DOI: 10.1038/NPHOTON.2015 - media.nature.com PHOTONICS | . 3. DOI: 10.1038/NPHOTON.2015. 181....

10
SUPPLEMENTARY INFORMATION DOI: 10.1038/NPHOTON.2015.181 NATURE PHOTONICS | www.nature.com/naturephotonics 1 Daniel D. Hickstein 1 , Franklin J. Dollar 1 , Patrik Grychtol 1 , Jennifer L. Ellis 1 , Ronny Knut 1 , Carlos HernándezGarcía 1,2 , Dmitriy Zusin 1 , Christian Gentry 1 , Justin M. Shaw 3 , Tingting Fan 1 , Kevin M. Dorney 1 , Andreas Becker 1 , Agnieszka JarońBecker 1 , Henry C. Kapteyn 1 , Margaret M. Murnane 1 , and Charles G. Durfee 1,4 1 JILA – Department of Physics, University of Colorado and NIST, Boulder, Colorado 80309, USA 2 Grupo de Investigación en Óptica Extrema, Universidad de Salamanca, E37008 Salamanca, Spain 3 Electromagnetics Division, National Institute of Standards and Technology, Boulder, Colorado 80305, USA 4 Department of Physics, Colorado School of Mines, Golden, CO 80401, USA Section 1. Comparison of twopulse HHG methods Figure S1 | Comparison of twopulse high harmonic generation (HHG) methods. a, Noncollinear HHG with linearly polarized pulses 1–3 produces a fan of harmonics, all linearly polarized. b, Newly developed noncollinear circularly polarized HHG (NCPHHG) produces circularly polarized, angularly separated harmonics. c, NCPHHG with different frequency driving lasers also produces angularly separated circularly polarized harmonics, but with the left and right circularly polarized beams at different harmonic orders. d, Twocolorcollinear HHG 4,5 produces circularly polarized harmonics that copropagate with the fundamental, requiring a filter to block the driving laser beams. In the manuscript, we present a new method for high harmonic generation (HHG), namely noncollinear circularly polarized high harmonic generation (NCPHHG), which uses two counterrotating circularly Non- collinear generation of angularly isolated circularly polarized high harmonics © 2015 Macmillan Publishers Limited. All rights reserved

Transcript of DOI: 10.1038/NPHOTON.2015 - media.nature.com PHOTONICS | . 3. DOI: 10.1038/NPHOTON.2015. 181....

SUPPLEMENTARY INFORMATIONDOI: 10.1038/NPHOTON.2015.181

NATURE PHOTONICS | www.nature.com/naturephotonics 1

Supplementary  Information  for:  Noncollinear  generation  of  angularly  isolated  

circularly  polarized  high  harmonics    Daniel   D.   Hickstein1,   Franklin   J.   Dollar1,   Patrik   Grychtol1,   Jennifer   L.   Ellis1,   Ronny  Knut1,   Carlos  Hernández-­‐García1,2,   Dmitriy   Zusin1,   Christian   Gentry1,   Justin   M.   Shaw3,   Tingting   Fan1,   Kevin   M.  Dorney1,  Andreas  Becker1,  Agnieszka   Jaroń-­‐Becker1,  Henry  C.  Kapteyn1,  Margaret  M.  Murnane1,  and  Charles  G.  Durfee1,4    

1  JILA  –  Department  of  Physics,  University  of  Colorado  and  NIST,  Boulder,  Colorado  80309,  USA  2  Grupo  de  Investigación  en  Óptica  Extrema,  Universidad  de  Salamanca,  E-­‐37008  Salamanca,  Spain  3  Electromagnetics  Division,  National  Institute  of  Standards  and  Technology,  Boulder,  Colorado  80305,  USA  4  Department  of  Physics,  Colorado  School  of  Mines,  Golden,  CO  80401,  USA  

 

