Dr. Joel Adrián Hernández Escamilla · Introduction 2 (SKC Gulf Coast Inc., 2001; EPA, 2009; EIA,...

40
Dr. Joel Adrián Hernández Escamilla

Transcript of Dr. Joel Adrián Hernández Escamilla · Introduction 2 (SKC Gulf Coast Inc., 2001; EPA, 2009; EIA,...

Page 1: Dr. Joel Adrián Hernández Escamilla · Introduction 2 (SKC Gulf Coast Inc., 2001; EPA, 2009; EIA, 2010;) 2µm 50µm 2000µm PM 2.5 PM 10 TSP Particles 2 µm 50 µm 200 µm

Dr. Joel Adrián Hernández Escamilla

Page 2: Dr. Joel Adrián Hernández Escamilla · Introduction 2 (SKC Gulf Coast Inc., 2001; EPA, 2009; EIA, 2010;) 2µm 50µm 2000µm PM 2.5 PM 10 TSP Particles 2 µm 50 µm 200 µm

Introduction

2

(SKC Gulf Coast Inc., 2001; EPA, 2009; EIA, 2010;)

2µm 50µm 2000µm

PM2.5 PM10 TSP

Particles

2 µm 50 µm 200 µm

Page 3: Dr. Joel Adrián Hernández Escamilla · Introduction 2 (SKC Gulf Coast Inc., 2001; EPA, 2009; EIA, 2010;) 2µm 50µm 2000µm PM 2.5 PM 10 TSP Particles 2 µm 50 µm 200 µm

TCEQ Image: Chelsea street; El Paso, TX.

Photo courtesy of Dr. Porfirio-Peinado3

Page 4: Dr. Joel Adrián Hernández Escamilla · Introduction 2 (SKC Gulf Coast Inc., 2001; EPA, 2009; EIA, 2010;) 2µm 50µm 2000µm PM 2.5 PM 10 TSP Particles 2 µm 50 µm 200 µm
Page 5: Dr. Joel Adrián Hernández Escamilla · Introduction 2 (SKC Gulf Coast Inc., 2001; EPA, 2009; EIA, 2010;) 2µm 50µm 2000µm PM 2.5 PM 10 TSP Particles 2 µm 50 µm 200 µm

Airbone Particles Samplers

5

MiniVol™ TAS TSP High volsDeployable Particulate

SamplerBSNE

Inverted Frisbee shapedcollecting bowl (IFSCB)

Marble Dust Collector(MDCO)

Modified Wilson and Cooke (MWAC)

Rotorod sampler

Page 6: Dr. Joel Adrián Hernández Escamilla · Introduction 2 (SKC Gulf Coast Inc., 2001; EPA, 2009; EIA, 2010;) 2µm 50µm 2000µm PM 2.5 PM 10 TSP Particles 2 µm 50 µm 200 µm

Design an innovated rotorods technique toimplement in different percentages of sand, silt,clay, sampling height and wind speed in order tofind TSP such as metals and identification of fungiin air.

6

Page 7: Dr. Joel Adrián Hernández Escamilla · Introduction 2 (SKC Gulf Coast Inc., 2001; EPA, 2009; EIA, 2010;) 2µm 50µm 2000µm PM 2.5 PM 10 TSP Particles 2 µm 50 µm 200 µm

Make an identification and physical characterization of the sites of dust storm sources

Design and implement a dust chamber for the assessment of saturation and emission of particulate matter

Design and develop of 2 automatic rotorods systems for the improvement of TSP and PM measurements

Implementation of innovated rotorods systems in natural and anthropogenic dust storms

Determine the trend of PM based on factors associated with dust storms during the previous evaluated events

1

2

3

4

5

7

Page 8: Dr. Joel Adrián Hernández Escamilla · Introduction 2 (SKC Gulf Coast Inc., 2001; EPA, 2009; EIA, 2010;) 2µm 50µm 2000µm PM 2.5 PM 10 TSP Particles 2 µm 50 µm 200 µm

