Dr. Christian Sattler German Aerospace Center – DLR ... · Dr. Christian Sattler German Aerospace...

21
Scaling-up solar thermochemical cycles: HYDROSOL experience Dr. Christian Sattler German Aerospace Center – DLR Institute of Solar Research Solar Chemical Engineering [email protected] > ISES Webinar: Solar driven thermochemical production of sustainable fuels > Sattler HYDROSOL > 17/04/2015 DLR.de Chart 1

Transcript of Dr. Christian Sattler German Aerospace Center – DLR ... · Dr. Christian Sattler German Aerospace...

Scaling-up solar thermochemical cycles: HYDROSOL experience

Dr. Christian SattlerGerman Aerospace Center – DLRInstitute of Solar ResearchSolar Chemical [email protected]

> ISES Webinar: Solar driven thermochemical production of sustainable fuels > Sattler • HYDROSOL > 17/04/2015DLR.de • Chart 1

2001, Almería, Spain – Discussion between APTL and DLR Open Volumetric Solar Receiver Design: High Temperature Air Receiver (HiTRec)

• PSA Demonstration:Power: 3 MWth

• Irradiation > 750 kW/m2

• Long term test at PSA

Volumetric receiver conceptSiSiC monoliths with Honey comb structure

Hot Air 760 – 1000°C

> ISES Webinar: Solar driven thermochemical production of sustainable fuels > Sattler • HYDROSOL > 17/04/2015DLR.de • Chart 2

The HYDROSOL Idea

Result: HYDROSOL Project ‐ STREP EU FP 5 (Nov. 2002 – Oct. 2005)

The HYDROSOL ConceptCoated Ceramic Honeycomb Structures

1) Fixation of the redox materials on the surface of the absorber2) Use of ceramic honeycombstructures

no circulation of (hot) solid reactants

product separation straightforwardrecovery of high temperature heat

not too difficult

SiC components

> ISES Webinar: Solar driven thermochemical production of sustainable fuels > Sattler • HYDROSOL > 17/04/2015DLR.de • Chart 3

The HYDROSOL Concept2 Step Thermochemical Cycle for H2O Splitting

1. Water Splitting

H2O + MOredMOox + H2

2. Regeneration 

MOoxMOred + ½ O2

O

H H

O O

800 °C

1300 °C

Net Reaction: H2O  H2 + ½ O2

> ISES Webinar: Solar driven thermochemical production of sustainable fuels > Sattler • HYDROSOL > 17/04/2015DLR.de • Chart 4

The HYDROSOL Test Facility - DLR Solar Furnace, Cologne, Germany

Operation started in 1994

Off-axis Concept

Heliostat 60 m2

Concentrator 39 m2

160 Facettes, 3 Focal lengths

Concentration: 5500 = 5 MW/m2

Power max. 25 kW

Focus 13 cm (90%)

Tmax 2700 °C

> ISES Webinar: Solar driven thermochemical production of sustainable fuels > Sattler • HYDROSOL > 17/04/2015DLR.de • Chart 5

6 > ETH > Sattler

The HYDROSOL Batch-Reactor:

after completion in operation

> ISES Webinar: Solar driven thermochemical production of sustainable fuels > Sattler • HYDROSOL > 17/04/2015

1. Step September 2004: The first solar Hydrogen by the HYDROSOL process

2000 3000 4000 5000 6000-0,0001

0,0000

0,0001

m'(H

2) [g

/sec

]

time [sec]

steam onsteam off

4000 5000 6000 7000 8000

0,0000

0,0005

m'(O

2) [g

/sec

]time [sec]

steam off end of regeneration1200°C

(ZnMn)Fe2O4 on ReSiC

> ISES Webinar: Solar driven thermochemical production of sustainable fuels > Sattler • HYDROSOL > 17/04/2015DLR.de • Chart 7

8 > ETH > Sattler

01:00 02:00 03:00 04:00 05:00 06:00 07:00 08:000,000000

0,000002

0,000004

0,000006

0,000008m

'(H2)

[g/s

ec]

time

vapour off

vapour on

2. Step April 2005: Improvement of conversion and stability of the coating / support assemblies

> ISES Webinar: Solar driven thermochemical production of sustainable fuels > Sattler • HYDROSOL > 17/04/2015

800° C

9 > ETH > Sattler

1300° C

1300° C

The HYDROSOL Reactor for continuous hydrogen production – “Conti-Reactor”

Reactor with two modules Two different alternating processes:

• Production: 800°C, water steam, nitrogen, exothermic

• Regeneration: 1200°C, nitrogen, endothermic

Transient steps like• Switching between half cycle• Start-up / Shutdown

Temperature gradient on the coated structure Fluctuating irradiation (daily / annually)

800° C

H2+N2

O2+N2

O2+N2

H2+N2

The „Conti-Reactor“

during test-operation

> ISES Webinar: Solar driven thermochemical production of sustainable fuels > Sattler • HYDROSOL > 17/04/2015DLR.de • Chart 10

0 3600 7200 10800 14400 18000 21600 25200 288000,0000

0,0002

0,0004

0,0006

0,0008

0,0010

0,0012

m'(H

2) [g

/sec

]

time [sec]

