleRun (T6 IS T6); OneCycleRun (T6 IS T6); #24 END #sequence END #task #--------------------------------------------------------------------------- TASK TwelveRuns #used in optimisation simulations #run for 12 times for 24h carbon cycles PARAMETER T6 AS MODEL Seriesoftanks SCHEDULE SEQUENCE OneCycleRun (T6 IS T6); OneCycleRun (T6 IS T6); OneCycleRun (T6 IS T6); #3 OneCycleRun (T6 IS T6); OneCycleRun (T6 IS T6); OneCycleRun (T6 IS T6); #6 OneCycleRun (T6 IS T6); OneCycleRun (T6 IS T6); OneCycleRun (T6 IS T6); #9

Page 20: Dynamic Modelling and Optimisation of Carbon Management ......7.5.5 Set 5 – Investigation of adding fresh carbon to Tanks 1, 3 and 5 150 7.5.6 Comparison of Pilot Plant Costings

Appendix A: gPROMS Code

A-7

OneCycleRun (T6 IS T6); OneCycleRun (T6 IS T6); OneCycleRun (T6 IS T6); ResetSim (Atank IS T6); END #sequence END #task #-------------------------------------------------------------------------- TASK SixteenRunsMonitor #used in optimisation simulations #run for 16 times for 18h carbon cycles PARAMETER T6 AS MODEL Seriesoftanks SCHEDULE SEQUENCE OneCycleRun (T6 IS T6); OneCycleRun (T6 IS T6); OneCycleRun (T6 IS T6); #3 OneCycleRun (T6 IS T6); OneCycleRun (T6 IS T6); OneCycleRun (T6 IS T6); #6 OneCycleRun (T6 IS T6); OneCycleRun (T6 IS T6); OneCycleRun (T6 IS T6); #9 OneCycleRun (T6 IS T6); OneCycleRun (T6 IS T6); OneCycleRun (T6 IS T6); #12 OneCycleRun (T6 IS T6); OneCycleRun (T6 IS T6); OneCycleRun (T6 IS T6); #15 OneCycleRun (T6 IS T6); #16 ResetSim (Atank IS T6); END #sequence END #task #-------------------------------------------------------------------------- TASK OptRun_CT_6hcycles #example of optimisation runs for 6h cycles #simulations ran in sequence PARAMETER #did this for 12h, 18h, 24h carbon cycles T6 AS MODEL Seriesoftanks SCHEDULE SEQUENCE ResetCTransfer (Atank IS T6, NewCT IS 0.1); TwentyfourRuns (T6 IS T6); TwentyfourRuns (T6 IS T6); ResetCTransfer (Atank IS T6, NewCT IS 0.2); TwentyfourRuns (T6 IS T6); TwentyfourRuns (T6 IS T6); ResetCTransfer (Atank IS T6, NewCT IS 0.3); TwentyfourRuns (T6 IS T6); TwentyfourRuns (T6 IS T6); ResetCTransfer (Atank IS T6, NewCT IS 0.4); TwentyfourRuns (T6 IS T6); TwentyfourRuns (T6 IS T6); END #sequence END #task #--------------------------------------------------------------------------- TASK OptRun_CT_12hcycles # shortened list shown for example PARAMETER T6 AS MODEL Seriesoftanks SCHEDULE SEQUENCE ResetCTransfer (Atank IS T6, NewCT IS 0.3); TwentyfourRuns (T6 IS T6); ResetCTransfer (Atank IS T6, NewCT IS 0.4); TwentyfourRuns (T6 IS T6); ResetCTransfer (Atank IS T6, NewCT IS 0.5); TwentyfourRuns (T6 IS T6); ResetCTransfer (Atank IS T6, NewCT IS 0.6); TwentyfourRuns (T6 IS T6); END #sequence END #task #-------------------------------------------------------------------------- TASK OptRun_CT_18hcycles # shortened list shown for example PARAMETER T6 AS MODEL Seriesoftanks SCHEDULE SEQUENCE ResetCTransfer (Atank IS T6, NewCT IS 0.4); SixteenRuns (T6 IS T6); ResetCTransfer (Atank IS T6, NewCT IS 0.5); SixteenRuns (T6 IS T6); END #sequence END #task #-------------------------------------------------------------------------- TASK OptRun_CT_24hcycles # shortened list shown for example PARAMETER T6 AS MODEL Seriesoftanks SCHEDULE SEQUENCE ResetCTransfer (Atank IS T6, NewCT IS 0.6); TwelveRuns (T6 IS T6); ResetCTransfer (Atank IS T6, NewCT IS 0.7); TwelveRuns (T6 IS T6); ResetCTransfer (Atank IS T6, NewCT IS 0.8); TwelveRuns (T6 IS T6); END #sequence END #task #--------------------------------------------------------------------------- # Process Simulate tanks in series PROCESS Opt6t UNIT T2 AS SeriesofTanks SET #set parameter values WITHIN T2 DO NoTanks:=6; SGsolid:=2.65; #kg/L Percentsolids:=0.407; A:=7466;

Page 21: Dynamic Modelling and Optimisation of Carbon Management ......7.5.5 Set 5 – Investigation of adding fresh carbon to Tanks 1, 3 and 5 150 7.5.6 Comparison of Pilot Plant Costings

Appendix A: gPROMS Code

A-8

b:=0.34; K2:=350; K3:=-0.15; TankCost1:=3250; #objective function values TankCost2:=0.5152; TankCost3:=100; PumpCapCost1:=10.2; PumpCapCost2:=0.6298; PumpCapCost3:=250; ElutionCost1:=3.861; ElutionCost2:=0.737; g:=9.81; GoldPrice:=20; CarbonCost:=4; AnnualRate:=0.2; PumpHead:=3; #m PowerCost:=0.10; #$0.10/kWh PumpEff:=0.45; #pumping efficiency CarbonLoss:=0.2; #%carbon loss/year END #within ASSIGN #variable values are assigned WITHIN T2 DO Vtank:=0.04; #m^3 PulpFlowSwitch:=1; Fpulp:=8.18; #L/h GoldIn:=4.45; #ppm Alpha:=0; #amount pulp recirc. Tank(NoTanks).Yin:=153; #gold loading on carbon entering CIP

C1Transfer:=0.9999; #%C In T1 transferred set at 100% CycleTime:=12; TransferTime:=0.3; #time to move C [h] CarbonInTime:=0.01; #time for CarbonInT6 C00h(1):=7.5; #g/L = kg/m^3 END #within #CARBON SWITCHES T2.Tank(T2.NoTanks).CarbonswitchIn:=0; #Cswitch=1 for gEST, 0 for simulation For i:=1 to (T2.notanks) DO WITHIN T2.Tank(i) DO CarbonswitchOut:=0; #carbonswitch=1 for gEST, 0 for simulation END #within END #for INITIAL #initial conditions listed FOR i:=1 to (T2.Notanks) DO WITHIN T2.Tank(i) DO Xout=0; #ppm Y=153; #mg/kg C=7.5; # END #within END #for T2.Goldlost=0; #accum. gold losses to tailings T2.GoldRevenue=0; #accum. gold revenue T2.CapitalCostFn=0; #accum. Capital cost T2.TotElutionCost=0; #accum. elution cost T2.TotPumpVarCost=0; #accum. var pump cost T2.CarbonLossCost=0; #accum. carbon loss cost SCHEDULE #simulation sequence is specified SEQUENCE #example - run 10 cycles OneCycleRun (T6 IS T2); OneCycleRun (T6 IS T2); OneCycleRun (T6 IS T2); #3 OneCycleRun (T6 IS T2); OneCycleRun (T6 IS T2); OneCycleRun (T6 IS T2); #6 OneCycleRun (T6 IS T2); OneCycleRun (T6 IS T2); OneCycleRun (T6 IS T2); #9 OneCycleRun (T6 IS T2); #10 { #example of optimisation simulations ResetRecircPulp (Atank IS T2, NewRecirc IS 0.2); ResetCarbon (Atank IS T2, NewC IS 9); OptRun_CT_12hcycles (T6 IS T2); ResetCarbon (Atank IS T2, NewC IS 10); OptRun_CT_12hcycles (T6 IS T2); ResetCarbon (Atank IS T2, NewC IS 11); OptRun_CT_12hcycles (T6 IS T2); ResetRecircPulp (Atank IS T2, NewRecirc IS 0.4); ResetCarbon (Atank IS T2, NewC IS 10); OptRun_CT_12hcycles (T6 IS T2); ResetCarbon (Atank IS T2, NewC IS 11); OptRun_CT_12hcycles (T6 IS T2); ResetCarbon (Atank IS T2, NewC IS 12); OptRun_CT_12hcycles (T6 IS T2); } END #sequence END #process #======================================================================

Page 22: Dynamic Modelling and Optimisation of Carbon Management ......7.5.5 Set 5 – Investigation of adding fresh carbon to Tanks 1, 3 and 5 150 7.5.6 Comparison of Pilot Plant Costings

Appendix A: gPROMS Code

A-9

#====================================================================== #gEST file for parameter estimation #The file lists the parameters to be estimated and the weightings #of the plant data used in the parameter estimation #plant data used - gold on carbon and gold in soln for all tanks ESTIMATE #parameters to be estimated T2.K2 #initial estimate, upper and lower bounds 200 0 1E10 ESTIMATE T2.K3 -0.3 -1E10 1E10 MEASURE #measured data used T2.Tank(1).Y #data use Y and X for all tanks CONSTANT_VARIANCE #variable function used in objective function (100) #lists weightings MEASURE T2.Tank(2).Y CONSTANT_VARIANCE (100) MEASURE T2.Tank(3).Y CONSTANT_VARIANCE (100) MEASURE T2.Tank(4).Y CONSTANT_VARIANCE (100) MEASURE T2.Tank(5).Y CONSTANT_VARIANCE (100) MEASURE T2.Tank(6).Y CONSTANT_VARIANCE (100) MEASURE T2.Tank(1).XOUT CONSTANT_VARIANCE (0.08) MEASURE T2.Tank(2).XOUT CONSTANT_VARIANCE (0.02) MEASURE T2.Tank(3).XOUT CONSTANT_VARIANCE (0.008) MEASURE T2.Tank(4).XOUT CONSTANT_VARIANCE (0.008) MEASURE T2.Tank(5).XOUT CONSTANT_VARIANCE (0.008) MEASURE T2.Tank(6).XOUT CONSTANT_VARIANCE (0.008) RUNS SJ09_RUN5C #name of file that contains the plant data #======================================================================

Page 23: Dynamic Modelling and Optimisation of Carbon Management ......7.5.5 Set 5 – Investigation of adding fresh carbon to Tanks 1, 3 and 5 150 7.5.6 Comparison of Pilot Plant Costings

Appendix A: gPROMS Code

A-10

#==================================================== # file name - SJ09_RUN5C.RUN #specify conditions used in the parameter estimation #this file replaces the PROCESS section in the #gPROMS file #lists all the initial conditions of measured data, # the time intervals & values of ‘control’ variables #ie variables that change in process - such as pulp, #carbon flow #file shown in two columns INITIAL-CONDITION T2.TANK(1).Xout 0.00001 T2.TANK(2).Xout 0.00001 T2.TANK(3).Xout 0.00001 T2.TANK(4).Xout 0.00001 T2.TANK(5).Xout 0.00001 T2.TANK(6).Xout 0.00001 T2.Tank(1).Y 1043 T2.Tank(2).Y 890 T2.Tank(3).Y 680 T2.Tank(4).Y 547 T2.Tank(5).Y 429 T2.Tank(6).Y 153 MEASURE T2.Tank(1).Y 4 1341 #time, value 10.2 1557 16 1184 22.2 1747 28 1328 34.2 1653 40 1008 46.2 1458 53 1167 58.2 1578 64 755 70.2 1069 76 983 82.2 1384 88 946 94.2 1424 98 736 106.2 1265 113 869 118.2 1319 MEASURE T2.Tank(2).Y 4 914 10.2 937 16 849 22.2 1092 28 746 34.2 855 40 615 46.2 730 53 312 58.2 371 64 256 76 320 82.2 389 88 302 94.2 408 98 277 106.2 380 113.0 378 118.2 400 MEASURE T2.Tank(3).Y #time value 4 823 10.2 777 16 640 22.2 730 28 552 34.2 552 40 204 46.2 210 53 243 58.2 231 64 175 70.2 243 76 198 82.2 214 88 204 94.2 217 98 214 106.2 212 113.0 175 118.2 216 MEASURE T2.Tank(4).Y 10.2 648 22.2 437 34.2 188 46.2 169 58.2 164 70.2 157

82.2 207 94.2 184 106.2 177 118.2 185 MEASURE T2.Tank(5).Y 10.2 427 22.2 170 34.2 164 46.2 165 58.2 143 70.2 201 82.2 185 94.2 184 106.2 176 118.2 159 MEASURE T2.Tank(6).Y 10.2 138 22.2 153 34.2 159 46.2 159 58.2 124 70.2 181 82.2 167 94.2 175 106.2 146 118.2 146 MEASURE T2.Tank(1).XOUT 1 0.246 4 0.360 10.2 0.399 16 0.431 22.2 0.475 28 0.402 34.2 0.466 40 0.453 46.2 0.504 53 0.487 58.2 0.516 64 0.534 70.2 0.727 76 0.558 82.2 0.682 88 0.555 94.2 0.707 98 0.522 106.2 0.649 113.0 0.601 118.2 0.757 MEASURE T2.Tank(2).XOUT 1 0.361 4 0.046 10.2 0.058 16 0.060 22.2 0.083 28 0.075 34.2 0.068 40 0.064 46.2 0.083 53 0.069 58.2 0.083 64 0.069 70.2 0.111 76 0.071 82.2 0.096 88 0.071 94.2 0.107 98 0.077 106.2 0.093 113.0 0.079 118.2 0.119 MEASURE T2.Tank(3).XOUT 1 0.146 4 0.020 10.2 0.023 16 0.027 22.2 0.040 28 0.039 34.2 0.028 40 0.029 46.2 0.031 53 0.021 58.2 0.029 64 0.026 70.2 0.030 76 0.020 82.2 0.026 88 0.026 94.2 0.034 98 0.037 106.2 0.031 113.0 0.035 118.2 0.044

Page 24: Dynamic Modelling and Optimisation of Carbon Management ......7.5.5 Set 5 – Investigation of adding fresh carbon to Tanks 1, 3 and 5 150 7.5.6 Comparison of Pilot Plant Costings