Section  1.  Comparison  of  two-­‐pulse  HHG  methods  

 Figure  S1  |  Comparison  of  two-­‐pulse  high  harmonic  generation  (HHG)  methods.  a,  Noncollinear  HHG  with  linearly  polarized  pulses1–3  produces  a  fan  of  harmonics,  all   linearly  polarized.  b,  Newly  developed  noncollinear  circularly  polarized  HHG  (NCP-­‐HHG)  produces  circularly  polarized,  angularly  separated  harmonics.  c,  NCP-­‐HHG  with  different  frequency   driving   lasers   also   produces   angularly   separated   circularly   polarized   harmonics,   but  with   the   left   and  right   circularly   polarized   beams   at   different   harmonic   orders.   d,   Two-­‐color-­‐collinear   HHG4,5   produces   circularly  polarized  harmonics  that  co-­‐propagate  with  the  fundamental,  requiring  a  filter  to  block  the  driving  laser  beams.    In  the  manuscript,  we  present  a  new  method  for  high  harmonic  generation  (HHG),  namely  noncollinear  circularly   polarized   high   harmonic   generation   (NCP-­‐HHG),   which   uses   two   counter-­‐rotating   circularly  

Supplementary  Information  for:  Non-collinear  generation  of  angularly  isolated  

circularly  polarized  high  harmonics  

Daniel   D.   Hickstein1,   Franklin   J.   Dollar1,   Patrik   Grychtol1,   Jennifer   L.   Ellis1,   Ronny  Knut1,   Carlos  Hernández-­‐García1,2,   Dmitriy   Zusin1,   Christian   Gentry1,   Justin   M.   Shaw3,   Tingting   Fan1,   Kevin   M.  Dorney1,  Andreas  Becker1,  Agnieszka   Jaroń-­‐Becker1,  Henry  C.  Kapteyn1,  Margaret  M.  Murnane1,  and  Charles  G.  Durfee1,4  

1  JILA  –  Department  of  Physics,  University  of  Colorado  and  NIST,  Boulder,  Colorado  80309,  USA  2  Grupo  de  Investigación  en  Óptica  Extrema,  Universidad  de  Salamanca,  E-­‐37008  Salamanca,  Spain  3  Electromagnetics  Division,  National  Institute  of  Standards  and  Technology,  Boulder,  Colorado  80305,  USA  4  Department  of  Physics,  Colorado  School  of  Mines,  Golden,  CO  80401,  USA  

Section  1.  Comparison  of  two-­‐pulse  HHG  methods  

Figure  S1  |  Comparison  of  two-­‐pulse  high  harmonic  generation  (HHG)  methods.  a,  Noncollinear  HHG  with  linearly  polarized  pulses1–3  produces  a  fan  of  harmonics,  all   linearly  polarized.  b,  Newly  developed  noncollinear  circularly  polarized  HHG  (NCP-­‐HHG)  produces  circularly  polarized,  angularly  separated  harmonics.  c,  NCP-­‐HHG  with  different  frequency   driving   lasers   also   produces   angularly   separated   circularly   polarized   harmonics,   but  with   the   left   and  right   circularly   polarized   beams   at   different   harmonic   orders.   d,   Two-­‐color-­‐collinear   HHG4,5   produces   circularly  polarized  harmonics  that  co-­‐propagate  with  the  fundamental,  requiring  a  filter  to  block  the  driving  laser  beams.  

In  the  manuscript,  we  present  a  new  method  for  high  harmonic  generation  (HHG),  namely  noncollinear  circularly   polarized   high   harmonic   generation   (NCP-­‐HHG),   which   uses   two   counter-­‐rotating   circularly  