1. day

3. Step June 2005: Quasi-continuous hydrogen production in the solar furnace

> ISES Webinar: Solar driven thermochemical production of sustainable fuels > Sattler • HYDROSOL > 17/04/2015DLR.de • Chart 11

4. Step: Long-term tests

0 5 10 15 20 25 30 35 400

2

4

6

8

10

12

14

16

18

5. day4. day3. day2. day

mdo

t,H2 in

10-5

g/s

Time in h

1. day

Hydrogen generation for 53 cyclesperformed with one sample HYDROSOL was awarded

•Eco Tech Award Expo 2005,Tokyo•IPHE Technical AchievementAward 2006 •Descartes Research Prize 2006

> ISES Webinar: Solar driven thermochemical production of sustainable fuels > Sattler • HYDROSOL > 17/04/2015DLR.de • Chart 12

- Modular construction, two times 100 kWth

- One module consists of 9 coated honeycomb structures

- 2 Reaction chambers

In operation hydrogen and oxygen are produced in parallel the processes are reversible

quasi-continuous production

HYDROSOL 2 – Operation on a Solar Tower EU FP6

> ISES Webinar: Solar driven thermochemical production of sustainable fuels > Sattler • HYDROSOL > 17/04/2015DLR.de • Chart 13

14 > ETH > Sattler

67 6767

67 6767

67 6767

6767

67676767

67676767

6767

95 9595

9595

95 9595

9595

9595

9595

9595

9595

9595

9595

9595 9595

115

115115 115 115 115

115

115

115

115115 115 115

115

115136

136136

136 136136

136

136

136

136136 136 136

136

136

162 162

162 162162 162

162 162

162 162162 162

162

162 162

0

20

40

60

80

100

120

140

160

180

-80 -60 -40 -20 0 20 40 60 80East

North

Receiver plane

24 heliostats

ca 110 kW/m²

0 kW/m2

ca 110+250 kW/m²

21 heliostats

7 additional heliostats for heating

Heliostat Field Control

South

> ISES Webinar: Solar driven thermochemical production of sustainable fuels > Sattler • HYDROSOL > 17/04/2015

Experiments – Process Control Software:

Flux Measurement at test operation FluxMaxboth Modules= 115kW/m2

> ISES Webinar: Solar driven thermochemical production of sustainable fuels > Sattler • HYDROSOL > 17/04/2015DLR.de • Chart 15

Experiments – Process Control Software:

Temperature measurement at test operation TMaxboth Modules= 800°C

> ISES Webinar: Solar driven thermochemical production of sustainable fuels > Sattler • HYDROSOL > 17/04/2015DLR.de • Chart 16

West‐Module

East‐Module

West‐Modul

First experiments on hydrogen productionon the CRS Solar Tower, PSA, Spain

East‐ModuleHeat up

> ISES Webinar: Solar driven thermochemical production of sustainable fuels > Sattler • HYDROSOL > 17/04/2015DLR.de • Chart 17

HYDROSOL 3D – FCH JU project Design and Economic analysis of a demonstration plant

• Demonstration plant thermal energy input: 1 MW

• Cost calculation of the new designedreactor was carried out.

• Cost calculation of the overallprocess units was performed.

• More than half of processinvestment results from the solar system.

> ISES Webinar: Solar driven thermochemical production of sustainable fuels > Sattler • HYDROSOL > 17/04/2015DLR.de • Chart 18

HYDROSOL PlantDemonstration on the CRS tower PSA, Spain

• European FCH-JU project

• Partner: APTL (GR), DLR (DE), HELPE (GR), CIEMAT (ES), HYGEAR (NL)

• 750 kWth demonstration ofthermochemical water splitting

• Location: Plataforma Solar de Almería, Spain, 2016

• Use of all heliostats

• Reactor located on the CRS tower

• Storage tanks and PSA on theground

> ISES Webinar: Solar driven thermochemical production of sustainable fuels > Sattler • HYDROSOL > 17/04/2015DLR.de • Chart 19

HYDROSOL, HYDROSLOL 2, HYDROSOL-3D, HYDROSOL Plant

• 2002 Start HYDROSOL, EU FP5• 2004 First solar hydrogen, DLR• 2005 Quasi-continuous solar

hydrogen, DLR• 2008 HYDROSOL 2, EU FP6, 100

kW demonstration CRS Tower PSA, Spain

• 2013 HYDROSOL-3D, FCH JU, Design of a MW demonstration plant ready

• 2014 HYDROSOL PLANT, FCH JU• 2016 Operation of the 750 kW

Demonstration plant, CRS Tower, PSA, Spain

• 2020 Pre-commercial plant

APTL (GR), DLR (DE), CIEMAT (SP), StobbeTech (DK), Johnson Matthey (UK), HyGear (NL), HELPE (GR), Total (FR)

> ISES Webinar: Solar driven thermochemical production of sustainable fuels > Sattler • HYDROSOL > 17/04/2015DLR.de • Chart 20

Thank you very much for your attention!

> ISES Webinar: Solar driven thermochemical production of sustainable fuels > Sattler • HYDROSOL > 17/04/2015DLR.de • Chart 21