Dr Stuart Conway Organic Option II ... - University of...

15
Dr Stuart Conway Organic Option II: Chemical Biology University of Oxford 1 Organic Chemistry Option II: Chemical Biology Dr Stuart Conway Department of Chemistry, Chemistry Research Laboratory, University of Oxford email: [email protected] Teaching webpage (to download handouts): http://conway.chem.ox.ac.uk/Teaching.html Recommended books: Biochemistry 4 th Edition by Voet and Voet, published by Wiley, ISBN: 9780470570951. Foundations of Chemical Biology by Dobson, Gerrard and Pratt, published by OUP (primer) ISBN: 0199248990

Transcript of Dr Stuart Conway Organic Option II ... - University of...

Dr Stuart Conway Organic Option II: Chemical Biology University of Oxford  

1

Organic  Chemistry  Option  II:  Chemical  Biology                  

                   

 

Dr  Stuart  Conway  Department  of  Chemistry,  Chemistry  Research  Laboratory,  University  of  Oxford  email:  [email protected]  Teaching  webpage  (to  download  hand-­‐outs):  http://conway.chem.ox.ac.uk/Teaching.html  

 Recommended  books:    Biochemistry  4th  Edition  by  Voet  and  Voet,  published  by  Wiley,  ISBN:  978-­‐0-­‐470-­‐57095-­‐1.    Foundations  of  Chemical  Biology  by  Dobson,  Gerrard  and  Pratt,  published  by  OUP  (primer)  ISBN:  0-­‐19-­‐924899-­‐0      

Dr Stuart Conway Organic Option II: Chemical Biology University of Oxford  

2

Information  flow  in  cells  

   

   

•      

• We   must   understand   this   process   in   order   to   harness   it   for   exploration   of   biological  problems.  

   The  central  dogma  of  molecular  biology  

 

   

• How  does  DNA  in  genes  direct  the  synthesis  of  RNA  and  protein?    

• How  is  DNA  replicated?    

•        

slide  7  

slide  8  

Dr Stuart Conway Organic Option II: Chemical Biology University of Oxford  

3

The  central  dogma  of  molecular  biology  

   

   

•      

 

•   Solid  lines  indicate  the  genetic  information  transfers  that  occur  in  all  cells.    

•   Dotted  lines  indicate  special  transfers.    

•        The  structure  of  DNA  and  RNA  

   

   

•    

slide  9  

slide  10  

Dr Stuart Conway Organic Option II: Chemical Biology University of Oxford  

4

The  structure  of  DNA  and  RNA  

   

   

• Nucleotides  are  phosphate  esters  of  pentose  (furanose)  sugars.    

•   Deoxynucleotides  lack  the  hydroxyl  group  at  the  2’  position  of  the  sugar  ring.    

•   A  nitrogen-­‐containing  base  is  linked  to  the  1’-­‐position  of  the  sugar.      The  structure  of  DNA  and  RNA  

   

•      

 •    

   

• It   is   possible   that   this   chemical   stability   is  why  DNA  has  evolved  to  be  the  store  of  genetic  information.  

 

   

slide  12  

slide  13  

Dr Stuart Conway Organic Option II: Chemical Biology University of Oxford  

5

The  structure  of  DNA  and  RNA  

 

   

• The  nitrogen  bases  are  planar,  aromatic  and  heterocyclic.    

•   They  are  usually  either  purine  or  pyrimidine  derivatives.    

 

The  structure  of  DNA  and  RNA  

               

 

• The  major  purine  components  of  nucleic  acids  are  adenine  and  guanine.    

•   The  purines  form  glycosidic  bonds  to  ribose  via  their  N9  atoms.    

 

The  structure  of  DNA  and  RNA  

   

 

• The   major   pyrimidine   components   of  nucleic   acids   are   cytosine,   uracil   and  thymine  (5-­‐methyluracil).  

 

•   Uracil   occurs   mainly   in   RNA   whereas  thymine  occurs  mainly  in  DNA.  

 

•   The   pyrimidines   form   glycosidic   bonds  to  ribose  via  their  N1  atoms.  

         

 

slide  14  

slide  15  

slide  16  

Dr Stuart Conway Organic Option II: Chemical Biology University of Oxford  

6

The  structure  of  DNA  and  RNA  

 

   

• Some  DNAs  contain  bases  that  are  derivatives  of  the  standard  set.    