© 2015 Macmillan Publishers Limited. All rights reserved

2 NATURE PHOTONICS | www.nature.com/naturephotonics

SUPPLEMENTARY INFORMATION DOI: 10.1038/NPHOTON.2015.181  

1  

polarized  laser  beams  to  generate  circularly  polarized  high  harmonics.  Fig.  S1  presents  a  comparison  of  the  NCP-­‐HHG  method  with  related  methods  of  HHG,  demonstrating  how  it  fits  into  the  larger  landscape  of   two-­‐pulse   driven   HHG.   Several   previous   studies1–3   have   investigated   noncollinear   harmonic  generation  with  linearly  polarized  beams  (Fig.  S1a).  Since  the  beams  are  linearly  polarized,  many  mixing  options   are   possible   and   each   harmonic   can   be   emitted   at   many   angles.   In   contrast,   the   NCP-­‐HHG  method   (Figs.   S1b,c)   introduces   an   additional   selection   rule,   which   restricts   the   output   to   just   two  beams   for   each   harmonic   order,   allowing   the   harmonics   to   be   angularly   separated   without   a  spectrometer.  Additionally,  circularly  polarized  harmonic  beams  are  produced  with  opposite  helicities,  allowing  for  the  implementation  of  spectroscopy  techniques  such  as  magnetic  circular  dichroism  (MCD)  or   photoelectron   circular   dichroism.   In   contrast   to   the   NCP-­‐HHG   method,   previously   established  methods  of  collinear  circularly  polarized  HHG4,5  produce  a  single  beam  of  EUV  light  that  contains  both  left  and  right  circularly  polarized  harmonics  at  different  frequencies  (Fig.  S1d).    The  NCP-­‐HHG  method   is   distinct   from   the   previous   HHG   schemes   of   attosecond   lighthouse6,7   (AL)   or  noncollinear  optical  gating3,8  (NOG).  AL  and  NOG  produce  angularly  separated  HHG  beams  that  consist  of   isolated   attosecond   pulses   that   are   linearly   polarized.   In   contrast,   the  NCP-­‐HHG  method   produces  angularly  separated  HHG  beams  that  consist  of  circularly  polarized  light  of  the  opposite  helicity.  Under  some  conditions,  the  NCP-­‐HHG  technique  may  additionally  separate  the  beams  by  the  harmonic  order.  The  AL  and  NOG  methods  provide  a   “gating”  mechanism,  whereby   isolated  attosecond  pulses   can  be  obtained  from  several-­‐cycle  driving  laser  pulses  that  would  otherwise  produce  a  pulse  train.  In  contrast,  NCP-­‐HHG   offers   no   such   gating   mechanism.   But,   if   the   NCP-­‐HHG   process   is   driven   with   very   short  duration   pulses,   the   NCP-­‐HHG   method   is   predicted   to   be   capable   of   producing   the   first   circularly  polarized  isolated  attosecond  pulses  (Fig.  6d).    

Section  2.  Spatially  separated  harmonics  using  NCP-­‐HHG  with  UV  driving  lasers  The  NCP-­‐HHG  method   is   capable   of   producing   angularly   separated   harmonics   across   a  wide   range   of  driving  laser  wavelengths.  However,  the  lower  phase-­‐matching  pressures  and  larger  separation  angles  of  UV-­‐driven   NCP-­‐HHG  mean   that   full   angular   separation   of   the   harmonics   is   easiest   to   experimentally  achieve  using  driving   lasers   in   the  UV  spectral   region.  Using   two  267  nm  driving   laser  beams   in  argon  gas,  we  demonstrate  that  NCP-­‐HHG  generates  four  separate  beams  (Fig.  S2b),  corresponding  to  the  left  and  right  circularly  polarized  harmonics  at  14.0  eV  and  23.4  eV  (3rd  and  5th  harmonic  of  267  nm,  which  correspond  to  the  9th  and  15th  harmonic  of  the  800  nm  fundamental).  By  using  an  Al  filter,  we  block  the  3rd  harmonic  and  transmit  only  the  5th  harmonic  (Fig.  2a),  confirming  these  spectral  assignments.  To  our  knowledge,  this  is  the  first  demonstration  of  a  HHG  process  that  naturally  separates  different  harmonic  orders.   With   sufficient   pressure,   angularly   separated   harmonics   can   be   produced   using   longer  wavelength  driving  lasers,  allowing  for  spectroscopy  experiments  without  the  need  for  a  spectrometer  (Fig.  6b).    Due   to   favorable  conversion  efficiency  scaling  of  HHG  at   shorter  wavelength  driving   lasers9,   very   little  pulse  energy   is   required   for  NCP-­‐HHG  using  267  nm  driving   lasers.   For  example,   the  bright  harmonics  shown  in  Fig.  S2  were  generated  using  only  15  μJ   in  each  beam.  Furthermore,  the  relative   intensity  of  

 