8

Page 9: Dr. Joel Adrián Hernández Escamilla · Introduction 2 (SKC Gulf Coast Inc., 2001; EPA, 2009; EIA, 2010;) 2µm 50µm 2000µm PM 2.5 PM 10 TSP Particles 2 µm 50 µm 200 µm

9

Page 10: Dr. Joel Adrián Hernández Escamilla · Introduction 2 (SKC Gulf Coast Inc., 2001; EPA, 2009; EIA, 2010;) 2µm 50µm 2000µm PM 2.5 PM 10 TSP Particles 2 µm 50 µm 200 µm

METHODOLOGY

10

Preparation of samplers (TSI and rotorods)• 3 Soil samples

Dust source (Natural and anthropogenic)• 20 mph, 30 mph, 40 mph

Dust sampling• 36 samples (Rotorods)

Sample storage• Microscope slides in Petri dishes

Sample analysis• PM, elemental, texture, moisture.

Correlate PM values with speed truck and previous measures

with old rotorod and TSI.

Page 11: Dr. Joel Adrián Hernández Escamilla · Introduction 2 (SKC Gulf Coast Inc., 2001; EPA, 2009; EIA, 2010;) 2µm 50µm 2000µm PM 2.5 PM 10 TSP Particles 2 µm 50 µm 200 µm

METHODOLOGY

11

Weight sample and TSP

Gravimetric method

Elemental analysis

XRF analysis Elemental quantification

Particles distribution and size

Scanning electron microscope-energy dispersive X-ray (SEM-EDS)

Elemental identification

Texture, sand, silt and clay percentages

Bouyoucos method

Page 12: Dr. Joel Adrián Hernández Escamilla · Introduction 2 (SKC Gulf Coast Inc., 2001; EPA, 2009; EIA, 2010;) 2µm 50µm 2000µm PM 2.5 PM 10 TSP Particles 2 µm 50 µm 200 µm

5

Agar preparation (PDA)Inoculate with sticky tape

sampledFungal growing

CFU and color Fungal isolation

METHODOLOGY

Page 13: Dr. Joel Adrián Hernández Escamilla · Introduction 2 (SKC Gulf Coast Inc., 2001; EPA, 2009; EIA, 2010;) 2µm 50µm 2000µm PM 2.5 PM 10 TSP Particles 2 µm 50 µm 200 µm

13

Page 14: Dr. Joel Adrián Hernández Escamilla · Introduction 2 (SKC Gulf Coast Inc., 2001; EPA, 2009; EIA, 2010;) 2µm 50µm 2000µm PM 2.5 PM 10 TSP Particles 2 µm 50 µm 200 µm

5

Site number Experimental site Latitude Longitude Soil moisture (%) Soil texture

Clay Silt Sand

1 Arroyo de las víboras 31°45'35.94"N 106°30'22.42"W 5.08 18 76.92 0.84 LS

2 Las Torres-Porvenir 31°36'31.20"N 106°23'47.96"W 7.08 11 81.92 0.42 LS

Soil particle size (%)

Abbreviation of soil texture: LS, Loamy sand

Soil particle size distribution and soil moisture content for each experimental site

14

% % %

Sand 1 50 Silt 1 19 Clay 1 31

Sand 2 38 Silt 2 37 Clay 2 25

Page 15: Dr. Joel Adrián Hernández Escamilla · Introduction 2 (SKC Gulf Coast Inc., 2001; EPA, 2009; EIA, 2010;) 2µm 50µm 2000µm PM 2.5 PM 10 TSP Particles 2 µm 50 µm 200 µm

0

1000

2000

3000

4000

5000

6000

20MPH 30 MPH 40 MPH Natural 1M Natural 2M

TSP

g/m

3)

DUST STORM

[TSP] from anthropogenic and natural dust storms in Juarez, Chihuahua

Page 16: Dr. Joel Adrián Hernández Escamilla · Introduction 2 (SKC Gulf Coast Inc., 2001; EPA, 2009; EIA, 2010;) 2µm 50µm 2000µm PM 2.5 PM 10 TSP Particles 2 µm 50 µm 200 µm

Pythium sp. Trichoderma sp. Aspergillus sp.