Appendix A: gPROMS Code

A-11

MEASURE T2.Tank(4).XOUT 10.2 0.012 22.2 0.019 34.2 0.015 46.2 0.012 58.2 0.011 70.2 0.012 82.2 0.013 94.2 0.015 106.2 0.014 118.2 0.011 MEASURE T2.Tank(5).XOUT 10.2 0.011 22.2 0.016 34.2 0.010 46.2 0.007 58.2 0.008 70.2 0.009 82.2 0.009 94.2 0.012 106.2 0.011 118.2 0.017 MEASURE T2.Tank(6).XOUT 10.2 0.012 22.2 0.013 34.2 0.010 46.2 0.011 58.2 0.010 70.2 0.009 82.2 0.009 94.2 0.012 106.2 0.012 118.2 0.007 INTERVALS #specify time intervals 127 #for control variables 10.2 #CYCLE1+TRANSFER 0.01 #T1 OUT 0.29 0.01 #T2 OUT 0.29 0.01 #T3 OUT 0.29 0.01 #T4 OUT 0.29 0.01 #T5 OUT 0.29 0.01 #T6 OUT 0.29 0.01 #T6 IN 10.2 #CYCLE2+TRANSFER 0.01 #T1 OUT 0.29 0.01 #T2 OUT 0.29 0.01 #T3 OUT 0.29 0.01 #T4 OUT 0.29 0.01 #T5 OUT 0.29 0.01 #T6 OUT 0.29 0.01 #T6 IN 10.2 #CYCLE3+TRANSFER 0.01 #T1 OUT 0.29 0.01 #T2 OUT 0.29 0.01 #T3 OUT 0.29 0.01 #T4 OUT 0.29 0.01 #T5 OUT 0.29 0.01 #T6 OUT 0.29 0.01 #T6 IN 10.2 #CYCLE4+TRANSFER 0.01 #T1 OUT 0.29 0.01 #T2 OUT 0.29 0.01 #T3 OUT 0.29 0.01 #T4 OUT 0.29 0.01 #T5 OUT 0.29 0.01 #T6 OUT 0.29 0.01 #T6 IN 10.2 #CYCLE5+TRANSFER 0.01 #T1 OUT 0.29 0.01 #T2 OUT 0.29

0.01 #T3 OUT 0.29 0.01 #T4 OUT 0.29 0.01 #T5 OUT 0.29 0.01 #T6 OUT 0.29 0.01 #T6 IN 10.2 #CYCLE6+TRANSFER 0.01 #T1 OUT 0.29 0.01 #T2 OUT 0.29 0.01 #T3 OUT 0.29 0.01 #T4 OUT 0.29 0.01 #T5 OUT 0.29 0.01 #T6 OUT 0.29 0.01 #T6 IN 10.2 #CYCLE7+TRANSFER 0.01 #T1 OUT 0.29 0.01 #T2 OUT 0.29 0.01 #T3 OUT 0.29 0.01 #T4 OUT 0.29 0.01 #T5 OUT 0.29 0.01 #T6 OUT 0.29 0.01 #T6 IN 10.2 #CYCLE8+TRANSFER 0.01 #T1 OUT 0.29 0.01 #T2 OUT 0.29 0.01 #T3 OUT 0.29 0.01 #T4 OUT 0.29 0.01 #T5 OUT 0.29 0.01 #T6 OUT 0.29 0.01 #T6 IN 10.2 #CYCLE9+TRANSFER 0.01 #T1 OUT 0.29 0.01 #T2 OUT 0.29 0.01 #T3 OUT 0.29 0.01 #T4 OUT 0.29 0.01 #T5 OUT 0.29 0.01 #T6 OUT 0.29 0.01 #T6 IN 10.2 #CYCLE10 PIECEWISE-CONSTANT T2.FPULP 8.18 #CYCLE1+TRANSFER 0 #T1 OUT 0 0 #T2 OUT 0 0 #T3 OUT 0 0 #T4 OUT 0 0 #T5 OUT 0 0 #T6 OUT 0 0 #T6 IN 8.18 #CYCLE2+TRANSFER 0 #T1 OUT 0 0 #T2 OUT 0 0 #T3 OUT 0 0 #T4 OUT 0 0 #T5 OUT 0 0 #T6 OUT 0 0 #T6 IN 8.18 #CYCLE3+TRANSFER 0 #T1 OUT 0 0 #T2 OUT 0

Page 25: Dynamic Modelling and Optimisation of Carbon Management ......7.5.5 Set 5 – Investigation of adding fresh carbon to Tanks 1, 3 and 5 150 7.5.6 Comparison of Pilot Plant Costings

Appendix A: gPROMS Code

A-12

0 #T3 OUT 0 0 #T4 OUT 0 0 #T5 OUT 0 0 #T6 OUT 0 0 #T6 IN 8.18 #CYCLE4+TRANSFER 0 #T1 OUT 0 0 #T2 OUT 0 0 #T3 OUT 0 0 #T4 OUT 0 0 #T5 OUT 0 0 #T6 OUT 0 0 #T6 IN 8.18 #CYCLE5+TRANSFER 0 #T1 OUT 0 0 #T2 OUT 0 0 #T3 OUT 0 0 #T4 OUT 0 0 #T5 OUT 0 0 #T6 OUT 0 0 #T6 IN 8.18 #CYCLE6+TRANSFER 0 #T1 OUT 0 0 #T2 OUT 0 0 #T3 OUT 0 0 #T4 OUT 0 0 #T5 OUT 0 0 #T6 OUT 0 0 #T6 IN 8.18 #CYCLE7+TRANSFER 0 #T1 OUT 0 0 #T2 OUT 0 0 #T3 OUT 0 0 #T4 OUT 0 0 #T5 OUT 0 0 #T6 OUT 0 0 #T6 IN 8.18 #CYCLE8+TRANSFER 0 #T1 OUT 0 0 #T2 OUT 0 0 #T3 OUT 0 0 #T4 OUT 0 0 #T5 OUT 0 0 #T6 OUT 0 0 #T6 IN 8.18 #CYCLE9+TRANSFER 0 #T1 OUT 0 0 #T2 OUT 0 0 #T3 OUT 0 0 #T4 OUT 0 0 #T5 OUT 0 0 #T6 OUT 0 0 #T6 IN 8.18 #CYCLE10 PIECEWISE-CONSTANT T2.Tank(1).Fcout 0 #CYCLE1+TRANSFER 35.99 #T1 OUT 0 0 #T2 OUT 0 0 #T3 OUT

0 0 #T4 OUT 0 0 #T5 OUT 0 0 #T6 OUT 0 0 #T6 IN 0 #CYCLE2+TRANSFER 35.99 #T1 OUT 0 0 #T2 OUT 0 0 #T3 OUT 0 0 #T4 OUT 0 0 #T5 OUT 0 0 #T6 OUT 0 0 #T6 IN 0 #CYCLE3+TRANSFER 35.99 #T1 OUT 0 0 #T2 OUT 0 0 #T3 OUT 0 0 #T4 OUT 0 0 #T5 OUT 0 0 #T6 OUT 0 0 #T6 IN 0 #CYCLE4+TRANSFER 35.99 #T1 OUT 0 0 #T2 OUT 0 0 #T3 OUT 0 0 #T4 OUT 0 0 #T5 OUT 0 0 #T6 OUT 0 0 #T6 IN 0 #CYCLE5+TRANSFER 35.99 #T1 OUT 0 0 #T2 OUT 0 0 #T3 OUT 0 0 #T4 OUT 0 0 #T5 OUT 0 0 #T6 OUT 0 0 #T6 IN 0 #CYCLE6+TRANSFER 26.99 #T1 OUT 0 0 #T2 OUT 0 0 #T3 OUT 0 0 #T4 OUT 0 0 #T5 OUT 0 0 #T6 OUT 0 0 #T6 IN 0 #CYCLE7+TRANSFER 26.99 #T1 OUT 0 0 #T2 OUT 0 0 #T3 OUT 0 0 #T4 OUT 0 0 #T5 OUT 0 0 #T6 OUT 0 0 #T6 IN 0 #CYCLE8+TRANSFER 26.99 #T1 OUT 0 0 #T2 OUT 0 0 #T3 OUT 0 0 #T4 OUT 0 0 #T5 OUT 0

Page 26: Dynamic Modelling and Optimisation of Carbon Management ......7.5.5 Set 5 – Investigation of adding fresh carbon to Tanks 1, 3 and 5 150 7.5.6 Comparison of Pilot Plant Costings

Appendix A: gPROMS Code

A-13

0 #T6 OUT 0 0 #T6 IN 0 #CYCLE9+TRANSFER 26.99 #T1 OUT 0 0 #T2 OUT 0 0 #T3 OUT 0 0 #T4 OUT 0 0 #T5 OUT 0 0 #T6 OUT 0 0 #T6 IN 0 #CYCLE10 PIECEWISE-CONSTANT T2.Tank(2).Fcout 0 #CYCLE1+TRANSFER 0 #T1 OUT 0 35.99 #T2 OUT 0 0 #T3 OUT 0 0 #T4 OUT 0 0 #T5 OUT 0 0 #T6 OUT 0 0 #T6 IN 0 #CYCLE2+TRANSFER 0 #T1 OUT 0 35.99 #T2 OUT 0 0 #T3 OUT 0 0 #T4 OUT 0 0 #T5 OUT 0 0 #T6 OUT 0 0 #T6 IN 0 #CYCLE3+TRANSFER 0 #T1 OUT 0 35.99 #T2 OUT 0 0 #T3 OUT 0 0 #T4 OUT 0 0 #T5 OUT 0 0 #T6 OUT 0 0 #T6 IN 0 #CYCLE4+TRANSFER 0 #T1 OUT 0 35.99 #T2 OUT 0 0 #T3 OUT 0 0 #T4 OUT 0 0 #T5 OUT 0 0 #T6 OUT 0 0 #T6 IN 0 #CYCLE5+TRANSFER 0 #T1 OUT 0 26.99 #T2 OUT 0 0 #T3 OUT 0 0 #T4 OUT 0 0 #T5 OUT 0 0 #T6 OUT 0 0 #T6 IN 0 #CYCLE6+TRANSFER 0 #T1 OUT 0 26.99 #T2 OUT 0 0 #T3 OUT 0 0 #T4 OUT 0 0 #T5 OUT 0 0 #T6 OUT

0 0 #T6 IN 0 #CYCLE7+TRANSFER 0 #T1 OUT 0 26.99 #T2 OUT 0 0 #T3 OUT 0 0 #T4 OUT 0 0 #T5 OUT 0 0 #T6 OUT 0 0 #T6 IN 0 #CYCLE8+TRANSFER 0 #T1 OUT 0 26.99 #T2 OUT 0 0 #T3 OUT 0 0 #T4 OUT 0 0 #T5 OUT 0 0 #T6 OUT 0 0 #T6 IN 0 #CYCLE9+TRANSFER 0 #T1 OUT 0 26.99 #T2 OUT 0 0 #T3 OUT 0 0 #T4 OUT 0 0 #T5 OUT 0 0 #T6 OUT 0 0 #T6 IN 0 #CYCLE10 PIECEWISE-CONSTANT T2.Tank(3).Fcout 0 #CYCLE1+TRANSFER 0 #T1 OUT 0 0 #T2 OUT 0 35.99 #T3 OUT 0 0 #T4 OUT 0 0 #T5 OUT 0 0 #T6 OUT 0 0 #T6 IN 0 #CYCLE2+TRANSFER 0 #T1 OUT 0 0 #T2 OUT 0 35.99 #T3 OUT 0 0 #T4 OUT 0 0 #T5 OUT 0 0 #T6 OUT 0 0 #T6 IN 0 #CYCLE3+TRANSFER 0 #T1 OUT 0 0 #T2 OUT 0 35.99 #T3 OUT 0 0 #T4 OUT 0 0 #T5 OUT 0 0 #T6 OUT 0 0 #T6 IN 0 #CYCLE4+TRANSFER 0 #T1 OUT 0 0 #T2 OUT 0 26.99 #T3 OUT 0 0 #T4 OUT 0 0 #T5 OUT 0 0 #T6 OUT 0

Page 27: Dynamic Modelling and Optimisation of Carbon Management ......7.5.5 Set 5 – Investigation of adding fresh carbon to Tanks 1, 3 and 5 150 7.5.6 Comparison of Pilot Plant Costings

Appendix A: gPROMS Code

A-14

0 #T6 IN 0 #CYCLE5+TRANSFER 0 #T1 OUT 0 0 #T2 OUT 0 26.99 #T3 OUT 0 0 #T4 OUT 0 0 #T5 OUT 0 0 #T6 OUT 0 0 #T6 IN 0 #CYCLE6+TRANSFER 0 #T1 OUT 0 0 #T2 OUT 0 26.99 #T3 OUT 0 0 #T4 OUT 0 0 #T5 OUT 0 0 #T6 OUT 0 0 #T6 IN 0 #CYCLE7+TRANSFER 0 #T1 OUT 0 0 #T2 OUT 0 26.99 #T3 OUT 0 0 #T4 OUT 0 0 #T5 OUT 0 0 #T6 OUT 0 0 #T6 IN 0 #CYCLE8+TRANSFER 0 #T1 OUT 0 0 #T2 OUT 0 26.99 #T3 OUT 0 0 #T4 OUT 0 0 #T5 OUT 0 0 #T6 OUT 0 0 #T6 IN 0 #CYCLE9+TRANSFER 0 #T1 OUT 0 0 #T2 OUT 0 26.99 #T3 OUT 0 0 #T4 OUT 0 0 #T5 OUT 0 0 #T6 OUT 0 0 #T6 IN 0 #CYCLE10 PIECEWISE-CONSTANT T2.Tank(4).Fcout 0 #CYCLE1+TRANSFER 0 #T1 OUT 0 0 #T2 OUT 0 0 #T3 OUT 0 35.99 #T4 OUT 0 0 #T5 OUT 0 0 #T6 OUT 0 0 #T6 IN 0 #CYCLE2+TRANSFER 0 #T1 OUT 0 0 #T2 OUT 0 0 #T3 OUT 0 35.99 #T4 OUT 0 0 #T5 OUT 0 0 #T6 OUT 0 0 #T6 IN