2  

the  various  harmonic  orders  can  be  tuned  through  the  overall  intensity  of  the  driving  laser.  In  this  case,  we   generated   much   more   3rd   harmonic   than   5th   harmonic,   so   that   the   harmonics   would   appear  comparable  on  the  CCD  camera  after  passing  through  the  Sn  filter,  which  is  more  transmissive  for  the  5th  harmonic.  However,  the  relative   intensity  of  the  3rd  and  5th  harmonic  beams  can  be  easily  adjusted  by  changing  the  overall  intensity  of  the  driving  lasers,  with  higher  intensities  of  the  driving  laser  providing  a  higher  ratio  of  5th  to  3rd  harmonic.      

 Figure  S2.  Angularly  separated  harmonics  using  NCP-­‐HHG  driven  by  UV  (267  nm)  beams.  a,  When  a  200  nm  Al  filter   is  placed  between  the  HHG  region  and  the  camera,  only  two  beams  are  seen,  which  correspond  to  the  left  and  right  circularly  polarized  beams  of  the  5th  harmonic  of  267  nm  (15th  harmonic  of  the  fundamental)  at  23.4  eV.  b,  When  a  tin  (Sn)  filter   is  used,  the  3rd  harmonic  (9th  harmonic  of  the  fundamental,  14.0  eV)  is  also  transmitted.  The  3rd  harmonic  is  angularly  separated  from  the  5th  harmonic  and  4  distinct  beams  are  seen  at  the  camera.  The  Sn  filter   is   only   ~0.1%   transmissive   at   14.0   eV   and   ~10%   transmissive   at   23.4   eV,   meaning   that,   despite   the  appearance  of  equal  intensities,  the  14  eV  harmonic  is  actually  much  brighter  before  the  Sn  filter.  We  note  that  the  unequal   intensities   of   the   left   and   right   circularly   polarized   light   is   likely   due   to   imperfect  mode   of   the   driving  beams  and  not  inherent  to  the  NCP-­‐HHG  process.    

 Section  3.  Noncollinear  circularly  polarized  HHG  at  400  nm  In   addition   to   the   noncollinear   circularly   polarized   HHG   experiments   at   800   and   267   nm,   we   also  generated  circularly  polarized  high  harmonics  with   the  noncollinear  mixing  of   two  400  nm   lasers  with  counter-­‐rotating  circular  polarization  (Figs.  S3  and  S4).  As  expected,  the  photon  energies  produced  with  400  nm  lasers  were  lower  than  for  800  nm,  but  the  photon  flux  is  high,  reaching  2x108  photons  per  pulse  (see  Supplementary  Information  Section  5).  When  argon  was  used  as  the  HHG  medium  (Figs.  S3a,b),  a  single  harmonic  (22  eV)  was  observed  (lower  energy  harmonics  are  blocked  by  the  200  nm  Al  filter).  The  isolation  of  a  single  harmonic  makes  this  source  attractive  for  applications  such  as  coherent  diffractive  imaging  and  photoelectron  spectroscopy  that  require  a  bright  monochromatic  light  source.  When  neon  is   used   as   the   generation   medium   (Fig.   S3c,d),   additional   harmonics   are   observed   at   higher   photon  