Cladosporium sp. Rhizopus sp. Aspergillus sp.

Page 17: Dr. Joel Adrián Hernández Escamilla · Introduction 2 (SKC Gulf Coast Inc., 2001; EPA, 2009; EIA, 2010;) 2µm 50µm 2000µm PM 2.5 PM 10 TSP Particles 2 µm 50 µm 200 µm

Identification of Rhizopus sp.

.

100x

10x

b

c

a

a

Page 18: Dr. Joel Adrián Hernández Escamilla · Introduction 2 (SKC Gulf Coast Inc., 2001; EPA, 2009; EIA, 2010;) 2µm 50µm 2000µm PM 2.5 PM 10 TSP Particles 2 µm 50 µm 200 µm

Identification of Aspergillus sp.

e

Page 19: Dr. Joel Adrián Hernández Escamilla · Introduction 2 (SKC Gulf Coast Inc., 2001; EPA, 2009; EIA, 2010;) 2µm 50µm 2000µm PM 2.5 PM 10 TSP Particles 2 µm 50 µm 200 µm

Identification of Trichoderma sp.

c

b

a

Page 20: Dr. Joel Adrián Hernández Escamilla · Introduction 2 (SKC Gulf Coast Inc., 2001; EPA, 2009; EIA, 2010;) 2µm 50µm 2000µm PM 2.5 PM 10 TSP Particles 2 µm 50 µm 200 µm

Identification of Cladosporium sp.

a b

b

Page 21: Dr. Joel Adrián Hernández Escamilla · Introduction 2 (SKC Gulf Coast Inc., 2001; EPA, 2009; EIA, 2010;) 2µm 50µm 2000µm PM 2.5 PM 10 TSP Particles 2 µm 50 µm 200 µm

Identification of Pythium sp.

Page 22: Dr. Joel Adrián Hernández Escamilla · Introduction 2 (SKC Gulf Coast Inc., 2001; EPA, 2009; EIA, 2010;) 2µm 50µm 2000µm PM 2.5 PM 10 TSP Particles 2 µm 50 µm 200 µm

Percentage of prevalence of microscopic fungi found in air samples during natural duststorms in Ciudad Juarez, Chihuahua.

22

19%

51%

13%

10%7%

Aspergillus sp.

Cladosporium sp.

Pythium sp.

Trichoderma sp.

Rhizopus sp.

Page 23: Dr. Joel Adrián Hernández Escamilla · Introduction 2 (SKC Gulf Coast Inc., 2001; EPA, 2009; EIA, 2010;) 2µm 50µm 2000µm PM 2.5 PM 10 TSP Particles 2 µm 50 µm 200 µm

NATURAL SANDSTORM

23

Left side Center Right side

Page 24: Dr. Joel Adrián Hernández Escamilla · Introduction 2 (SKC Gulf Coast Inc., 2001; EPA, 2009; EIA, 2010;) 2µm 50µm 2000µm PM 2.5 PM 10 TSP Particles 2 µm 50 µm 200 µm

24

Page 25: Dr. Joel Adrián Hernández Escamilla · Introduction 2 (SKC Gulf Coast Inc., 2001; EPA, 2009; EIA, 2010;) 2µm 50µm 2000µm PM 2.5 PM 10 TSP Particles 2 µm 50 µm 200 µm

USDA Particle Size Distribution

BinsFrequency Count

%

Clay 0.002 0 0

Very Fine Silt 0.005 0 0

Silt 0.05 7027 91.68

Very Fine Sand 0.1 356 4.64

Fine Sand 0.25 190 2.48

Medium Sand 0.5 60 0.78

Coarse Sand 1 24 0.31

Very Coarse Sand 2 8 0.10

Bin Limits Frequency Count %clay 0.002 0 0silt 0.02 6206 80.96

sand 2 1459 19.03TOTAL 7665 100

Bins Frequency

PM 2.5 2.5 0

PM 10 10 4807

PM 200 200 2736

Page 26: Dr. Joel Adrián Hernández Escamilla · Introduction 2 (SKC Gulf Coast Inc., 2001; EPA, 2009; EIA, 2010;) 2µm 50µm 2000µm PM 2.5 PM 10 TSP Particles 2 µm 50 µm 200 µm