0 #CYCLE3+TRANSFER 0 #T1 OUT 0 0 #T2 OUT 0 0 #T3 OUT 0 26.99 #T4 OUT 0 0 #T5 OUT 0 0 #T6 OUT 0 0 #T6 IN 0 #CYCLE4+TRANSFER 0 #T1 OUT 0 0 #T2 OUT 0 0 #T3 OUT 0 26.99 #T4 OUT 0 0 #T5 OUT 0 0 #T6 OUT 0 0 #T6 IN 0 #CYCLE5+TRANSFER 0 #T1 OUT 0 0 #T2 OUT 0 0 #T3 OUT 0 26.99 #T4 OUT 0 0 #T5 OUT 0 0 #T6 OUT 0 0 #T6 IN 0 #CYCLE6+TRANSFER 0 #T1 OUT 0 0 #T2 OUT 0 0 #T3 OUT 0 26.99 #T4 OUT 0 0 #T5 OUT 0 0 #T6 OUT 0 0 #T6 IN 0 #CYCLE7+TRANSFER 0 #T1 OUT 0 0 #T2 OUT 0 0 #T3 OUT 0 26.99 #T4 OUT 0 0 #T5 OUT 0 0 #T6 OUT 0 0 #T6 IN 0 #CYCLE8+TRANSFER 0 #T1 OUT 0 0 #T2 OUT 0 0 #T3 OUT 0 26.99 #T4 OUT 0 0 #T5 OUT 0 0 #T6 OUT 0 0 #T6 IN 0 #CYCLE9+TRANSFER 0 #T1 OUT 0 0 #T2 OUT 0 0 #T3 OUT 0 26.99 #T4 OUT 0 0 #T5 OUT 0 0 #T6 OUT 0 0 #T6 IN 0 #CYCLE10 PIECEWISE-CONSTANT T2.Tank(5).Fcout 0 #CYCLE1+TRANSFER

Page 28: Dynamic Modelling and Optimisation of Carbon Management ......7.5.5 Set 5 – Investigation of adding fresh carbon to Tanks 1, 3 and 5 150 7.5.6 Comparison of Pilot Plant Costings

Appendix A: gPROMS Code

A-15

0 #T1 OUT 0 0 #T2 OUT 0 0 #T3 OUT 0 0 #T4 OUT 0 35.99 #T5 OUT 0 0 #T6 OUT 0 0 #T6 IN 0 #CYCLE2+TRANSFER 0 #T1 OUT 0 0 #T2 OUT 0 0 #T3 OUT 0 0 #T4 OUT 0 26.99 #T5 OUT 0 0 #T6 OUT 0 0 #T6 IN 0 #CYCLE3+TRANSFER 0 #T1 OUT 0 0 #T2 OUT 0 0 #T3 OUT 0 0 #T4 OUT 0 26.99 #T5 OUT 0 0 #T6 OUT 0 0 #T6 IN 0 #CYCLE4+TRANSFER 0 #T1 OUT 0 0 #T2 OUT 0 0 #T3 OUT 0 0 #T4 OUT 0 26.99 #T5 OUT 0 0 #T6 OUT 0 0 #T6 IN 0 #CYCLE5+TRANSFER 0 #T1 OUT 0 0 #T2 OUT 0 0 #T3 OUT 0 0 #T4 OUT 0 26.99 #T5 OUT 0 0 #T6 OUT 0 0 #T6 IN 0 #CYCLE6+TRANSFER 0 #T1 OUT 0 0 #T2 OUT 0 0 #T3 OUT 0 0 #T4 OUT 0 26.99 #T5 OUT 0 0 #T6 OUT 0 0 #T6 IN 0 #CYCLE7+TRANSFER 0 #T1 OUT 0 0 #T2 OUT 0 0 #T3 OUT 0 0 #T4 OUT 0 26.99 #T5 OUT 0 0 #T6 OUT 0 0 #T6 IN 0 #CYCLE8+TRANSFER 0 #T1 OUT 0 0 #T2 OUT 0 0 #T3 OUT

0 0 #T4 OUT 0 26.99 #T5 OUT 0 0 #T6 OUT 0 0 #T6 IN 0 #CYCLE9+TRANSFER 0 #T1 OUT 0 0 #T2 OUT 0 0 #T3 OUT 0 0 #T4 OUT 0 26.99 #T5 OUT 0 0 #T6 OUT 0 0 #T6 IN 0 #CYCLE10 PIECEWISE-CONSTANT T2.Tank(6).Fcout 0 #CYCLE1+TRANSFER 0 #T1 OUT 0 0 #T2 OUT 0 0 #T3 OUT 0 0 #T4 OUT 0 0 #T5 OUT 0 26.99 #T6 OUT 0 0 #T6 IN 0 #CYCLE2+TRANSFER 0 #T1 OUT 0 0 #T2 OUT 0 0 #T3 OUT 0 0 #T4 OUT 0 0 #T5 OUT 0 26.99 #T6 OUT 0 0 #T6 IN 0 #CYCLE3+TRANSFER 0 #T1 OUT 0 0 #T2 OUT 0 0 #T3 OUT 0 0 #T4 OUT 0 0 #T5 OUT 0 26.99 #T6 OUT 0 0 #T6 IN 0 #CYCLE4+TRANSFER 0 #T1 OUT 0 0 #T2 OUT 0 0 #T3 OUT 0 0 #T4 OUT 0 0 #T5 OUT 0 26.99 #T6 OUT 0 0 #T6 IN 0 #CYCLE5+TRANSFER 0 #T1 OUT 0 0 #T2 OUT 0 0 #T3 OUT 0 0 #T4 OUT 0 0 #T5 OUT 0 26.99 #T6 OUT 0 0 #T6 IN 0 #CYCLE6+TRANSFER 0 #T1 OUT 0 0 #T2 OUT 0 0 #T3 OUT 0

Page 29: Dynamic Modelling and Optimisation of Carbon Management ......7.5.5 Set 5 – Investigation of adding fresh carbon to Tanks 1, 3 and 5 150 7.5.6 Comparison of Pilot Plant Costings

Appendix A: gPROMS Code

A-16

0 #T4 OUT 0 0 #T5 OUT 0 26.99 #T6 OUT 0 0 #T6 IN 0 #CYCLE7+TRANSFER 0 #T1 OUT 0 0 #T2 OUT 0 0 #T3 OUT 0 0 #T4 OUT 0 0 #T5 OUT 0 26.99 #T6 OUT 0 0 #T6 IN 0 #CYCLE8+TRANSFER 0 #T1 OUT 0 0 #T2 OUT 0 0 #T3 OUT 0 0 #T4 OUT 0 0 #T5 OUT 0 26.99 #T6 OUT 0 0 #T6 IN 0 #CYCLE9+TRANSFER 0 #T1 OUT 0 0 #T2 OUT 0 0 #T3 OUT 0 0 #T4 OUT 0 0 #T5 OUT 0 26.99 #T6 OUT 0 0 #T6 IN 0 #CYCLE10 PIECEWISE-CONSTANT T2.Tank(6).Fcin 0 #CYCLE1+TRANSFER 0 #T1 OUT 0 0 #T2 OUT 0 0 #T3 OUT 0 0 #T4 OUT 0 0 #T5 OUT 0 0 #T6 OUT 0 26.99 #T6 IN 0 #CYCLE2+TRANSFER 0 #T1 OUT 0 0 #T2 OUT 0 0 #T3 OUT 0 0 #T4 OUT 0 0 #T5 OUT 0 0 #T6 OUT 0 26.99 #T6 IN 0 #CYCLE3+TRANSFER 0 #T1 OUT 0 0 #T2 OUT 0 0 #T3 OUT 0 0 #T4 OUT 0 0 #T5 OUT 0 0 #T6 OUT 0 26.99 #T6 IN 0 #CYCLE4+TRANSFER 0 #T1 OUT 0 0 #T2 OUT 0 0 #T3 OUT 0 0 #T4 OUT

0 0 #T5 OUT 0 0 #T6 OUT 0 26.99 #T6 IN 0 #CYCLE5+TRANSFER 0 #T1 OUT 0 0 #T2 OUT 0 0 #T3 OUT 0 0 #T4 OUT 0 0 #T5 OUT 0 0 #T6 OUT 0 26.99 #T6 IN 0 #CYCLE6+TRANSFER 0 #T1 OUT 0 0 #T2 OUT 0 0 #T3 OUT 0 0 #T4 OUT 0 0 #T5 OUT 0 0 #T6 OUT 0 26.99 #T6 IN 0 #CYCLE7+TRANSFER 0 #T1 OUT 0 0 #T2 OUT 0 0 #T3 OUT 0 0 #T4 OUT 0 0 #T5 OUT 0 0 #T6 OUT 0 26.99 #T6 IN 0 #CYCLE8+TRANSFER 0 #T1 OUT 0 0 #T2 OUT 0 0 #T3 OUT 0 0 #T4 OUT 0 0 #T5 OUT 0 0 #T6 OUT 0 26.99 #T6 IN 0 #CYCLE9+TRANSFER 0 #T1 OUT 0 0 #T2 OUT 0 0 #T3 OUT 0 0 #T4 OUT 0 0 #T5 OUT 0 0 #T6 OUT 0 26.99 #T6 IN 0 #CYCLE10 #=====================================================

Page 30: Dynamic Modelling and Optimisation of Carbon Management ......7.5.5 Set 5 – Investigation of adding fresh carbon to Tanks 1, 3 and 5 150 7.5.6 Comparison of Pilot Plant Costings

B-1

Appendix B Equilibrium Isotherm Tests The aim of the equilibrium isotherm tests is to determine which equilibrium isotherm is to be used in the simulation model and its parameter values. The conditions of the tests were performed under similar conditions to what was experienced during the pilot plant simulations. Hence the test is conducted in pulp solution of the same consistency as the CIP pilot plant experimental runs, with the same regenerated carbon from Anglo Gold Sunrise Dam Gold Plant. The tests were conducted in a 2L Whinchester bottle. Different masses of carbon was placed into the bottles with a known concentration of pulp and rolled for 48h. The tests were performed in duplicate for each mass of carbon. Each bottle roll test contained 500mL of pulp at 40% solids with 50ppm Au and 125ppm NaCN. Masses of carbon used were 0.15g, 0.25g, 0.5g, 0.75g, 1g, 2, 3.5g, 4g, 8g. The masses of carbon were chosen to be within the range of what would be experienced in the pilot plant. The tanks started at a nominal mass of 400g per tank which equates to 5g of carbon in 500mL of pulp. Solution samples were taken at the start of the tests before carbon was added to the bottles and at the halfway (24h) point and at the end at 48h. These samples were analysed on the AAS and the results used to calculate the gold loading on the carbon. The results are listed in Table B.1. These results were plotted and the Freundlich and Langmuir Isotherms were fitted to the data. The optimal values of the parameters of the isotherms were determined by minimising the sum of the square of the errors. The results are shown in Figure B.1. From Figure B.1, it can been seem that the Freundlich Isotherm provides a better fit of the experimental data and hence was the isotherm used in the simulations. The parameter values of the Freundlich Isotherm are: A = 7466 with units of [mg Au kg solnb /(mg Aub kg carbon)] b = 0.34

Page 31: Dynamic Modelling and Optimisation of Carbon Management ......7.5.5 Set 5 – Investigation of adding fresh carbon to Tanks 1, 3 and 5 150 7.5.6 Comparison of Pilot Plant Costings

Appendix B: Equilibrium Isotherm Tests

B-2

Gold in Solution Gold on Carbon Nominal Mass

of Carbon Dry Mass of

Carbon At 00h At 48h [g] [g] [ppm] [ppm] [g/t]

0.15 0.132 49.56 41.28 25037 0.15 0.133 45.20 41.07 12416

0.25 0.219 50.12 34.49 28598 0.25 0.218 46.60 33.48 24034

0.5 0.441 50.97 23.63 24773 0.5 0.440 47.97 22.74 22955

0.75 0.657 48.85 12.76 21985 0.75 0.650 47.74 16.06 19485

1 0.864 47.73 11.33 16853 1 0.864 47.28 12.42 16133

2 1.719 47.06 1.88 10515 2 1.724 44.05 2.28 9693

3.5 3.011 47.32 0.51 6220 3.5 3.007 46.40 0.56 6099

4 3.439 48.47 0.45 5585 4 3.444 48.95 0.43 5635

6 5.155 47.40 0.12 3668 6 5.157 48.41 0.26 3735

8 6.880 49.27 0.08 2860 8 6.878 49.65 0.17 2878

Table B.1: List of the results of the Isotherm bottle roll tests

0

5000

10000

15000

20000

25000

30000

35000

0 10 20 30 40 50

Gold in Solution [ppm]

Gol

d on

Car

bon

[g/t]

Langmuir Freundlich Plant Data

Figure B.1: Plot of the fitted Langmuir and Freundlich Isotherms and actual Isotherm bottle roll test data

Page 32: Dynamic Modelling and Optimisation of Carbon Management ......7.5.5 Set 5 – Investigation of adding fresh carbon to Tanks 1, 3 and 5 150 7.5.6 Comparison of Pilot Plant Costings

C-1

Appendix C CIP Pilot Plant Equipment Specifications 1. Adsorption Stand

− Constructed of 304 stainless steel − approximately 2.7m long x 1.3m high x 0.45m wide − includes stablising bars for extra stability and

levelling for uneven surfaces.

2. Tank

− 6 off − Ø350mm x 500mm high, 2mm wall thickness − 304 stainless steel

2.2 Agitator − 6 off − LabMaster SI Mixers Model L5U08F − Speed set at 350rpm − Agitator Blade: Ø117mm A320

2.3 Baffles − Set of 4 per tank. Constructed to slide into the tank.

2.4 Overflow − Overflow outlet Ø19mm, 70mm from top of tank

2.5 Carbon Screen − Ø75mm x 100mm high − stainless steel woven mesh with an aperture of

700 P�

2.6 Tap − located at the bottom of the tank − 19mm, ¼ turn ball valve

3. Drum Stand and Agitator

3.1 Drum Stand − Adjustable stand used to support the drum agitator and its VVVF drive

− constructed of mild steel − stand is 3m high with a chain block used to hoist the

agitator

3.2 Drum Agitator − Sardik SSP75 Mixer − Ø300mm, 3 blade, single impeller − 0.75kW VVVF drive

4. Pumps

4.1 Pulp Feed Pump − Watson Marlow variable speed peristaltic pump − Model No. 504U/RL − Tubing - Marprene 3.2mmID, 1.6mm wall thickness − Setting – 35% − Flowrate - 130mL/min. Measured using a

measuring cylinder.