© 2015 Macmillan Publishers Limited. All rights reserved

NATURE PHOTONICS | www.nature.com/naturephotonics 3

SUPPLEMENTARY INFORMATIONDOI: 10.1038/NPHOTON.2015.181  

1  

polarized  laser  beams  to  generate  circularly  polarized  high  harmonics.  Fig.  S1  presents  a  comparison  of  the  NCP-­‐HHG  method  with  related  methods  of  HHG,  demonstrating  how  it  fits  into  the  larger  landscape  of   two-­‐pulse   driven   HHG.   Several   previous   studies1–3   have   investigated   noncollinear   harmonic  generation  with  linearly  polarized  beams  (Fig.  S1a).  Since  the  beams  are  linearly  polarized,  many  mixing  options   are   possible   and   each   harmonic   can   be   emitted   at   many   angles.   In   contrast,   the   NCP-­‐HHG  method   (Figs.   S1b,c)   introduces   an   additional   selection   rule,   which   restricts   the   output   to   just   two  beams   for   each   harmonic   order,   allowing   the   harmonics   to   be   angularly   separated   without   a  spectrometer.  Additionally,  circularly  polarized  harmonic  beams  are  produced  with  opposite  helicities,  allowing  for  the  implementation  of  spectroscopy  techniques  such  as  magnetic  circular  dichroism  (MCD)  or   photoelectron   circular   dichroism.   In   contrast   to   the   NCP-­‐HHG   method,   previously   established  methods  of  collinear  circularly  polarized  HHG4,5  produce  a  single  beam  of  EUV  light  that  contains  both  left  and  right  circularly  polarized  harmonics  at  different  frequencies  (Fig.  S1d).    The  NCP-­‐HHG  method   is   distinct   from   the   previous   HHG   schemes   of   attosecond   lighthouse6,7   (AL)   or  noncollinear  optical  gating3,8  (NOG).  AL  and  NOG  produce  angularly  separated  HHG  beams  that  consist  of   isolated   attosecond   pulses   that   are   linearly   polarized.   In   contrast,   the  NCP-­‐HHG  method   produces  angularly  separated  HHG  beams  that  consist  of  circularly  polarized  light  of  the  opposite  helicity.  Under  some  conditions,  the  NCP-­‐HHG  technique  may  additionally  separate  the  beams  by  the  harmonic  order.  The  AL  and  NOG  methods  provide  a   “gating”  mechanism,  whereby   isolated  attosecond  pulses   can  be  obtained  from  several-­‐cycle  driving  laser  pulses  that  would  otherwise  produce  a  pulse  train.  In  contrast,  NCP-­‐HHG   offers   no   such   gating   mechanism.   But,   if   the   NCP-­‐HHG   process   is   driven   with   very   short  duration   pulses,   the   NCP-­‐HHG   method   is   predicted   to   be   capable   of   producing   the   first   circularly  polarized  isolated  attosecond  pulses  (Fig.  6d).    

Section  2.  Spatially  separated  harmonics  using  NCP-­‐HHG  with  UV  driving  lasers  The  NCP-­‐HHG  method   is   capable   of   producing   angularly   separated   harmonics   across   a  wide   range   of  driving  laser  wavelengths.  However,  the  lower  phase-­‐matching  pressures  and  larger  separation  angles  of  UV-­‐driven   NCP-­‐HHG  mean   that   full   angular   separation   of   the   harmonics   is   easiest   to   experimentally  achieve  using  driving   lasers   in   the  UV  spectral   region.  Using   two  267  nm  driving   laser  beams   in  argon  gas,  we  demonstrate  that  NCP-­‐HHG  generates  four  separate  beams  (Fig.  S2b),  corresponding  to  the  left  and  right  circularly  polarized  harmonics  at  14.0  eV  and  23.4  eV  (3rd  and  5th  harmonic  of  267  nm,  which  correspond  to  the  9th  and  15th  harmonic  of  the  800  nm  fundamental).  By  using  an  Al  filter,  we  block  the  3rd  harmonic  and  transmit  only  the  5th  harmonic  (Fig.  2a),  confirming  these  spectral  assignments.  To  our  knowledge,  this  is  the  first  demonstration  of  a  HHG  process  that  naturally  separates  different  harmonic  orders.   With   sufficient   pressure,   angularly   separated   harmonics   can   be   produced   using   longer  wavelength  driving  lasers,  allowing  for  spectroscopy  experiments  without  the  need  for  a  spectrometer  (Fig.  6b).    Due   to   favorable  conversion  efficiency  scaling  of  HHG  at   shorter  wavelength  driving   lasers9,   very   little  pulse  energy   is   required   for  NCP-­‐HHG  using  267  nm  driving   lasers.   For  example,   the  bright  harmonics  shown  in  Fig.  S2  were  generated  using  only  15  μJ   in  each  beam.  Furthermore,  the  relative   intensity  of  

 

2  

the  various  harmonic  orders  can  be  tuned  through  the  overall  intensity  of  the  driving  laser.  In  this  case,  we   generated   much   more   3rd   harmonic   than   5th   harmonic,   so   that   the   harmonics   would   appear  comparable  on  the  CCD  camera  after  passing  through  the  Sn  filter,  which  is  more  transmissive  for  the  5th  harmonic.  However,  the  relative   intensity  of  the  3rd  and  5th  harmonic  beams  can  be  easily  adjusted  by  changing  the  overall  intensity  of  the  driving  lasers,  with  higher  intensities  of  the  driving  laser  providing  a  higher  ratio  of  5th  to  3rd  harmonic.      