•        The  structure  of  DNA  and  RNA  

   

   

slide  17  

slide  18  

Dr Stuart Conway Organic Option II: Chemical Biology University of Oxford  

7

The  structure  of  DNA  and  RNA  

   

Nucleotide:  adenosine  monophosphate    (R  =  OH  in  RNA  and  H  in  DNA)        

 

Nucleoside:  adenosine    (R  =  OH  in  RNA  and  H  in  DNA)        

 

Base:  adenine        

 

 

 

The  structure  of  DNA  and  RNA  

 •    

   

• The  phosphate  groups  bridge  the  3’-­‐  and  5’-­‐positions  of  successive  sugar  residues.  

 • The  phosphate  groups  are  deprotonated  

at   physiological   pH,   hence   nucleic   acids  are  polyanions  in  the  cell.  

 •    

 

 

slide  19  

slide  20  

Dr Stuart Conway Organic Option II: Chemical Biology University of Oxford  

8

The  structure  of  DNA  and  RNA  

   

• Nucleic  acids  were  first  isolated  in  1869  and  the  presence  of  these  molecules  in  cells  was  demonstrated  a  few  years  later.  

 • In   the   1930s   and   1940s   it   was   widely   believed   that   nucleic   acids   had   a   monotonously  

repeating  sequence  of  all  four  bases  =  the  so  called  “tetranucleotide  hypothesis”.    

• It  was   generally   assumed   that   genes,   known   to   be   carriers   of   genetic   information,  were  proteins.  

 • See   Biochemistry   pages   85-­‐89   to   see   the   experiments   that   proved  DNA   is   the   carrier   of  

genetic  information.      The  structure  of  DNA  and  RNA  

   

• Erwin  Chargaff  was  the  first  to  show  that  DNA  contains  equal  numbers  of  adenine  and   thymine   residues   (A  =  T)   and  equal  numbers   of   cytosine   and   guanine  residues  (C  =  G).  

 • These   relationships   are   known   as  

“Chargaff’s  rules”.    

• Although   not   specifically   stated   by  Chargaff,  this  observation  suggests  some  form   of   base   pairing   in   the   (then  unknown)  structure  of  DNA.  

 

 

     

slide  21  

slide  22  

Dr Stuart Conway Organic Option II: Chemical Biology University of Oxford  

9

The  structure  of  DNA  and  RNA  

   

     

•          

• The  planes  of  the  bases  are  nearly  perpendicular  to  the  helix  axis.    

• Each  base  is  hydrogen  bonded  to  a  base  on  the  opposite  strand  to  form  a  planar  base  pair.      Complementary  base  pairing  

   

 

       

 • The  most  remarkable  feature  of  the  Watson  and  Crick  structure  is  that  it  can  accommodate  

only  two  types  of  base  pairs.    

• Each  adenine  residue  must  pair  with  a  thymine  residue  and  vice  versa.    

slide  25  

slide  26  

Dr Stuart Conway Organic Option II: Chemical Biology University of Oxford  

10

Complementary  base  pairing  

   

 

     

 • Each  guanine  residue  must  pair  with  a  cytosine  residue  and  vice  versa.  

 • The  geometries  of   these  A:T  and  G:C  pairs   ,   the  so-­‐called  Watson-­‐Crick  base  pairs,  mean  

that  these  base  pairs  are  interchangeable  in  the  double  helix.      

slide  27  

Dr Stuart Conway Organic Option II: Chemical Biology University of Oxford  

11

Hydrogen  bonding  

 

   

• Hydrogen   bonds   are   one   of   the   most   important   non-­‐covalent   interactions   in   biological  systems.  

 

•        

•      

• There  is  a  significant  electrostatic  component  to  H-­‐bonding.    

 

Hydrogen  bonding  

 

   

•      

•        

• Consequently,  there  is  an  optimum  orientation  for  H-­‐  bonding.    

 

Hydrogen  bonding  

 

   

• The  optimum  angle  for  H-­‐bonding   is  where  the  X-­‐H  bond  points  directly  to  the   lone  pair,  such  that  the  angle  is  180°.  

 

•      

•        

slide  28  

slide  29  

slide  30  

Dr Stuart Conway Organic Option II: Chemical Biology University of Oxford  

12

Complementary  base  pairing  

 

   

               

 • The  H-­‐bond  donor  and  acceptor  patterns  are  such  that  A  can  only  bind  to  T  and  G  can  only  

bind  to  C.    