Page 33: Dynamic Modelling and Optimisation of Carbon Management ......7.5.5 Set 5 – Investigation of adding fresh carbon to Tanks 1, 3 and 5 150 7.5.6 Comparison of Pilot Plant Costings

Appendix C: CIP Pilot Plant Equipment Specifications

C-2

4.2 Pulp Tailings Pump − Watson Marlow variable speed peristaltic pump − Model No. 504U/RL − Tubing - Marprene 3.2mmID, 1.6mm wall thickness − Setting - >35%

4.3 Gold and Cyanide Dosing Pump

− Gilson Minipuls 3 Peristaltic Pump − with 8 channel heads − speed setting : 24rpm − Flowrate: 2mL/min

5. Gold Solution Balance − A&D Mercury HWKGL Light Industrial Platform 10kg x 1g Weigh Balance

6. Atomic Adsorption Spectrometer

− GBC 932 AAS

Page 34: Dynamic Modelling and Optimisation of Carbon Management ......7.5.5 Set 5 – Investigation of adding fresh carbon to Tanks 1, 3 and 5 150 7.5.6 Comparison of Pilot Plant Costings

D-1

Appendix D Sampling Frequency The frequency of sampling was based on Shannon’s Sampling Theorem1 which states: “A continuous function with all frequency components at or below ' can be represented uniquely be values sampled at a frequency equal to or greater than 2 '.” Frequency of pilot plant run = ω′ = 1 cycle/10h = 0.1 cycle/h Sampling frequency = ω′2 = 0.1 x 2 = 0.2 cycle/h

Sampling interval = ω′21

= 0.21

= 5h Hence for a sampling interval of 5h, this equates to two samples per cycle. For the pilot plant runs the following sampling regime was used per 12 cycle: Experimental Run 1 Tanks 1-3: two samples, at the 4th hour, and just before carbon transfer Tanks 4-6: one sample, at just before carbon transfer Experimental Run 2 Tanks 1-2: two samples, at the 4th hour, and just before carbon transfer Tanks 3-4: one sample, at just before carbon transfer Experimental Run 3 Tanks 1-2: two samples, at the 4th hour, and just before carbon transfer Tank 3: one sample, at just before carbon transfer

1 Marlin, Thomas E. (1995) Process Control: Designing Processes and Control

Systems for Dynamic Performance. McGraw-Hill, Singapore, pp382-386.

Page 35: Dynamic Modelling and Optimisation of Carbon Management ......7.5.5 Set 5 – Investigation of adding fresh carbon to Tanks 1, 3 and 5 150 7.5.6 Comparison of Pilot Plant Costings

E-1

Appendix E Experimental Runs Data and Calculations

E.1 Experimental Runs Data

Experimental Run 1

Time Cycle Gold Loading on Carbon [mg/kg][h] Tank 1 Tank 2 Tank 3 Tank 4 Tank 5 Tank 6

0.0 1598 833 710 607 445 1334.0 1341 914 823

10.2 1557 937 777 648 427 13816.0 1184 849 64022.2 1747 1092 730 437 170 15328.0 1328 746 55234.2 1653 855 552 188 164 15940.0 1008 615 20446.2 1458 730 210 169 165 15952.0 1167 312 24358.2 1578 371 231 164 143 12464.0 755 256 17570.2 1069 243 157 201 18176.0 983 320 19882.2 1384 389 214 207 185 16788.0 946 302 20494.2 1424 408 217 184 184 175

100.0 736 277 214106.2 1265 380 212 177 176 146112.0 869 278 175118.2 1319 400 216 185 159 146

1

2

3

4

5

6

7

8

9

10

Time Cycle Gold in Solution Concentration [ppm][h] Tank 1 Tank 2 Tank 3 Tank 4 Tank 5 Tank 6

0.0 0.000 0.000 0.000 0.000 0.000 0.0001.0 0.246 0.361 0.1464.0 0.360 0.046 0.020

10.2 0.399 0.058 0.023 0.012 0.011 0.01216.0 0.431 0.060 0.02722.2 0.475 0.083 0.040 0.019 0.016 0.01328.0 0.402 0.075 0.03934.2 0.466 0.068 0.028 0.015 0.010 0.01040.0 0.453 0.064 0.02946.2 0.504 0.083 0.031 0.012 0.007 0.01152.0 0.487 0.069 0.02158.2 0.516 0.083 0.029 0.011 0.008 0.01064.0 0.534 0.069 0.02670.2 0.727 0.111 0.030 0.012 0.009 0.00976.0 0.558 0.071 0.02082.2 0.682 0.096 0.026 0.013 0.009 0.00988.0 0.555 0.071 0.02694.2 0.707 0.107 0.034 0.015 0.012 0.012

100.0 0.522 0.077 0.037106.2 0.649 0.093 0.031 0.014 0.011 0.012112.0 0.601 0.079 0.035118.2 0.757 0.119 0.044 0.011 0.007 0.007

1

2

3

4

5

6

7

8

9

10

Page 36: Dynamic Modelling and Optimisation of Carbon Management ......7.5.5 Set 5 – Investigation of adding fresh carbon to Tanks 1, 3 and 5 150 7.5.6 Comparison of Pilot Plant Costings

Appendix E: Experimental Runs Data and Calculations

E-2

Experimental Run 2

Time Cycle Gold Loading on Carbon [mg/kg] Gold in Solution Concentration [ppm][h] Tank 1 Tank 2 Tank 3 Tank 4 Tank 1 Tank 2 Tank 3 Tank 4

0.0 113 113 113 113 0.000 0.000 0.000 0.0004.0 422 156 0.513 0.049

10.3 869 209 125 116 0.569 0.080 0.013 0.00416.1 614 167 0.528 0.05022.3 945 253 147 126 0.598 0.074 0.018 0.00830.0 647 205 0.533 0.07234.3 1272 252 158 132 0.668 0.093 0.017 0.00640.3 558 206 0.535 0.04446.3 988 288 172 123 0.678 0.074 0.013 0.00452.0 595 203 0.491 0.05358.3 1022 285 151 150 0.615 0.070 0.013 0.00364.3 700 196 0.470 0.04270.3 981 287 187 124 0.609 0.069 0.014 0.00876.0 613 219 0.430 0.05582.3 1204 263 177 134 0.588 0.086 0.009 0.01888.3 605 225 0.481 0.04894.3 1033 294 163 118 0.662 0.080 0.019 0.011

1

2

3

4

5

6

7

8

Experimental Run 3

Time Cycle

[h] Tank 1 Tank 2 Tank 3 Tank 1 Tank 2 Tank 30.0 133 133 133 0.000 0.000 0.0004.1 533 203 0.873 0.069

11.0 1204 323 162 1.269 0.122 0.01816.6 1294 287 1.062 0.12623.0 1958 412 173 1.379 0.159 0.02728.0 1654 392 1.131 0.12035.0 2397 519 228 1.598 0.189 0.03740.7 1958 473 1.170 0.14147.0 2780 622 251 1.431 0.174 0.03352.0 1947 484 1.126 0.12759.0 2667 665 232 1.641 0.215 0.04064.6 2397 535 1.241 0.17071.0 2859 715 250 1.518 0.214 0.03976.0 2206 557 1.365 0.16983.0 2870 791 261 1.868 0.278 0.04488.6 2431 607 1.406 0.18895.0 2971 752 259 1.757 0.246 0.043

Gold in Solution Concentration [ppm]

Gold Loading on Carbon [mg/kg]

1

2

3

4

5

6

7

8

Page 37: Dynamic Modelling and Optimisation of Carbon Management ......7.5.5 Set 5 – Investigation of adding fresh carbon to Tanks 1, 3 and 5 150 7.5.6 Comparison of Pilot Plant Costings

Appendix E: Experimental Runs Data and Calculations

E-3

E.2 Error on Experimental Data Gold Loading on Carbon Error for gold loading on carbon is 8%. This value was based on the sum of errors involved in the analysis of the gold loading on carbon. The errors were based on the errors of the measuring equipment involved and the errors associated with the AAS. Gold in Solution Concentration The errors margins used depended on the solution concentration measured. At higher concentrations of 0.5ppm and above the error was set at 5%. For lower concentrations the error was set at between 0.01-0.02ppm. This is based on the detection limit of the AAS of 0.08ppm and the extraction ratio of solution and DIBK used in the analysis. Two extraction ratios were used. The first involved combining 20mL of gold solution with 5mL of DIBK concentrating the sample up by a factor of 4. For these samples the error used was 0.08ppm (the detection limit of the AAS) divided by 4, equalling 0.02ppm. The second combined 40mL of gold solution sample with 5mL of DIBK, concentrating up the sample by a factor of 8. The error margin used for these samples was 0.01ppm.

Page 38: Dynamic Modelling and Optimisation of Carbon Management ......7.5.5 Set 5 – Investigation of adding fresh carbon to Tanks 1, 3 and 5 150 7.5.6 Comparison of Pilot Plant Costings

Appendix E: Experimental Runs Data and Calculations

E-4

E.3 Gold Balance Calculations Experimental Run 1 Pilot Plant DataA GIC at T00h (start) 1663 mg (Carbon in T1-T6)B GIC at 120h (end) 331 mg (Carbon in T2-T6, T1 - already removed)C Au on C removed from pilot plant 4609 mgD Au on C entering pilot plant 395 mgE Gold to tailings - solution 7.10 mgF Gold to tailings - solids 82.31 mgG Gold soln into pilot plant 3035 mg

(GIC=Gold in Circuit)

Total Gold BalanceGold in = gold soln into pilot plant 3035 mg

H Calc. Gold in = Au on C removed from plant 4609 mg+ Gold to tailings - solution 7.10 mg+ Gold to tailings - solids 82.31 mg+ GIC at 120h (end) 331 mg- GIC at T00h (start) -1663 mg- Au on C entering plant -395 mgtotal (= calc. gold feed) 2971.41 mg

gold in-calc. gold in = 63.59 mg% error 2.10%

Experimental Run 2 Pilot Plant DataA GIC at T00h (start) 147 mg (Carbon in T1-T4)B GIC at 120h (end) 178 mg (Carbon in T2-T4, T1 - already removed)C Au on C removed from pilot plant 2484 mgD Au on C entering pilot plant 257 mgE Gold to tailings - solution 4.13 mgF Gold to tailings - solids 41.34 mgG Gold soln into pilot plant 2186 mg

(GIC=Gold in Circuit)

Total Gold BalanceGold in = gold soln into pilot plant 2186 mg

H Calc. Gold in = Au on C removed from plant 2484 mg+ Gold to tailings - solution 4.13 mg+ Gold to tailings - solids 41.34 mg+ GIC at 120h (end) 178 mg- GIC at T00h (start) -147 mg- Au on C entering plant -257 mgtotal (= calc. gold feed) 2303.47 mg

gold in-calc. gold in = -117.466 mg% error -5.37%

Page 39: Dynamic Modelling and Optimisation of Carbon Management ......7.5.5 Set 5 – Investigation of adding fresh carbon to Tanks 1, 3 and 5 150 7.5.6 Comparison of Pilot Plant Costings

Appendix E: Experimental Runs Data and Calculations

E-5

Experimental Run 3 Pilot Plant DataA GIC at T00h (start) 151.62 mg (Carbon in T1-T3)B GIC at 120h (end) 983.16 mg (Carbon in T2-T3, T1 - already removed)C Au on C removed from pilot plant 4104.97 mgD Au on C entering pilot plant 176.89 mgE Gold to tailings - solution 22.17 mgF Gold to tailings - solids 57.08 mgG Gold soln into pilot plant 5185.50 mg

(GIC=Gold in Circuit)

Total Gold BalanceGold in = gold soln into pilot plant 5185.50 mg

H Calc. Gold in = Au on C removed from plant 4104.97 mg+ Gold to tailings - solution 22.17 mg+ Gold to tailings - solids 57.08 mg+ GIC at 120h (end) 983.16 mg- GIC at T00h (start) -151.62 mg- Au on C entering plant -176.89 mgtotal (= calc. gold feed) 4838.88 mg

gold in-calc. gold in = 346.62 mg% error 6.68%

Page 40: Dynamic Modelling and Optimisation of Carbon Management ......7.5.5 Set 5 – Investigation of adding fresh carbon to Tanks 1, 3 and 5 150 7.5.6 Comparison of Pilot Plant Costings

F-1

Appendix F Parameter Estimation Simulation Results

Page 41: Dynamic Modelling and Optimisation of Carbon Management ......7.5.5 Set 5 – Investigation of adding fresh carbon to Tanks 1, 3 and 5 150 7.5.6 Comparison of Pilot Plant Costings

Appendix F: Parameter Estimation Simulation Results

F-2

Parameter Estimation 1-1

Estimated K2 = 341.99, K3 = -0.168 Set Mc = 0.4, 0.3kg, T1.Xin = 4.2ppm, T6Yin = 133mg/kg

0

500

1000

1500

2000

0 20 40 60 80 100 120

Time [h]

Tank

1G

old

on C

arbo

n [m

g/kg

]

0

200

400

600

800

1000

1200

0 20 40 60 80 100 120

Time [h]

Tank

2G

old

on C

arbo

n [m

g/kg

]

0

200

400

600

800

1000

0 20 40 60 80 100 120

Time [h]

Tank

3G

old

on C

arbo

n [m

g/kg

]

0.0

0.2

0.4

0.6

0.8

0 20 40 60 80 100 120

Time [h]

Tank

1G

old

in S

olut

ion

[ppm

]

0.0

0.1

0.2

0.3

0.4

0.5

0 20 40 60 80 100 120

Time [h]

Tank

2G

old

in S

olut

ion

[ppm

]

0.00

0.05

0.10

0.15

0.20

0 20 40 60 80 100 120

Time [h]

Tank

3G

old

in S

olut

ion

[ppm

]

0

200

400

600

800

0 20 40 60 80 100 120

Time [h]

Tank

4G

old

on C

arbo

n [m

g/kg

]

0

100

200

300

400

500

0 20 40 60 80 100 120

Time [h]

Tank

5G

old

on C

arbo

n [m

g/kg

]

0

50

100

150

200

250

0 20 40 60 80 100 120

Time [h]

Tank

6G

old

on C

arbo

n [m

g/kg

]

0.00

0.01

0.02

0.03

0.04

0 20 40 60 80 100 120

Time [h]

Tank

4G

old

in S

olut

ion

[ppm

]

0.00

0.01

0.02

0.03

0.04

0 20 40 60 80 100 120

Time [h]

Tank

5G

old

in S

olut

ion

[ppm

]

0.00

0.01

0.02

0.03

0.04

0 20 40 60 80 100 120

Time [h]

Tank

6G

old

in S

olut

ion

[ppm

]

Legend: : Simulation, � Measured data

Page 42: Dynamic Modelling and Optimisation of Carbon Management ......7.5.5 Set 5 – Investigation of adding fresh carbon to Tanks 1, 3 and 5 150 7.5.6 Comparison of Pilot Plant Costings