 Figure  S2.  Angularly  separated  harmonics  using  NCP-­‐HHG  driven  by  UV  (267  nm)  beams.  a,  When  a  200  nm  Al  filter   is  placed  between  the  HHG  region  and  the  camera,  only  two  beams  are  seen,  which  correspond  to  the  left  and  right  circularly  polarized  beams  of  the  5th  harmonic  of  267  nm  (15th  harmonic  of  the  fundamental)  at  23.4  eV.  b,  When  a  tin  (Sn)  filter   is  used,  the  3rd  harmonic  (9th  harmonic  of  the  fundamental,  14.0  eV)  is  also  transmitted.  The  3rd  harmonic  is  angularly  separated  from  the  5th  harmonic  and  4  distinct  beams  are  seen  at  the  camera.  The  Sn  filter   is   only   ~0.1%   transmissive   at   14.0   eV   and   ~10%   transmissive   at   23.4   eV,   meaning   that,   despite   the  appearance  of  equal  intensities,  the  14  eV  harmonic  is  actually  much  brighter  before  the  Sn  filter.  We  note  that  the  unequal   intensities   of   the   left   and   right   circularly   polarized   light   is   likely   due   to   imperfect  mode   of   the   driving  beams  and  not  inherent  to  the  NCP-­‐HHG  process.    

 Section  3.  Noncollinear  circularly  polarized  HHG  at  400  nm  In   addition   to   the   noncollinear   circularly   polarized   HHG   experiments   at   800   and   267   nm,   we   also  generated  circularly  polarized  high  harmonics  with   the  noncollinear  mixing  of   two  400  nm   lasers  with  counter-­‐rotating  circular  polarization  (Figs.  S3  and  S4).  As  expected,  the  photon  energies  produced  with  400  nm  lasers  were  lower  than  for  800  nm,  but  the  photon  flux  is  high,  reaching  2x108  photons  per  pulse  (see  Supplementary  Information  Section  5).  When  argon  was  used  as  the  HHG  medium  (Figs.  S3a,b),  a  single  harmonic  (22  eV)  was  observed  (lower  energy  harmonics  are  blocked  by  the  200  nm  Al  filter).  The  isolation  of  a  single  harmonic  makes  this  source  attractive  for  applications  such  as  coherent  diffractive  imaging  and  photoelectron  spectroscopy  that  require  a  bright  monochromatic  light  source.  When  neon  is   used   as   the   generation   medium   (Fig.   S3c,d),   additional   harmonics   are   observed   at   higher   photon  

© 2015 Macmillan Publishers Limited. All rights reserved

4 NATURE PHOTONICS | www.nature.com/naturephotonics

SUPPLEMENTARY INFORMATION DOI: 10.1038/NPHOTON.2015.181  

3  

energies,   mirroring   the   behavior   of   single-­‐beam   HHG.   The   large   energy   separation   between   these  harmonics  may  prove  useful  for  multicolor  nanoscale  imaging  techniques10.  