NATURAL SANDSTORM

26

Left side Center Right side

Page 27: Dr. Joel Adrián Hernández Escamilla · Introduction 2 (SKC Gulf Coast Inc., 2001; EPA, 2009; EIA, 2010;) 2µm 50µm 2000µm PM 2.5 PM 10 TSP Particles 2 µm 50 µm 200 µm

27

Page 28: Dr. Joel Adrián Hernández Escamilla · Introduction 2 (SKC Gulf Coast Inc., 2001; EPA, 2009; EIA, 2010;) 2µm 50µm 2000µm PM 2.5 PM 10 TSP Particles 2 µm 50 µm 200 µm

USDA Particle Size Distribution

BinsFrequency Count

%

Clay 0.002 1 0.08896797

Very Fine Silt 0.005 1 0.08896797

Silt 0.05 26 2.31

Very Fine Sand 0.1 28 2.49

Fine Sand 0.25 84 7.47

Medium Sand 0.5 141 12.54

Coarse Sand 1 281 25.00

Very Coarse Sand 2 562 50.00

Bin Limits Frequency Count %clay 0.002 1 0.08silt 0.02 10 0.88

sand 2 1113 99.02TOTAL 1124 100

Bins Frequency

PM 2.5 2.5 1

PM 10 10 4

PM 200 200 107

Page 29: Dr. Joel Adrián Hernández Escamilla · Introduction 2 (SKC Gulf Coast Inc., 2001; EPA, 2009; EIA, 2010;) 2µm 50µm 2000µm PM 2.5 PM 10 TSP Particles 2 µm 50 µm 200 µm

29

1.0000

10.0000

100.0000

1000.0000

10000.0000

100000.0000

1000000.0000

Mo Zr Sr Rb Zn W Fe Cr V Ti Sc Ca K S Nb Al P Si Cl

PP

M (

LOG

10

)

ELEMENTS

ELEMENTAL ANALYSIS (XRF) ANTHROPOGENIC AND NATURAL SOURCE

BLANCO SOIL 20 MPH 30 MPH 40 MPH TNANAPRA TNTORRES

Page 30: Dr. Joel Adrián Hernández Escamilla · Introduction 2 (SKC Gulf Coast Inc., 2001; EPA, 2009; EIA, 2010;) 2µm 50µm 2000µm PM 2.5 PM 10 TSP Particles 2 µm 50 µm 200 µm

Conclusions

The Cladosporium sp. was the fungi genus that was mostfound in air during dust storms, following the Aspergillus sp.

The distribution of the particles on the sticky tape ishomogenous and the range of particle texture to be trappedfor sand is from 16 % to 75%, for silt 13% to 33% and for clayfrom 12% to 47%.

The elements identified in dust storm samples are correctaccording the literature, the principal elements in the Earth´sCrust.

Page 31: Dr. Joel Adrián Hernández Escamilla · Introduction 2 (SKC Gulf Coast Inc., 2001; EPA, 2009; EIA, 2010;) 2µm 50µm 2000µm PM 2.5 PM 10 TSP Particles 2 µm 50 µm 200 µm

Conclusions

The samples obtained from the rotorods during thedust storms they could correlate with the particle sizepercentage in soil with the micrographs.

The micrographs were easier than the past methodusing the SEM, we recommend use the conductivetape around the sample to analyze.

Page 32: Dr. Joel Adrián Hernández Escamilla · Introduction 2 (SKC Gulf Coast Inc., 2001; EPA, 2009; EIA, 2010;) 2µm 50µm 2000µm PM 2.5 PM 10 TSP Particles 2 µm 50 µm 200 µm

Conclusions

The anthropogenic source at the speed of 20 mphreach 14% of dust storm, 30 mph reach 18% and 40mph reach 30% of the dust storm particulate matter.