Appendix F: Parameter Estimation Simulation Results

F-3

Parameter Estimation 1-2

Estimated K2 = 345.01, K3 = -0.168 Set Mc = 0.4, 0.3kg, T1.Xin = 4.2ppm, T6Yin = 133mg/kg

0

500

1000

1500

2000

0 20 40 60 80 100 120

Time [h]

Tank

1G

old

on C

arbo

n [m

g/kg

]

0

200

400

600

800

1000

1200

0 20 40 60 80 100 120

Time [h]

Tank

2G

old

on C

arbo

n [m

g/kg

]

0

200

400

600

800

1000

0 20 40 60 80 100 120

Time [h]

Tank

3G

old

on C

arbo

n [m

g/kg

]

0.0

0.2

0.4

0.6

0.8

0 20 40 60 80 100 120

Time [h]

Tank

1G

old

in S

olut

ion

[ppm

]

0.0

0.1

0.2

0.3

0.4

0.5

0 20 40 60 80 100 120

Time [h]

Tank

2G

old

in S

olut

ion

[ppm

]

0.00

0.05

0.10

0.15

0.20

0 20 40 60 80 100 120

Time [h]

Tank

3G

old

in S

olut

ion

[ppm

]

0

200

400

600

800

0 20 40 60 80 100 120

Time [h]

Tan

k 4

Gol

d o

n C

arbo

n [m

g/k

g]

0

100

200

300

400

500

0 20 40 60 80 100 120

Time [h]

Tan

k 5

Go

ld o

n C

arb

on [m

g/k

g]

0

50

100

150

200

250

0 20 40 60 80 100 120

Time [h]

Tan

k 6

Go

ld o

n C

arb

on [m

g/k

g]

0.00

0.01

0.02

0.03

0.04

0 20 40 60 80 100 120

Time [h]

Tan

k 4

Gol

d in

So

luti

on [p

pm]

0.00

0.01

0.02

0.03

0.04

0 20 40 60 80 100 120

Time [h]

Tan

k 5

Gol

d in

So

luti

on [p

pm]

0.00

0.01

0.02

0.03

0.04

0 20 40 60 80 100 120

Time [h]

Tank

6G

old

in

So

lutio

n [p

pm]

Legend: : Simulation, � Measured data

Page 43: Dynamic Modelling and Optimisation of Carbon Management ......7.5.5 Set 5 – Investigation of adding fresh carbon to Tanks 1, 3 and 5 150 7.5.6 Comparison of Pilot Plant Costings

Appendix F: Parameter Estimation Simulation Results

F-4

Parameter Estimation 1-3

Estimated K2 = 343.54, K3 = -0.175 Set Mc = 0.4, 0.3kg, T1.Xin = 4.2ppm, T6Yin = 133mg/kg

0

500

1000

1500

2000

0 20 40 60 80 100 120

Time [h]

Tank

1G

old

on C

arbo

n [m

g/kg

]

0

200

400

600

800

1000

1200

0 20 40 60 80 100 120

Time [h]

Tank

2G

old

on C

arbo

n [m

g/kg

]

0

200

400

600

800

1000

0 20 40 60 80 100 120

Time [h]

Tank

3G

old

on C

arbo

n [m

g/kg

]

0

0.2

0.4

0.6

0.8

0 20 40 60 80 100 120

Time [h]

Tank

1G

old

in S

olut

ion

[ppm

]

0.00

0.10

0.20

0.30

0.40

0.50

0 20 40 60 80 100 120

Time [h]

Tank

2G

old

in S

olut

ion

[ppm

]

0.00

0.05

0.10

0.15

0.20

0 20 40 60 80 100 120

Time [h]

Tank

3G

old

in S

olut

ion

[ppm

]

0

200

400

600

800

0 20 40 60 80 100 120

Time [h]

Tank

4G

old

on C

arbo

n [m

g/kg

]

0

100

200

300

400

500

0 20 40 60 80 100 120

Time [h]

Tank

5G

old

on C

arbo

n [m

g/kg

]

0

50

100

150

200

250

0 20 40 60 80 100 120

Time [h]

Tank

6G

old

on C

arbo

n [m

g/kg

]

0.00

0.01

0.02

0.03

0.04

0 20 40 60 80 100 120

Time [h]

Tank

4G

old

in S

olut

ion

[ppm

]

0.00

0.01

0.02

0.03

0.04

0 20 40 60 80 100 120

Time [h]

Tank

5G

old

in S

olut

ion

[ppm

]

0.00

0.01

0.02

0.03

0.04

0 20 40 60 80 100 120

Time [h]

Tank

6G

old

in S

olut

ion

[ppm

]

Legend: : Simulation, � Measured data

Page 44: Dynamic Modelling and Optimisation of Carbon Management ......7.5.5 Set 5 – Investigation of adding fresh carbon to Tanks 1, 3 and 5 150 7.5.6 Comparison of Pilot Plant Costings

Appendix F: Parameter Estimation Simulation Results

F-5

Parameter Estimation 1-4

Estimated K2 = 349.91, K3 = -0.148 Set Mc = 0.4, 0.3kg, T1.Xin = 4.2ppm, T6Yin = 133mg/kg

0

500

1000

1500

2000

0 20 40 60 80 100 120

Time [h]

Tan

k 1

Go

ld o

n C

arb

on [m

g/k

g]

0

200

400

600

800

1000

1200

0 20 40 60 80 100 120

Time [h]

Tan

k 2

Gol

d o

n C

arb

on

[mg/

kg]

0

200

400

600

800

1000

0 20 40 60 80 100 120

Time [h]

Tan

k 3

Gol

d o

n C

arbo

n [m

g/kg

]

0

0.2

0.4

0.6

0.8

0 20 40 60 80 100 120

Time [h]

Tank

1G

old

in

So

lutio

n [p

pm]

0

0.1

0.2

0.3

0.4

0.5

0 20 40 60 80 100 120

Time [h]

Tan

k 2

Go

ld in

Sol

utio

n [p

pm

]

0.00

0.05

0.10

0.15

0.20

0 20 40 60 80 100 120

Time [h]

Tan

k 3

Gol

d in

Sol

utio

n [p

pm

]

0

200

400

600

800

0 20 40 60 80 100 120

Time [h]

Tank

4G

old

on C

arbo

n [m

g/kg

]

0

100

200

300

400

500

0 20 40 60 80 100 120

Time [h]

Tank

5G

old

on C

arbo

n [m

g/kg

]

0

50

100

150

200

250

0 20 40 60 80 100 120

Time [h]

Tank

6G

old

on C

arbo

n [m

g/kg

]

0.00

0.01

0.02

0.03

0.04

0 20 40 60 80 100 120

Time [h]

Tank

4G

old

in S

olut

ion

[ppm

]

0.00

0.01

0.02

0.03

0.04

0 20 40 60 80 100 120

Time [h]

Tank

5G

old

in S

olut

ion

[ppm

]

0.00

0.01

0.02

0.03

0.04

0 20 40 60 80 100 120

Time [h]

Tank

6G

old

in S

olut

ion

[ppm

]

Legend: : Simulation, � Measured data

Page 45: Dynamic Modelling and Optimisation of Carbon Management ......7.5.5 Set 5 – Investigation of adding fresh carbon to Tanks 1, 3 and 5 150 7.5.6 Comparison of Pilot Plant Costings

Appendix F: Parameter Estimation Simulation Results

F-6

Parameter Estimation 1-5

Estimated K2 = 342.14, K3 = -0.182 Set Mc = 0.4, 0.3kg, T1.Xin = 4.2ppm, T6Yin = 133mg/kg

0

500

1000

1500

2000

0 20 40 60 80 100 120

Time [h]

Tank

1G

old

on C

arbo

n [m

g/kg

]

0

200

400

600

800

1000

1200

0 20 40 60 80 100 120

Time [h]

Tank

2G

old

on C

arbo

n [m

g/kg

]

0

200

400

600

800

1000

0 20 40 60 80 100 120

Time [h]

Tank

3G

old

on C

arbo

n [m

g/kg

]

0

0.2

0.4

0.6

0.8

0 20 40 60 80 100 120

Time [h]

Tank

1G

old

in S

olut

ion

[ppm

]

0.00

0.10

0.20

0.30

0.40

0.50

0 20 40 60 80 100 120

Time [h]

Tank

2G

old

in S

olut

ion

[ppm

]

0.00

0.05

0.10

0.15

0.20

0 20 40 60 80 100 120

Time [h]

Tank

3G

old

in S

olut

ion

[ppm

]

0

200

400

600

800

0 20 40 60 80 100 120

Time [h]

Tan

k 4

Go

ld o

n C

arbo

n [m

g/k

g]

0

100

200

300

400

500

0 20 40 60 80 100 120

Time [h]

Tan

k 5

Gol

d o

n C

arbo

n [m

g/k

g]

0

50

100

150

200

250

0 20 40 60 80 100 120

Time [h]

Tan

k 6

Go

ld o

n C

arb

on [m

g/k

g]

0.00

0.01

0.02

0.03

0.04

0 20 40 60 80 100 120

Time [h]

Tan

k 4

Go

ld i

n S

olu

tion

[ppm

]

0.00

0.01

0.02

0.03

0.04

0 20 40 60 80 100 120

Time [h]

Tan

k 5

Gol

d in

Sol

utio

n [p

pm

]

0.00

0.01

0.02

0.03

0.04

0 20 40 60 80 100 120

Time [h]

Tan

k 6

Gol

d in

So

luti

on [p

pm]

Legend: : Simulation, � Measured data

Page 46: Dynamic Modelling and Optimisation of Carbon Management ......7.5.5 Set 5 – Investigation of adding fresh carbon to Tanks 1, 3 and 5 150 7.5.6 Comparison of Pilot Plant Costings

Appendix F: Parameter Estimation Simulation Results

F-7

Parameter Estimation 2-1

Estimated K2 = 343.36, K3 = -0.175, A = 14934, b = 1.83 ×10-7 Set Mc = 0.4, 0.3kg, T1.Xin = 4.2ppm, T6Yin = 133mg/kg

0

500

1000

1500

2000

0 20 40 60 80 100 120

Time [h]

Tank

1G

old

on C

arbo

n [m

g/kg

]

0

200

400

600

800

1000

1200

0 20 40 60 80 100 120

Time [h]

Tank

2G

old

on C

arbo

n [m

g/kg

]

0

200

400

600

800

1000

0 20 40 60 80 100 120

Time [h]

Tank

3G

old

on C

arbo

n [m

g/kg

]

0.0

0.2

0.4

0.6

0.8

0 20 40 60 80 100 120

Time [h]

Tank

1G

old

in S

olut

ion

[ppm

]

0.0

0.1

0.2

0.3

0.4

0.5

0 20 40 60 80 100 120

Time [h]

Tank

2G

old

in S

olut

ion

[ppm

]

0.00

0.05

0.10

0.15

0.20

0 20 40 60 80 100 120

Time [h]

Tank

3G

old

in S

olut

ion

[ppm

]

0

200

400

600

800

0 20 40 60 80 100 120

Time [h]

Tank

4G

old

on C

arbo

n [m

g/kg

]

0

100

200

300

400

500

0 20 40 60 80 100 120

Time [h]

Tank

5G

old

on C

arbo

n [m

g/kg

]

0

50

100

150

200

250

0 20 40 60 80 100 120

Time [h]

Tank

6G

old

on C

arbo

n [m

g/kg

]

0.00

0.01

0.02

0.03

0.04

0 20 40 60 80 100 120

Time [h]

Tank

4G

old

in S

olut

ion

[ppm

]

0.00

0.01

0.02

0.03

0.04

0 20 40 60 80 100 120

Time [h]

Tank

5G

old

in S

olut

ion

[ppm

]

0.00

0.01

0.02

0.03

0.04

0 20 40 60 80 100 120

Time [h]

Tank

6G

old

in S

olut

ion

[ppm

]

Legend: : Simulation, � Measured data

Page 47: Dynamic Modelling and Optimisation of Carbon Management ......7.5.5 Set 5 – Investigation of adding fresh carbon to Tanks 1, 3 and 5 150 7.5.6 Comparison of Pilot Plant Costings

Appendix F: Parameter Estimation Simulation Results

F-8

Parameter Estimation 2-2

Estimated K1= 144.56, A = 242914, b = 1.172 Set Mc = 0.4, 0.3kg, T1.Xin = 4.2ppm, T6Yin = 133mg/kg

0

500

1000

1500

2000

0 20 40 60 80 100 120

Time [h]

Tank

1G

old

on C

arbo

n [m

g/kg

]

0

200

400

600

800

1000

1200

0 20 40 60 80 100 120

Time [h]

Tank

2G

old

on C

arbo

n [m

g/kg

]

0

200

400

600

800

1000

0 20 40 60 80 100 120

Time [h]

Tank

3G

old

on C

arbo

n [m

g/kg

]

0.0

0.2

0.4

0.6

0.8

0 20 40 60 80 100 120

Time [h]

Tank

1G

old

in S

olut

ion

[ppm

]

0.0

0.1

0.2

0.3

0.4

0.5

0 20 40 60 80 100 120

Time [h]

Tank

2G

old

in S

olut

ion

[ppm

]

0.00

0.05

0.10

0.15

0.20

0 20 40 60 80 100 120

Time [h]

Tank

3G

old

in S

olut

ion

[ppm

]

0

200

400

600

800

0 20 40 60 80 100 120

Time [h]

Tan

k 4

Gol

d o

n C

arbo

n [m

g/k

g]

0

100

200

300

400

500

0 20 40 60 80 100 120

Time [h]

Tan

k 5

Go

ld o

n C

arb

on [m

g/k

g]

0

50

100

150

200

250

0 20 40 60 80 100 120

Time [h]

Tan

k 6

Go

ld o

n C

arb

on [m

g/k

g]

0.00

0.01

0.02

0.03

0.04

0.05

0 20 40 60 80 100 120

Time [h]

Tan

k 4

Gol

d in

So

luti

on [p

pm]

0.00

0.01

0.02

0.03

0.04

0 20 40 60 80 100 120

Time [h]

Tan

k 5

Gol

d in

So

luti

on [p

pm]

0.00

0.01

0.02

0.03

0.04

0 20 40 60 80 100 120

Time [h]

Tank

6G

old

in

So

lutio

n [p

pm]

Legend: : Simulation, � Measured data

Page 48: Dynamic Modelling and Optimisation of Carbon Management ......7.5.5 Set 5 – Investigation of adding fresh carbon to Tanks 1, 3 and 5 150 7.5.6 Comparison of Pilot Plant Costings