• As   A   can   only   bind   to   T   and   G   can   only   bind   to   C,   we   can   immediately   understand  Chargaff’s  rules.  

 • In   addition,   the   Watson-­‐Crick   structure   allows   for   any   sequences   of   bases   on   one  

polynucleotide  strand  if  the  opposite  strand  has  the  complementary  sequence.    

• This   structure   also   suggests   that   hereditary   information   is   encoded   in   the   sequence   of  bases  on  either  strand.  

   

NN

NH

HN

NX N

NH

O CH3

XOHN

N

ON

NX N

N

N

XON

H

HH

HHdonor

acceptor

acceptor

donor

acceptor

donor

donor acceptor

donor

acceptor

adenine thymine guanine cytosine

slide  31  

Dr Stuart Conway Organic Option II: Chemical Biology University of Oxford  

13

DNA  structure  

   

     

• DNA  has  three  major  helical  forms,  B-­‐DNA,  A-­‐DNA  and  Z-­‐DNA.    

• B-­‐DNA   is   the   biologically   predominant   form   of   DNA   it   forms   a   right-­‐handed   helix   with  major  and  minor  grooves.  

 • When  relative  humidity   is  reduced  to  75%,  B-­‐DNA  undergoes  a  reversible  conformational  

change  to  A-­‐DNA.    

• A-­‐DNA  forms  a  wide,  flatter  helix  than  B-­‐DNA.    

• The  base  pairs  of  A-­‐DNA  are  tilted  20  °  with  respect  to  the  helix  axis.    

• Certain  DNA  sequences  can  form  a  left-­‐handed  helix  that  has  been  called  Z-­‐DNA.    

• It   is   not   clear   whether   Z-­‐DNA   has   any   biological   significance     -­‐   it   may   play   a   role   in  regulating  DNA  transcription.  

                         

advanced  slide  32  &  33  

Dr Stuart Conway Organic Option II: Chemical Biology University of Oxford  

14

RNA  structure  

   

•      

• Transfer  RNA  (see  later)  resembles  an  “L”  shape,  being   made   up   of   two   short   helical   regions  connected  by  a  hinge.  

 •    

   

     RNA  structure  

   

                   

 • Hydrogen  bonding  in  helical  RNA  occurs  between  cytosine  and  guanine  as  in  DNA.  

 • Cytosine  is  replaced  by  uracil,  which  forms  complementary  hydrogen  bonds  with  adenine.  

   

slide  34  

slide  35  

Dr Stuart Conway Organic Option II: Chemical Biology University of Oxford  

15

DNA  replication  

 “It  has  not  escaped  our  notice  that  the  specific  pairing  we  have  postulated  immediately  suggests  a  possible  copying  mechanism  for  genetic  material.”    

•      

 

• In  this  process,  mediates  by  DNA  polymerase  enzymes,  each  DNA  strand  acts  as  a  template  for  the  formation  of  its  complementary  strand.  

 

• Consequently,   every   progeny   cell   contains   a   complete   copy   of  the  DNA  from  the  parent  cell.  

 

• Mutations  arise  when,  through  rare  copying  errors,  one  or  more  wrong  bases  are  incorporated  into  a  daughter  strand.  

 

• DNA  replication  is  a  highly  complex  process.    

•          

 

 

Translation  and  transcription  

   

• DNA   directs   its   own   replication   and  transcription   to   yield   RNA,   which   is  translated  to  form  proteins.  

 

•          

• “Translation”  indicates  that  the  “language”  changes  from  that  of  the  base  sequence  to  that  of  the  amino  acid  sequence.  

     

• Individual   portions   of   a   DNA   molecule   provide   the   information   for   the   construction   of  various  RNA  molecules  and  proteins.  

 

• RNA  corresponding  to  the  region  of  interest  id  produced  by  transcription  (the  synthesis  of  an  RNA  strand  from  a  DNA  template).  The  RNA  produced  in  this  case  is  called  messenger  RNA  or  mRNA.  

 

• This  mRNA  is  then  translated  when  molecules  of  transfer  RNA  (tRNA)  align  with  the  mRNA  via   complementary   base   pairing   between   segments   of   three   consecutive   nucleotides  (codon).  

 

•    

slide  36  

slide  37  &  38