Zr, W, V, Ti, P, Si, Al, Fe, Ca and K, were the elementsthat increased during the dust storms, some of themrelated to industry and the last five with the soil of thesites.

Page 33: Dr. Joel Adrián Hernández Escamilla · Introduction 2 (SKC Gulf Coast Inc., 2001; EPA, 2009; EIA, 2010;) 2µm 50µm 2000µm PM 2.5 PM 10 TSP Particles 2 µm 50 µm 200 µm

Rotorod sampler

Low cost technique(Microscope slide, double sided tape)

Portable, height, RPM and time adjustable; two samples by rotorod

Easy handle and maintenance (bluetooth, recargable battery)

Sample analyze (fungal, elemental, particle size, pollen)

Suspended particle matter (PM, emission factor, [TSP])

Spot sampling Short duration

Duration varies from less tan 30 minutes to several hours

It is useful for the random checking of pollution at any point due to some local source.

*Recommendations: If will be use the samples for the scanning electron microscope, use conductive tape during the sampling. For natural dust storm events the sampling is better for 15 minutes, and for anthropogenic dust storm events from 15 to 60 minutes.

33

TSP (mg/m3) = Sample weight obtained

(RPM * π * 151.8 cm3 * sample time)/1x106

TSP (mg/m3) = Sample weight obtained

(RPM * π * 151.8 cm3 * sample time)/1x106

Page 34: Dr. Joel Adrián Hernández Escamilla · Introduction 2 (SKC Gulf Coast Inc., 2001; EPA, 2009; EIA, 2010;) 2µm 50µm 2000µm PM 2.5 PM 10 TSP Particles 2 µm 50 µm 200 µm

Final conclusion

• The improved rotorod technique is useful for spotsamplings. The low cost, easy handle, double sample andits analysis, are characteristics that made the improvedrotorod a good alternative technique to measure airboneparticles, during natural and anthrophogenic dust events.

34

Page 35: Dr. Joel Adrián Hernández Escamilla · Introduction 2 (SKC Gulf Coast Inc., 2001; EPA, 2009; EIA, 2010;) 2µm 50µm 2000µm PM 2.5 PM 10 TSP Particles 2 µm 50 µm 200 µm

Acknowledgement

• Thesis committee

• CONACyt (Scholarship supported)

• Mechatronic Enginners:• German Tadeo Liendo Villafaña

• Rubén Alfonso Loya Herrera

35

Page 36: Dr. Joel Adrián Hernández Escamilla · Introduction 2 (SKC Gulf Coast Inc., 2001; EPA, 2009; EIA, 2010;) 2µm 50µm 2000µm PM 2.5 PM 10 TSP Particles 2 µm 50 µm 200 µm

36

Page 37: Dr. Joel Adrián Hernández Escamilla · Introduction 2 (SKC Gulf Coast Inc., 2001; EPA, 2009; EIA, 2010;) 2µm 50µm 2000µm PM 2.5 PM 10 TSP Particles 2 µm 50 µm 200 µm

Buck, B. J., King, J., & Etyemezian, V. (2011). Effects of Salt Mineralogy on Dust Emissions, Salton Sea, California.

Soil Science Society of America Journal, 75(5), 1971. http://doi.org/10.2136/sssaj2011.0049

Businger, J. a., & Oncley, S. P. (1990). Flux Measurement with Conditional Sampling. Journal of Atmospheric and

Oceanic Technology. http://doi.org/10.1175/1520-0426(1990)007<0349:FMWCS>2.0.CO;2

Camacho-su, J. G., & Echeverry-hern, S. (2015). Identificación de bacterias y hongos en el aire de Neiva, Colombia,

17(5), 728–737.

Chen, F.-L. (2011). Field evaluation of portable and central site MP samplers emphasizing additive and differential

mass concentration estimates. Atmospheric Environment , 4522-4527.