Appendix F: Parameter Estimation Simulation Results

F-9

Parameter Estimation 3-1

Estimated K2 = 353.56, K3 = -0.148, T1.Xin = 5.109ppm Set Mc = 0.4, 0.3kg, T6Yin = 133mg/kg

0

500

1000

1500

2000

0 20 40 60 80 100 120

Time [h]

Tank

1G

old

on C

arbo

n [m

g/kg

]

0

200

400

600

800

1000

1200

0 20 40 60 80 100 120

Time [h]

Tank

2G

old

on C

arbo

n [m

g/kg

]

0

200

400

600

800

1000

0 20 40 60 80 100 120

Time [h]

Tank

3G

old

on C

arbo

n [m

g/kg

]

0

0.2

0.4

0.6

0.8

0 20 40 60 80 100 120

Time [h]

Tank

1G

old

in S

olut

ion

[ppm

]

0.00

0.10

0.20

0.30

0.40

0.50

0 20 40 60 80 100 120

Time [h]

Tank

2G

old

in S

olut

ion

[ppm

]

0.00

0.05

0.10

0.15

0.20

0 20 40 60 80 100 120

Time [h]

Tank

3G

old

in S

olut

ion

[ppm

]

0

200

400

600

800

0 20 40 60 80 100 120

Time [h]

Tank

4G

old

on C

arbo

n [m

g/kg

]

0

100

200

300

400

500

0 20 40 60 80 100 120

Time [h]

Tank

5G

old

on C

arbo

n [m

g/kg

]

0

50

100

150

200

250

0 20 40 60 80 100 120

Time [h]

Tank

6G

old

on C

arbo

n [m

g/kg

]

0.00

0.01

0.02

0.03

0.04

0 20 40 60 80 100 120

Time [h]

Tank

4G

old

in S

olut

ion

[ppm

]

0.00

0.01

0.02

0.03

0.04

0 20 40 60 80 100 120

Time [h]

Tank

5G

old

in S

olut

ion

[ppm

]

0.00

0.01

0.02

0.03

0.04

0 20 40 60 80 100 120

Time [h]

Tank

6G

old

in S

olut

ion

[ppm

]

Legend: : Simulation, � Measured data

Page 49: Dynamic Modelling and Optimisation of Carbon Management ......7.5.5 Set 5 – Investigation of adding fresh carbon to Tanks 1, 3 and 5 150 7.5.6 Comparison of Pilot Plant Costings

Appendix F: Parameter Estimation Simulation Results

F-10

Parameter Estimation 3-2

Estimated K2 = 339.82, K3 = -0.137, T1.Xin = 4.143ppm, %solids = 0 Set Mc = 0.4, 0.3kg, T6Yin = 133mg/kg

0

500

1000

1500

2000

0 20 40 60 80 100 120

Time [h]

Tan

k 1

Go

ld o

n C

arb

on [m

g/k

g]

0

200

400

600

800

1000

1200

0 20 40 60 80 100 120

Time [h]

Tan

k 2

Gol

d o

n C

arb

on

[mg/

kg]

0

200

400

600

800

1000

0 20 40 60 80 100 120

Time [h]

Tan

k 3

Gol

d o

n C

arbo

n [m

g/kg

]

0

0.2

0.4

0.6

0.8

0 20 40 60 80 100 120

Time [h]

Tank

1G

old

in

So

lutio

n [p

pm]

0

0.1

0.2

0.3

0.4

0.5

0 20 40 60 80 100 120

Time [h]

Tan

k 2

Go

ld in

Sol

utio

n [p

pm

]

0.00

0.05

0.10

0.15

0.20

0 20 40 60 80 100 120

Time [h]

Tan

k 3

Gol

d in

Sol

utio

n [p

pm

]

0

200

400

600

800

0 20 40 60 80 100 120

Time [h]

Tank

4G

old

on C

arbo

n [m

g/kg

]

0

100

200

300

400

500

0 20 40 60 80 100 120

Time [h]

Tank

5G

old

on C

arbo

n [m

g/kg

]

0

50

100

150

200

250

0 20 40 60 80 100 120

Time [h]

Tank

6G

old

on C

arbo

n [m

g/kg

]

0.00

0.01

0.02

0.03

0.04

0 20 40 60 80 100 120

Time [h]

Tank

4G

old

in S

olut

ion

[ppm

]

0.00

0.01

0.02

0.03

0.04

0 20 40 60 80 100 120

Time [h]

Tank

5G

old

in S

olut

ion

[ppm

]

0.00

0.01

0.02

0.03

0.04

0 20 40 60 80 100 120

Time [h]

Tank

6G

old

in S

olut

ion

[ppm

]

Legend: : Simulation, � Measured data

Page 50: Dynamic Modelling and Optimisation of Carbon Management ......7.5.5 Set 5 – Investigation of adding fresh carbon to Tanks 1, 3 and 5 150 7.5.6 Comparison of Pilot Plant Costings

Appendix F: Parameter Estimation Simulation Results

F-11

Parameter Estimation 4-1 (Results same for 4-2)

Estimated T6.Yin = 237mg/kg Set K2 = 341.99, K3 = -0.168, Mc = 0.4, 0.3kg, T1.Xin = 4.2ppm

0

500

1000

1500

2000

0 20 40 60 80 100 120

Time [h]

Tank

1G

old

on C

arbo

n [m

g/kg

]

0

200

400

600

800

1000

1200

0 20 40 60 80 100 120

Time [h]

Tank

2G

old

on C

arbo

n [m

g/kg

]

0

200

400

600

800

1000

0 20 40 60 80 100 120

Time [h]

Tank

3G

old

on C

arbo

n [m

g/kg

]

0.0

0.2

0.4

0.6

0.8

0 20 40 60 80 100 120

Time [h]

Tank

1G

old

in S

olut

ion

[ppm

]

0.0

0.1

0.2

0.3

0.4

0.5

0 20 40 60 80 100 120

Time [h]

Tank

2G

old

in S

olut

ion

[ppm

]

0.00

0.05

0.10

0.15

0.20

0 20 40 60 80 100 120

Time [h]

Tank

3G

old

in S

olut

ion

[ppm

]

0

200

400

600

800

0 20 40 60 80 100 120

Time [h]

Tank

4G

old

on C

arbo

n [m

g/kg

]

0

100

200

300

400

500

0 20 40 60 80 100 120

Time [h]

Tank

5G

old

on C

arbo

n [m

g/kg

]

0

50

100

150

200

250

0 20 40 60 80 100 120

Time [h]

Tank

6G

old

on C

arbo

n [m

g/kg

]

0.00

0.01

0.02

0.03

0.04

0 20 40 60 80 100 120

Time [h]

Tank

4G

old

in S

olut

ion

[ppm

]

0.00

0.01

0.02

0.03

0.04

0 20 40 60 80 100 120

Time [h]

Tank

5G

old

in S

olut

ion

[ppm

]

0.00

0.01

0.02

0.03

0.04

0 20 40 60 80 100 120

Time [h]

Tank

6G

old

in S

olut

ion

[ppm

]

Legend: : Simulation, � Measured data

Page 51: Dynamic Modelling and Optimisation of Carbon Management ......7.5.5 Set 5 – Investigation of adding fresh carbon to Tanks 1, 3 and 5 150 7.5.6 Comparison of Pilot Plant Costings

Appendix F: Parameter Estimation Simulation Results

F-12

Parameter Estimation 4-3

Estimated K2 = 348.02, K3 = -0.152, T1.Xin = 4.827ppm, T6.Yin = 221mg/kg Set Mc = 0.4, 0.3kg,

0

500

1000

1500

2000

0 20 40 60 80 100 120

Time [h]

Tank

1G

old

on C

arbo

n [m

g/kg

]

0

200

400

600

800

1000

1200

0 20 40 60 80 100 120

Time [h]

Tank

2G

old

on C

arbo

n [m

g/kg

]

0

200

400

600

800

1000

0 20 40 60 80 100 120

Time [h]

Tank

3G

old

on C

arbo

n [m

g/kg

]

0.0

0.2

0.4

0.6

0.8

0 20 40 60 80 100 120

Time [h]

Tank

1G

old

in S

olut

ion

[ppm

]

0.0

0.1

0.2

0.3

0.4

0.5

0 20 40 60 80 100 120

Time [h]

Tank

2G

old

in S

olut

ion

[ppm

]

0.00

0.05

0.10

0.15

0.20

0 20 40 60 80 100 120

Time [h]

Tank

3G

old

in S

olut

ion

[ppm

]

0

200

400

600

800

0 20 40 60 80 100 120

Time [h]

Tan

k 4

Gol

d o

n C

arbo

n [m

g/k

g]

0

100

200

300

400

500

0 20 40 60 80 100 120

Time [h]

Tan

k 5

Go

ld o

n C

arb

on [m

g/k

g]

0

50

100

150

200

250

0 20 40 60 80 100 120

Time [h]

Tan

k 6

Go

ld o

n C

arb

on [m

g/k

g]

0.00

0.01

0.02

0.03

0.04

0 20 40 60 80 100 120

Time [h]

Tan

k 4

Gol

d in

So

luti

on [p

pm]

0.00

0.01

0.02

0.03

0.04

0 20 40 60 80 100 120

Time [h]

Tan

k 5

Gol

d in

So

luti

on [p

pm]

0.00

0.01

0.02

0.03

0.04

0 20 40 60 80 100 120

Time [h]

Tank

6G

old

in

So

lutio

n [p

pm]

Legend: : Simulation, � Measured data

Page 52: Dynamic Modelling and Optimisation of Carbon Management ......7.5.5 Set 5 – Investigation of adding fresh carbon to Tanks 1, 3 and 5 150 7.5.6 Comparison of Pilot Plant Costings

Appendix F: Parameter Estimation Simulation Results

F-13

Parameter Estimation 5-1

Estimated K2 = 346.43, K3 = -0.165 Set Mc = 0.4, 0.3kg, T1.Xin = 4.45ppm, T6.Yin = 153mg/kg

0

500

1000

1500

2000

0 20 40 60 80 100 120

Time [h]

Tank

1G

old

on C

arbo

n [m

g/kg

]

0

200

400

600

800

1000

1200

0 20 40 60 80 100 120

Time [h]

Tank

2G

old

on C

arbo

n [m

g/kg

]

0

200

400

600

800

1000

0 20 40 60 80 100 120

Time [h]

Tank

3G

old

on C

arbo

n [m

g/kg

]

0

0.2

0.4

0.6

0.8

0 20 40 60 80 100 120

Time [h]

Tank

1G

old

in S

olut

ion

[ppm

]

0.00

0.10

0.20

0.30

0.40

0.50

0 20 40 60 80 100 120

Time [h]

Tank

2G

old

in S

olut

ion

[ppm

]

0.00

0.05

0.10

0.15

0.20

0 20 40 60 80 100 120

Time [h]

Tank

3G

old

in S

olut

ion

[ppm

]

0

200

400

600

800

0 20 40 60 80 100 120

Time [h]

Tank

4G

old

on C

arbo

n [m

g/kg

]

0

100

200

300

400

500

0 20 40 60 80 100 120

Time [h]

Tank

5G

old

on C

arbo

n [m

g/kg

]

0

50

100

150

200

250

0 20 40 60 80 100 120

Time [h]

Tank

6G

old

on C

arbo

n [m

g/kg

]

0.00

0.01

0.02

0.03

0.04

0 20 40 60 80 100 120

Time [h]

Tank

4G

old

in S

olut

ion

[ppm

]

0.00

0.01

0.02

0.03

0.04

0 20 40 60 80 100 120

Time [h]

Tank

5G

old

in S

olut

ion

[ppm

]

0.00

0.01

0.02

0.03

0.04

0 20 40 60 80 100 120

Time [h]

Tank

6G

old

in S

olut

ion

[ppm

]

Legend: : Simulation, � Measured data

Page 53: Dynamic Modelling and Optimisation of Carbon Management ......7.5.5 Set 5 – Investigation of adding fresh carbon to Tanks 1, 3 and 5 150 7.5.6 Comparison of Pilot Plant Costings

Appendix F: Parameter Estimation Simulation Results

F-14

Parameter Estimation 5-2

Estimated K2 = 349.70, K3 = -0.155 Set Mc = 0.37, 0.28kg, T1.Xin = 4.45ppm, T6.Yin = 153mg/kg

0

500

1000

1500

2000

0 20 40 60 80 100 120

Time [h]

Tan

k 1

Go

ld o

n C

arb

on [m

g/k

g]

0

200

400

600

800

1000

1200

0 20 40 60 80 100 120

Time [h]

Tan

k 2

Gol

d o

n C

arb

on

[mg/

kg]

0

200

400

600

800

1000

0 20 40 60 80 100 120

Time [h]

Tan

k 3

Gol

d o

n C

arbo

n [m

g/kg

]

0

0.2

0.4

0.6

0.8

0 20 40 60 80 100 120

Time [h]

Tank

1G

old

in

So

lutio

n [p

pm]

0

0.1

0.2

0.3

0.4

0.5

0 20 40 60 80 100 120

Time [h]

Tan

k 2

Go

ld in

Sol

utio

n [p

pm

]

0.00

0.05

0.10

0.15

0.20

0 20 40 60 80 100 120

Time [h]

Tan

k 3

Gol

d in

Sol

utio

n [p

pm

]

0

200

400

600

800

0 20 40 60 80 100 120

Time [h]

Tank

4G

old

on C

arbo

n [m

g/kg

]

0

100

200

300

400

500

0 20 40 60 80 100 120

Time [h]

Tank

5G

old

on C

arbo

n [m

g/kg

]

0

50

100

150

200

250

0 20 40 60 80 100 120

Time [h]

Tank

6G

old

on C

arbo

n [m

g/kg

]

0.00

0.01

0.02

0.03

0.04

0 20 40 60 80 100 120

Time [h]

Tank

4G

old

in S

olut

ion

[ppm

]

0.00

0.01

0.02

0.03

0.04

0 20 40 60 80 100 120

Time [h]

Tank

5G

old

in S

olut

ion

[ppm

]

0.00

0.01

0.02

0.03

0.04

0 20 40 60 80 100 120

Time [h]

Tank

6G

old

in S

olut

ion

[ppm

]

Legend: : Simulation, � Measured data

Page 54: Dynamic Modelling and Optimisation of Carbon Management ......7.5.5 Set 5 – Investigation of adding fresh carbon to Tanks 1, 3 and 5 150 7.5.6 Comparison of Pilot Plant Costings

Appendix F: Parameter Estimation Simulation Results

F-15

Parameter Estimation 5-3

Estimated K2 = 351.19, K3 = -0.151 Set Mc = 0.36, 0.27kg, T1.Xin = 4.45ppm, T6.Yin = 153mg/kg

0

500

1000

1500

2000

0 20 40 60 80 100 120

Time [h]

Tank

1G

old

on C

arbo

n [m

g/kg

]

0

200

400

600

800

1000

1200

0 20 40 60 80 100 120

Time [h]

Tank

2G

old

on C

arbo

n [m

g/kg

]

0

200

400

600

800

1000

0 20 40 60 80 100 120

Time [h]

Tank

3G

old

on C

arbo

n [m

g/kg

]

0

0.2

0.4

0.6

0.8

0 20 40 60 80 100 120

Time [h]

Tank

1G

old

in S

olut

ion

[ppm

]

0.00

0.10

0.20

0.30

0.40

0.50

0 20 40 60 80 100 120

Time [h]

Tank

2G

old

in S

olut

ion

[ppm

]

0.00

0.05

0.10

0.15

0.20

0 20 40 60 80 100 120

Time [h]

Tank

3G

old

in S

olut

ion

[ppm

]

0

200

400

600

800

0 20 40 60 80 100 120

Time [h]

Tan

k 4

Go

ld o

n C

arbo

n [m

g/kg

]

0

100

200

300

400

500

0 20 40 60 80 100 120

Time [h]

Tan

k 5

Go

ld o

n C

arbo

n [m

g/kg

]

0

50

100

150

200

250

0 20 40 60 80 100 120

Time [h]

Tan

k 6

Go

ld o

n C

arbo

n [m

g/kg

]

0.00

0.01

0.02

0.03

0.04

0 20 40 60 80 100 120

Time [h]

Tank

4G

old

in S

olu

tion

[pp

m]

0.00

0.01

0.02

0.03

0.04

0 20 40 60 80 100 120

Time [h]

Tan

k 5

Gol

d in

So

luti

on [p

pm]

0.00

0.01

0.02

0.03

0.04

0 20 40 60 80 100 120

Time [h]

Tan

k 6

Gol

d in

So

luti

on [p

pm

]

Legend: : Simulation, � Measured data

Page 55: Dynamic Modelling and Optimisation of Carbon Management ......7.5.5 Set 5 – Investigation of adding fresh carbon to Tanks 1, 3 and 5 150 7.5.6 Comparison of Pilot Plant Costings

G-1

Appendix G Batch Test The batch test was performed to independently verify the effectiveness of the simulation model and the estimated parameter values of K2 and K3. The batch test was performed in duplicate. They were performed on the bottle rolls apparatus used for the equilibrium isotherm tests detailed in Appendix B. 500mL of 10ppm Au, 250ppm NaCN solution was made up and placed in the bottle. An accurate amount of carbon was weighed (of the vicinity of 0.5g) was placed in the bottle. The bottle was then rolled for 3 hours and samples were taken at 0h (just before carbon was placed into the bottle), 0.5, 1, 2, 3h. The samples were analysed directly on the AAS and the results are shown on Table G.1. The gold loading on carbon values were calculated from the gold in solution concentration values. A plot of the experimental data of both batch tests are shown in Figure G.1. The Set 1 results were plotted with error bars and the plot shows that the Set 2 results are within the error bars of Set 1 with the exception of one data point. The results of Set 1 was used in the thesis.

Set 1: Mass of Carbon = 0.4401g

Time [h] 0.5 1 2 3

Gold in solution concentration [ppm] 9.08 8.65 7.80 7.29

Gold loading on carbon [mg/kg] 880 1358 2305 2873

Set 2: Mass of Carbon = 0.4469g

Time [h] 0.5 1 2 3

Gold in solution concentration [ppm] 8.95 8.47 7.88 7.28

Gold loading on carbon [mg/kg] 877 1403 2050 2708

Table G.1: List of results of the batch test

500

1000

1500

2000

2500

3000

3500

0 0.5 1 1.5 2 2.5 3

Time [h]

Gol

d on

Car

bon

[mg/

kg]

Set 1 Set 2

6

7

8

9

10

11

0 0.5 1 1.5 2 2.5 3

Time [h]

Gol

d in

Sol

utio

n [p

pm]

Set 1 Set 2

Figure G.1: Plot of batch test data

Page 56: Dynamic Modelling and Optimisation of Carbon Management ......7.5.5 Set 5 – Investigation of adding fresh carbon to Tanks 1, 3 and 5 150 7.5.6 Comparison of Pilot Plant Costings

H-1

Appendix H Sensitivity Analysis Simulation Results

Page 57: Dynamic Modelling and Optimisation of Carbon Management ......7.5.5 Set 5 – Investigation of adding fresh carbon to Tanks 1, 3 and 5 150 7.5.6 Comparison of Pilot Plant Costings

Appendix H: Sensitivity Analysis Simulation Results

H-2

Sensitivity Analysis on Freundlich Isotherm Parameter A

Fractions of A: 0.5 to 1.5 Gold loading on carbon and gold in solution concentration for all 6 tanks

6000

6500

7000

7500

8000

0.4 0.6 0.8 1.0 1.2 1.4 1.6

Fraction of A

T1.

Y [m

g/k

g]

4000

4500

5000

5500

6000

6500

0.4 0.6 0.8 1.0 1.2 1.4 1.6

Fraction of A

T2.

Y [m

g/k

g]

0

1000

2000

3000

4000

5000

6000

0.4 0.6 0.8 1.0 1.2 1.4 1.6

Fraction of A

T3.Y

[m

g/kg

]

0

1

2

3

4

5

0.4 0.6 0.8 1.0 1.2 1.4 1.6

Fraction of A

T1.X

out

[pp

m]

0

1

2

3

4

5

0.4 0.6 0.8 1.0 1.2 1.4 1.6

Fraction of A

T2.X

out

[pp

m]

0

1

2

3

4

5

0.4 0.6 0.8 1.0 1.2 1.4 1.6

Fraction of A

T3.

Xou

t [p

pm

]

0

1000

2000

3000

4000

5000

0.4 0.6 0.8 1.0 1.2 1.4 1.6

Fraction of A

T4.Y

[m

g/kg

]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0.4 0.6 0.8 1.0 1.2 1.4 1.6

Fraction of A

T4.

Xou

t [pp

m]

0

1000

2000

3000

4000

0.4 0.6 0.8 1.0 1.2 1.4 1.6

Fraction of A

T5.Y

[m

g/kg

]

0200400

600800

100012001400

0.4 0.6 0.8 1.0 1.2 1.4 1.6

Fraction of A

T6.

Y [m

g/k

g]

0.0

0.5

1.0

1.5

2.0

0.4 0.6 0.8 1.0 1.2 1.4 1.6

Fraction of A

T5.X

out

[ppm

]

0

0.2

0.4

0.6

0.8

0.40 0.60 0.80 1.00 1.20 1.40 1.60

Fraction of A

T6.X

out [

ppm

]

Page 58: Dynamic Modelling and Optimisation of Carbon Management ......7.5.5 Set 5 – Investigation of adding fresh carbon to Tanks 1, 3 and 5 150 7.5.6 Comparison of Pilot Plant Costings

Appendix H: Sensitivity Analysis Simulation Results

H-3

Sensitivity Analysis on Freundlich Isotherm Parameter b

Fractions of b: 0.5 to 1.5 Gold loading on carbon and gold in solution concentration for all 6 tanks

7800

7820

7840

7860

7880

7900

0.4 0.6 0.8 1.0 1.2 1.4 1.6

Fraction of b

T1.

Y [

mg

/kg

]

4400

4450

4500

4550

4600

4650

0.4 0.6 0.8 1.0 1.2 1.4 1.6

Fraction of b

T2.

Y [

mg

/kg

]

2000

2100

2200

2300

2400

2500

0.4 0.6 0.8 1.0 1.2 1.4 1.6

Fraction of b

T3.

Y [

mg

/kg

]

2.5

2.6

2.7

2.8

2.9

3.0

0.4 0.6 0.8 1.0 1.2 1.4 1.6

Fraction of b

T1.

Xo

ut

[pp

m]

1.25

1.30

1.35

1.40

1.45

1.50

0.4 0.6 0.8 1.0 1.2 1.4 1.6

Fraction of b

T2.

Xo

ut

[pp

m]

0.50

0.55

0.60

0.65

0.70

0.75

0.4 0.6 0.8 1.0 1.2 1.4 1.6

Fraction of b

T3.

Xo

ut

[pp

m]

800

900

1000

1100

1200

0.4 0.6 0.8 1.0 1.2 1.4 1.6

Fraction of b

T4.

Y [

mg

/kg

]

0.20

0.25

0.30

0.35

0.40

0.4 0.6 0.8 1.0 1.2 1.4 1.6

Fraction of b

T4.

Xo

ut

[pp

m]

300

350

400

450

500

0.4 0.6 0.8 1.0 1.2 1.4 1.6

Fraction of b

T5.

Y [

mg

/kg

]

80

90

100

110

120

130

0.4 0.6 0.8 1.0 1.2 1.4 1.6

Fraction of b

T6.

Y [

mg

/kg

]

0.06

0.08

0.10

0.12

0.14

0.4 0.6 0.8 1.0 1.2 1.4 1.6

Fraction of b

T5.X

ou

t [p

pm

]

0

0.01

0.02

0.03

0.04

0.05

0.4 0.6 0.8 1.0 1.2 1.4 1.6

Fraction of b

T6.

Xo

ut [

ppm

]

Page 59: Dynamic Modelling and Optimisation of Carbon Management ......7.5.5 Set 5 – Investigation of adding fresh carbon to Tanks 1, 3 and 5 150 7.5.6 Comparison of Pilot Plant Costings

Appendix H: Sensitivity Analysis Simulation Results

H-4

Sensitivity Analysis on Adsorption Parameter K2

Fractions of K2: 0.5 to 1.5 Gold loading on carbon and gold in solution concentration for all 6 tanks

7000

7200

7400

7600

7800

8000

0.4 0.6 0.8 1.0 1.2 1.4 1.6

Fraction of K2

T1.

Y [

mg

/kg

]

3000

3500

4000

4500

5000

5500

0.4 0.6 0.8 1.0 1.2 1.4 1.6

Fraction of K2

T2.

Y [

mg

/kg

]

1000

1500

2000

2500

3000

3500

4000

0.4 0.6 0.8 1.0 1.2 1.4 1.6

Fraction of K2

T3.

Y [

mg

/kg

]

2.0

2.5

3.0

3.5

4.0

0.4 0.6 0.8 1.0 1.2 1.4 1.6

Fraction of K2

T1.

Xo

ut

[pp

m]

0.0

0.5

1.0

1.5

2.0

2.5

0.4 0.6 0.8 1.0 1.2 1.4 1.6

Fraction of K2

T2.

Xo

ut

[pp

m]

0.0

0.3

0.6

0.9

1.2

1.5

0.4 0.6 0.8 1.0 1.2 1.4 1.6

Fraction of K2

T3.

Xo

ut

[pp

m]

0

500

1000

1500

2000

2500

0.4 0.6 0.8 1.0 1.2 1.4 1.6

Fraction of K2

T4.

Y [

mg

/kg

]

0.0

0.2

0.4

0.6

0.8

1.0

0.4 0.6 0.8 1.0 1.2 1.4 1.6

Fraction of K2

T4.

Xo

ut

[pp

m]

0

200

400

600

800

1000

1200

0.4 0.6 0.8 1.0 1.2 1.4 1.6

Fraction of K2

T5.

Y [

mg

/kg

]

0

100

200

300

400

0.4 0.6 0.8 1.0 1.2 1.4 1.6

Fraction of K2

T6.

Y [

mg

/kg

]

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.4 0.6 0.8 1.0 1.2 1.4 1.6

Fraction of K2

T5.X

ou

t [p

pm

]

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.40 0.60 0.80 1.00 1.20 1.40 1.60

Fraction of K2

T6.

Xo

ut [

ppm

]

Page 60: Dynamic Modelling and Optimisation of Carbon Management ......7.5.5 Set 5 – Investigation of adding fresh carbon to Tanks 1, 3 and 5 150 7.5.6 Comparison of Pilot Plant Costings

Appendix H: Sensitivity Analysis Simulation Results

H-5

Sensitivity Analysis on Adsorption Parameter K3

Fractions of K3: 0.5 to 1.5 Gold loading on carbon and gold in solution concentration for all 6 tanks

7000

7200

7400

7600

7800

8000

0.4 0.6 0.8 1.0 1.2 1.4 1.6

Fraction of K3

T1.

Y [

mg

/kg

]

3000

3500

4000

4500

5000

5500

0.4 0.6 0.8 1.0 1.2 1.4 1.6

Fraction of K3

T2.

Y [

mg

/kg

]

1000

1500

2000

2500

3000

3500

4000

0.4 0.6 0.8 1.0 1.2 1.4 1.6

Fraction of K3

T3.

Y [

mg

/kg

]

2.0

2.5

3.0

3.5

4.0

0.4 0.6 0.8 1.0 1.2 1.4 1.6

Fraction of K3

T1.

Xo

ut

[pp

m]

0.0

0.5

1.0

1.5

2.0

2.5

0.4 0.6 0.8 1.0 1.2 1.4 1.6

Fraction of K3

T2.

Xo

ut

[pp

m]

0.0

0.3

0.6

0.9

1.2

1.5

0.4 0.6 0.8 1.0 1.2 1.4 1.6

Fraction of K3

T3.

Xo

ut

[pp

m]

0

500

1000

1500

2000

2500

0.4 0.6 0.8 1.0 1.2 1.4 1.6

Fraction of K3

T4.

Y [

mg

/kg

]

0.0

0.2

0.4

0.6

0.8

1.0

0.4 0.6 0.8 1.0 1.2 1.4 1.6

Fraction of K3

T4.

Xo

ut

[pp

m]

0

200

400

600

800

1000

1200

0.4 0.6 0.8 1.0 1.2 1.4 1.6

Fraction of K3

T5.

Y [

mg

/kg

]

0

100

200

300

400

0.4 0.6 0.8 1.0 1.2 1.4 1.6

Fraction of K3

T6.

Y [

mg

/kg

]

0.0

0.1

0.2

0.3

0.4

0.5

0.4 0.6 0.8 1.0 1.2 1.4 1.6

Fraction of K3

T5.X

ou

t [p

pm

]

0.00

0.05

0.10

0.15

0.20

0.25

0.40 0.60 0.80 1.00 1.20 1.40 1.60

Fraction of K3

T6.