Choobari, O. A., Zawar-Reza, P., & Sturman, a. (2014). The global distribution of mineral dust and its impacts on the

climate system: A review. Atmospheric Research, 138, 152–165. http://doi.org/10.1016/j.atmosres.2013.11.007

Chung, K. Y. K., & Burdett, G. J. (1994). DUSTINESS TESTING AND MOVING TOWARDS A BIOLOGICALLY

RELEVANT DUSTINESS INDEX. British Occupational Hygiene Society, 38(6), 945–949.Davidson, C. (2007). Airborne

Particulate Matter and Human Health: A Review. Aerosol Science and Technology , 737-749.

Clancy L et al (2002). Effect of air-pollution control on death rates in Dublin, Ireland: an intervention study. Lancet,

360:1210–1214.

Crandall, S. G., & Gilbert, G. S. (2017). Meteorological factors associated with abundance of airborne fungal spores

over natural vegetation. Atmospheric Environment, 162, 87–99. http://doi.org/10.1016/j.atmosenv.2017.05.018

Di, P., Pomata, D., Riccardi, C., Buiarelli, F., & Perrino, C. (2013). Fungal contribution to size-segregated aerosol

measured through biomarkers. Atmospheric Environment, 64, 132–140. http://doi.org/10.1016/j.atmosenv.2012.10.010

References

Page 38: Dr. Joel Adrián Hernández Escamilla · Introduction 2 (SKC Gulf Coast Inc., 2001; EPA, 2009; EIA, 2010;) 2µm 50µm 2000µm PM 2.5 PM 10 TSP Particles 2 µm 50 µm 200 µm

E. Roberts Alley & Associates, Inc. (1998). Air quiality control handbook. New York: McGraw-Hill.

Estrada, A. M. (2005). Material Particulado en la Atmósfera de Camagüey. Revista Cubana de Química , 43-45.

Etyemezian, V. (2003). Vehicle-based road dust emission measurement: I—methods and calibration. Atmospheric

Environment, 37(32), 4559–4571. http://doi.org/10.1016/S1352-2310(03)00528-4

Flores, J. P. (2011). Particulate Matter Dispersed by Vehicles Running on Agricultural Unpaved Roads. Terra

Latinoamericana , 23-34.

Fryrear, D. W. (1986). A field dust sampler. Journal of Soil and Water Conservation, 41(2), 2–5.

Funk, R., Reuter, H. I., Hoffmann, C., Engel, W., & Öttl, D. (2008). Effect of moisture on fine dust emission from tillage

operations on agricultural soils, 1863(October 2007), 1851–1863. http://doi.org/10.1002/esp

García, J. (2006). Determination of MP2.5 sources using time-resolved integrated source and receptor models.

Chemosphere , 2018-2027.

Garnica-escamilla, M. A., Rocha, M. G., Bautista-león, R. C., & Franco-cendejas, R. (2012). Cladosporium sp. El

paciente quemado. Revista Del Hospital de Juárez de México, 79(4), 271–272.

Ghosh, B., Lal, H., & Srivastava, A. (2015). Review of bioaerosols in indoor environment with special reference to

sampling , analysis and control mechanisms. Environment International, 85, 254–272.

http://doi.org/10.1016/j.envint.2015.09.018

Ghosh, T., & Indrajit, P. (2014). Dust Storm and its Environmental Implications. Journal of Engineering Computers &

Applied Sciences(JECAS), 3(4), 30–37.

Gill, T. E., Hardiman, M., & Gill, T. E. (2017). A synoptic climatology of blowing dust events in El Paso , Texas from

1932-2005, (August).

Page 39: Dr. Joel Adrián Hernández Escamilla · Introduction 2 (SKC Gulf Coast Inc., 2001; EPA, 2009; EIA, 2010;) 2µm 50µm 2000µm PM 2.5 PM 10 TSP Particles 2 µm 50 µm 200 µm

Gill, T. E., Zobeck, T. M., & Stout, J. E. (2006). Technologies for laboratory generation of dust from geological

materials, 132, 1–13. http://doi.org/10.1016/j.jhazmat.2005.11.083H.

Gillete, D. (1999). A quantitative geophysical explanation for hot spot dust emitting source regions. Contr. Atmos.

Phys.