Xo

ut [

ppm

]

Page 61: Dynamic Modelling and Optimisation of Carbon Management ......7.5.5 Set 5 – Investigation of adding fresh carbon to Tanks 1, 3 and 5 150 7.5.6 Comparison of Pilot Plant Costings

Appendix H: Sensitivity Analysis Simulation Results

H-6

Sensitivity Analysis on Gold in Solution Entering the CIP plant

Fractions of T1.Xin: 0.5 to 1.5 Gold loading on carbon and gold in solution concentration for all 6 tanks

0

3000

6000

9000

12000

15000

0.4 0.6 0.8 1.0 1.2 1.4 1.6

Fraction of T1.Xin

T1.

Y [

mg

/kg

]

0

2000

4000

6000

8000

10000

0.4 0.6 0.8 1.0 1.2 1.4 1.6

Fraction of T1.Xin

T2.

Y [

mg

/kg

]

0

1000

2000

3000

4000

5000

0.4 0.6 0.8 1.0 1.2 1.4 1.6

Fraction of T1.Xin

T3.

Y [

mg

/kg

]

0

1

2

3

4

5

6

0.4 0.6 0.8 1.0 1.2 1.4 1.6

Fraction of T1.Xin

T1.

Xo

ut

[pp

m]

0.0

1.0

2.0

3.0

4.0

0.4 0.6 0.8 1.0 1.2 1.4 1.6

Fraction of T1.Xin

T2.

Xo

ut

[pp

m]

0.0

0.5

1.0

1.5

2.0

0.4 0.6 0.8 1.0 1.2 1.4 1.6

Fraction of T1.Xin

T3.

Xo

ut

[pp

m]

0

500

1000

1500

2000

2500

0.4 0.6 0.8 1.0 1.2 1.4 1.6

Fraction of T1.Xin

T4.

Y [

mg

/kg

]

0.0

0.2

0.4

0.6

0.8

0.4 0.6 0.8 1.0 1.2 1.4 1.6

Fraction of T1.Xin

T4.

Xo

ut

[pp

m]

0

200

400

600

800

1000

0.4 0.6 0.8 1.0 1.2 1.4 1.6

Fraction of T1.Xin

T5.

Y [

mg

/kg

]

0

100

200

300

400

0.4 0.6 0.8 1.0 1.2 1.4 1.6

Fraction of T1.Xin

T6.

Y [

mg

/kg

]

0.0

0.1

0.2

0.3

0.4

0.4 0.6 0.8 1.0 1.2 1.4 1.6

Fraction of T1.Xin

T5.X

ou

t [p

pm

]

0.00

0.03

0.06

0.09

0.12

0.40 0.60 0.80 1.00 1.20 1.40 1.60

Fraction of T1.Xin

T6.

Xo

ut [

ppm

]

Page 62: Dynamic Modelling and Optimisation of Carbon Management ......7.5.5 Set 5 – Investigation of adding fresh carbon to Tanks 1, 3 and 5 150 7.5.6 Comparison of Pilot Plant Costings

Appendix H: Sensitivity Analysis Simulation Results

H-7

Sensitivity Analysis on Mass of Carbon

Fractions of Carbon Content: 0.5 to 1.5 Gold loading on carbon and gold in solution concentration for all 6 tanks

0

3000

6000

9000

12000

15000

0 2 4 6 8 10 12 14 16

Carbon Content [g/L]

T1.

Y [

mg

/kg

]

0

3000

6000

9000

12000

0 2 4 6 8 10 12 14 16

Carbon Content [g/L]

T2.

Y [

mg

/kg

]

0

3000

6000

9000

12000

0 2 4 6 8 10 12 14 16

Carbon Content [g/L]

T3.

Y [

mg

/kg

]

0

1

2

3

4

5

0 2 4 6 8 10 12 14 16

Carbon Content [g/L]

T1.

Xo

ut

[pp

m]

0

1

2

3

4

5

0 2 4 6 8 10 12 14 16

Carbon Content [g/L]

T2.

Xo

ut

[pp

m]

0.0

1.0

2.0

3.0

4.0

0 2 4 6 8 10 12 14 16

Carbon Content [g/L]

T3.

Xo

ut

[pp

m]

0

2000

4000

6000

8000

0 2 4 6 8 10 12 14 16

Carbon Content [g/L]

T4.

Y [

mg

/kg

]

0.0

1.0

2.0

3.0

0 2 4 6 8 10 12 14 16

Carbon Content [g/L]

T4.

Xo

ut

[pp

m]

0

1000

2000

3000

4000

5000

0 2 4 6 8 10 12 14 16

Carbon Content [g/L]

T5.

Y [

mg

/kg

]

0

500

1000

1500

2000

2500

0 2 4 6 8 10 12 14 16

Carbon Content [g/L]

T6.

Y [

mg

/kg

]

0.0

0.5

1.0

1.5

2.0

0 2 4 6 8 10 12 14 16

Carbon Content [g/L]

T5.X

ou

t [p

pm

]

0.00

0.30

0.60

0.90

1.20

0 2 4 6 8 10 12 14 16

Carbon Content [g/L]

T6.

Xo

ut [

ppm

]

Page 63: Dynamic Modelling and Optimisation of Carbon Management ......7.5.5 Set 5 – Investigation of adding fresh carbon to Tanks 1, 3 and 5 150 7.5.6 Comparison of Pilot Plant Costings

I-1

Appendix I Cost Functions of the Objective Function This section details the development of the mathematical functions for the cost of the tanks, pumps and elution used in the determination of the objective function.

Page 64: Dynamic Modelling and Optimisation of Carbon Management ......7.5.5 Set 5 – Investigation of adding fresh carbon to Tanks 1, 3 and 5 150 7.5.6 Comparison of Pilot Plant Costings

Appendix I: Cost Functions of the Objective Function

I-2

I.1 Tanks Costs The tank cost function was derived from tank cost data from Ryad Engineering. Data was obtained for the cost of 4 different tanks sizes and they are listed below in Table I.1. The cost function also assumes that there is a minimum fabrication cost of $100 for each tank (TankCost3).

Tank Volume [m³] Cost [A$] 60

100 200 500

30 000 35 000 40 000 80 000

Table I.1: Cost of steel tanks from Ryad Engineering The tank cost function is of the form: ( )31

2 TankCostVTankCostNtTotTankCos TankCost +×= where TotTankCost is the cost of all the tanks in Australian Dollars, N is the number of tanks in the CIP process, TankCost1, TankCost2 and TankCost3 are the variables of the tank cost function. These variables were determined by fitting the tank cost function to the Ryad Engineering cost data by minimising the sum of the squares of the errors. Figure I.1 shows the fit of the tank cost function to the Ryad Engineering data and the variables values of the tank cost function are:

TankCost1 = $3250/m³ TankCost2 = 0.5152 TankCost3 = $100

0

20,000

40,000

60,000

80,000

100,000

0 100 200 300 400 500 600

Volume [m³]

Cos

t per

Tan

k [$

]

Ryad Data Tank Cost Function

Figure I.1: Plot of Ryad Engineering data and the tank cost function for one tank

Page 65: Dynamic Modelling and Optimisation of Carbon Management ......7.5.5 Set 5 – Investigation of adding fresh carbon to Tanks 1, 3 and 5 150 7.5.6 Comparison of Pilot Plant Costings

Appendix I: Cost Functions of the Objective Function

I-3

I.2 Pump Costs The cost of the pumps was based on the cost of a centrifugal pump capable of delivering 60L/s of solution. The cost of the pump is $23600. This value was obtained from Warman. This pump flowrate is based capacity of Anglo Gold’s Sunrise Dam plant. The plant’s throughput is 1.2mtpa with 700m³ CIP tanks. The assumptions of the cost functions are: • a pump capable of pumping 60L/s solution costs $23600 • a pump half of this capacity (30L/s) would cost 65% of the full capacity • there is a minimum cost of $250 for every pump (PumpCapCost3) • there is a pump in each tank The tank cost function is of the form: ( )∑

=

+×=N

i

tPumpCapCosi tPumpCapCosCPFtPumpCapCostTotPumpCos

131

2

where TotPumpCost is the cost of all the pumps in Australian Dollars, N is the number of tanks in the CIP process (and hence the number of pumps), PumpCapCost1, PumpCapCost2 and PumpCapCost3 are the variables of the tank cost function, and CPFi is the flowrate of the pump used to transfer the carbon [L/h] for the ith tank. Given the assumptions and the equation form stated above, the values of the pump capital cost function variables are: PumpCapCost1 = $10.2h/L PumpCapCost2 = 0.6298 PumpCapCost3 = $250 Figure I.2 shows the plot of the elution cost function.

0

100

200

300

400

500

600

700

0 50 100 150 200 250 300

Flowrate [L/h]

Cos

t per

Pum

p [$

]

Figure I.2: Plot of the cost function for 1 pump

Page 66: Dynamic Modelling and Optimisation of Carbon Management ......7.5.5 Set 5 – Investigation of adding fresh carbon to Tanks 1, 3 and 5 150 7.5.6 Comparison of Pilot Plant Costings

Appendix I: Cost Functions of the Objective Function

I-4

I.3 Elution Costs The cost of elution was based on the cost of eluting 6t of carbon. This cost is $2350 and this value was obtained from a report by O’ Leary and Staunton (1999). It was then assumed if half of the mass of the carbon was eluted, i.e. 3t of carbon, 60% of the total cost would be incurred. The equation for the cost of elution is of the form: ( )2

1tElutionCos

EMctElutionCostElutionCos = (I.1) where ElutionCost is the cost of elution, McE is the mass of carbon eluted and ElutionCost1 and ElutionCost2 are the variables of the elution cost function. Given the assumptions stated above, the values of the elution function variables are: ElutionCost1 = $3.861/kg of C

ElutionCost2 = 0.737 The elution cost equation was modified into the following equation to be used in the gPROMS model.

( ) ( )meTransferTi

VhCTCtElutionCosonCostTotalEluti

dtd tElutionCos 2

11 001 ××=

Figure I.3 shows the plot of the elution cost function.

0

500

1000

1500

2000

2500

0 1000 2000 3000 4000 5000 6000 7000

Mass of Carbon [kg]

Co

st [

$]

Figure I.3: Plot of the elution cost function

Page 67: Dynamic Modelling and Optimisation of Carbon Management ......7.5.5 Set 5 – Investigation of adding fresh carbon to Tanks 1, 3 and 5 150 7.5.6 Comparison of Pilot Plant Costings

J-1

Appendix J CIP Model Datasheet

Page 68: Dynamic Modelling and Optimisation of Carbon Management ......7.5.5 Set 5 – Investigation of adding fresh carbon to Tanks 1, 3 and 5 150 7.5.6 Comparison of Pilot Plant Costings

Appendix J: CIP Model Datasheet

J-2

CIP Model Datasheet

CIP Plant Throughput - Use Section A or B

Section AFlow of Pulp L/hSG of solids%solids %Gold inlet concentration to CIP Tank 1 ppm

Section BOre throughput tpaOre grade g/tSG ore% solids %Leaching efficiency %

CIP Plant Configuration

Number of TanksTank Volume m³Carbon content each tank g/LCarbon cycle time hCarbon transfer time h% of mass of carbon transferred %Gold loading on new carbon mg/kg

Carbon transfer sequence (describe):

Model assumptions:- Initial gold loading on carbon is equal to fresh carbon gold loading on new carbon- Initial gold in solution concentration is 0ppm- Equilibrium and kinetic tests performed one ore sample to determine the model parameters

Page 69: Dynamic Modelling and Optimisation of Carbon Management ......7.5.5 Set 5 – Investigation of adding fresh carbon to Tanks 1, 3 and 5 150 7.5.6 Comparison of Pilot Plant Costings

K-1

Appendix K Calculations for Weighted Objective Functions

K.1 Weighting Factor for Experimental Runs Optimisation Run1 Run2 Run3 Calculation18L/h 8.18L/h 8.16L/h 8.18L/[email protected] @4.45ppm @4.15ppm @9.10ppm6 Tanks 6 Tanks 4 Tanks 3 Tanks

Fpulp [L/h] 18 8.18 8.16 8.18Ti.Xin ppm] 4.45 4.45 4.15 9.1SG 1.34 1.34 1.35 1.34% solids 0.407 0.407 0.416 0.407operating hrs/cycle [h/cycle] 12 10.2 10.25 11

Fpulp [kg/h] 24.12 10.96 11.02 10.96 = Fpulp*SGFsoln [kg/h] 14.30 6.50 6.43 6.50 = Fpulp[kg/h]*(1-%solids)gold in/h [mg/h] 63.65 28.92 26.70 59.15 = Fsoln*T1.Xingold in/cycle [mg/cycle] 763.79 295.03 273.66 650.65 = gold in[mg/h]*(operating hrs/cycle)

weighting ratio 1.000 2.589 2.791 1.174 = (Goldin for optimisation)/(Goldin of run)

K.2 Sample Weighted Objective Function Calculation Run 1 - Measured objective function

Objective Function for last cycleObj Fn for 1 cycle 3.34 Objective Function EquationsGold Revenue 6.98Total Cost 3.63 Obj Fn = goldrev - capcost - varcost - goldlostCapital Cost Fn 2.15 net gold = goldrev - goldlostVariable Cost 1.47Gold Lost 0.01326

Weighting 2.589

Weighted objective function/yrObj Fn 5767.59 =obj fn for 1 cycle*(8000/12)*weighting (8000/12)=No. cycles per yearCapital Cost Fn no weight 1431.47 =capcost for 1 cycle*(8000/12) ie based on 8000h/yr of plant Variable Cost no weight 983.00 =varcost for 1 cycle*(8000/12) operation and 12h cyclesnet gold 8182.06 = weighted obj - capcost - varcost

gold rev ratio %of net gold 1.0019 =(goldrev)/(goldrev-goldlost) data for 1 cyclegold lost ratio %of net gold 0.0019 =(goldlost)/(goldrev-goldlost) data for 1 cycle

gold rev weighted 8197.64 = net gold *goldrev ratiogold lost weighted 15.58 = net gold *goldlost ratio

Notes:1. Assume increase in objective function is proportional to the gold throughput rate.2. Assume ratio of goldrevenue and goldlost remains constant after weighting

Page 70: Dynamic Modelling and Optimisation of Carbon Management ......7.5.5 Set 5 – Investigation of adding fresh carbon to Tanks 1, 3 and 5 150 7.5.6 Comparison of Pilot Plant Costings

L-1

Appendix L Equivalent Values Gold in Ore and T1.Xin

T1.Xin Au in oreppm [g/t]

1 1.452 2.913 4.364 5.825 7.276 8.727 10.188 11.639 13.0910 14.5411 15.9912 17.4513 18.9014 20.3615 21.8116 23.2617 24.72

Based on 100% leaching efficiency.