González-delgado, A., Shukla, M. K., Dubois, D. W., Flores-márgez, J. P., Escamilla, J. A. H., & Olivas, E. (2016).

ScienceDirect Microbial and size characterization of airborne particulate matter collected on sticky tapes along US –

Mexico border. JES, 1–10. http://doi.org/10.1016/j.jes.2015.10.037

Goossens, D., & Buck, B. (2009). Dust emission by off-road driving: Experiments on 17 arid soil types, Nevada, USA.

Geomorphology, 107(3-4), 118–138. http://doi.org/10.1016/j.geomorph.2008.12.001

Goudarzi, G. (2013). Dust storm in Ahvaz.

Goudie, A. S. (2014). Desert dust and human health disorders. Environment International, 63, 101–113.

http://doi.org/10.1016/j.envint.2013.10.011

Grineski, S. E., Staniswalis, J. G., Bulathsinhala, P., Peng, Y., & Gill, T. E. (2011). Hospital admissions for asthma and

acute bronchitis in El Paso , Texas : Do age , sex , and insurance status modify the effects of dust and low wind

events ? $ , $$. Environmental Research, 111(8), 1148–1155. http://doi.org/10.1016/j.envres.2011.06.007

Hawksworth, D. L. (2005). Lichens as rapid bioindicators of pollution and habit disturbance in the tropics. Revista

Iberoamericana de Micología , 71-82.

Hoek G et al. (2002) The association between mortality and indicators of traffic-related air pollution in a Dutch cohort

study. Lancet, 360:1203– 1209.

IMIP (2010). Plan de Desarrollo Urbano de Ciudad Juárez. Juárez: Ayuntamiento de Juárez.

Page 40: Dr. Joel Adrián Hernández Escamilla · Introduction 2 (SKC Gulf Coast Inc., 2001; EPA, 2009; EIA, 2010;) 2µm 50µm 2000µm PM 2.5 PM 10 TSP Particles 2 µm 50 µm 200 µm

Pedro, J., Márgez, F., Sukla, M. K., Wang, J., & Arratia, C. H. (2010). CAMINOS AGRÍCOLAS NO PAVIMENTADOS

Particulate Matter Dispersed by Vehicles Running on Agricultural Unpaved Roads. TERRA LATINOAMERICANA,

29(1), 23–34.

Pelt, R. S. Van, Baddock, M. C., Zobeck, T. M., Odorico, P. D., Ravi, S., & Bhattachan, A. (2017). Geoderma Total

vertical sediment fl ux and PM 10 emissions from disturbed Chihuahuan Desert surfaces. Geoderma, 293, 19–25.

http://doi.org/10.1016/j.geoderma.2017.01.031

Pope, C. A., Dockery D. W. (2006), Health Effects of Fine Particulate Air Pollution: Lines that Connect. Air and Waste

Manage Assoc. J. Air & Waste Manage. Assoc. 56:709–742.

Pope, C. A., THUN, M. J., Nambodiri, M. M. (1995), Particulate air pollution as a predictor of mortality in a prospective

study of U.S. adults. Am. J. Respir. Crit. Care Med. 151(3): 669-74.

Rivera Rivera, N. I., Gill, T. E., Gebhart, K. a., Hand, J. L., Bleiweiss, M. P., & Fitzgerald, R. M. (2009). Wind modeling

of Chihuahuan Desert dust outbreaks. Atmospheric Environment, 43(2), 347–354.

http://doi.org/10.1016/j.atmosenv.2008.09.069

Rivera, N. R. (2009). Wind modeling of Chihuahuan Desert dust outbreaks. Atmospheric Environment , 347-354.

Rivera, N. R. (2010). Source characteristics of hazardous Chihuahuan Desert dust outbreaks. Atmospheric

Environment , 1-12.

SEMARNAT. (2006). Programa de Gestión de Calidad del Aire de Ciudad Juárez : Municipio de Ciudad Juárez.

Shi, P., Yan, P., Yuan, Y., & Nearing, M. A. (2004). Wind erosion research in China : past , present and future. Progress

in Physical Geography, 3, 366–386.