 Figure  S3.  NCP-­‐HHG  with  two  400  nm  beams.  a  and  b,  Mixing  of  400  +  400  nm  light   in  argon  produces  a  single  harmonic  at  22  eV  (lower  harmonics  are  blocked  by  an  aluminum  filter),  which  is  ideally  suited  for  applications  that  require  a  high-­‐flux  monochromatic  source,  such  as  photoelectron  spectroscopy  or  nanoscale  imaging.  c  and  d,  The  higher  ionization  potential  of  neon  allows  additional  well-­‐separated  (6  eV)  harmonics  to  be  produced,  providing  a  convenient  source  for  multi-­‐wavelength  imaging  techniques10.      Figure  S4  demonstrates  how  the  spatial  profile  of  the  circularly  polarized  HHG  beams  can  be  controlled  by  adjusting  the  crossing  angle  of  the  driving  lasers;  a  higher  crossing  angle  can  dramatically  increase  the  separation  of  the  HHG  beams  (Fig.  S4b).  Switching  to  linear  polarization  produces  additional  EUV  beams  (Fig.   S4c),   as   predicted   by   the   photon   and   wave   models   presented   in   Fig.   3   of   the   manuscript.  Importantly,  Fig.  S4d  demonstrates  how  the  spatial  separation  of  the  EUV  beams  from  the  fundamental  can  be  utilized  to  deliver  high-­‐fluence  harmonics  directly  to  a  𝜇𝜇m-­‐scale  sample  without  additional  optics  or   filters   and  without   damage   to   the   sample.   In   single-­‐beam  HHG,   the   intense   fundamental   light   co-­‐propagates   with   the   EUV   light,   necessitating   that   optically   dense   filters   must   be   inserted   into   the  diverging   EUV   beam   before   the   sample   can   be   illuminated  with   the   EUV   light   alone.   In   practice,   the  fragility  of  the  filters  under  illumination  by  the  diving  laser  beams  means  that  the  filters  (and  therefore  the  sample)   sample  must  be   located   several  10s  of   cm   from  the  HHG  medium.  The  divergence  of   the  EUV  beam  means  that  additional  focusing  optics  must  be  included  in  the  EUV  beam  path  if  a  high  EUV  fluence  is  required.      In  the  case  of  noncollinear  HHG,  the  generated  EUV  light  does  not  co-­‐propagate  with  the  driving   laser  beams  and  samples  can  be  inserted  immediately  after  the  harmonic  generation  region.  This  allows  the  sample   to   experience   unusually   high   EUV   fluence  without   damage   from   the   driving   laser   beams.  We  demonstrate   this   unique   experimental   geometry   by   inserting   a   single   human  hair   into   the   EUV  beam  only   1   cm   from   the   interaction   region   (Fig.   S4d).   The   hair   completely   blocks   one   of   the   circularly  polarized   EUV   beams   and   is   not   damaged,   demonstrating   that   the   EUV   pulse   is   confined   to   a   region  smaller   than  100  𝜇𝜇m  and  that   the  driving   laser  beams  are  well  separated.  This  demonstrates  how  the  

 

4  

NCP-­‐HHG  method  makes  it  straightforward  to  utilize  EUV  pulses  with  high  intensities.  For  example,  if  we  assume   a   EUV   flux   of   0.4   nJ/pulse   (see   Supplementary   Information,   Section   5),   a   beam   diameter   of  50  𝜇𝜇m  at  the  sample,  and  a  pulse-­‐duration  of  20  fs,  then  the  EUV  intensity  is  ~1  GW/cm2.      

 Figure   S4.   Beam   profiles   of   EUV   emission   from   NCP-­‐HHG   driven   by   400   +   400   nm   lasers.   a,   NCP-­‐HHG   with  25  mrad   crossing   half-­‐angle   produces   two   EUV   beams,  with   a   divergence   ~1/7th   of   the   original   crossing   angle,  since   the   primary   harmonic   order   is   the   7th   (~22eV).   b,  When   the   fundamental   crossing   angle   is   increased   to  50  mrad,  the  angle  between  the  EUV  beams  increases.  c,  Linearly  polarized  400  nm  lasers  with  the  same  crossing  angle  (25  mrad)  produce  HHG  beams  at  the  same  angle,  but  additional  beams  appear  at  higher  angles  due  to  the  relaxed  selection  rules.  d,  Even  with  a  small  crossing  angle  (~30  mrad),  it  is  still  possible  to  place  a  fragile  sample  (in  this   case   a   single   human   hair)   extremely   close   (1   cm)   to   the   interaction   region  without   damage   from   the   laser  beams.   Here   the   hair   almost   completely   blocks   one   of   the   beams,   demonstrating   that   the   full   HHG   flux   is   still  confined   to  a   size  of  <0.1  mm.  Moreover,   the  diffraction  peaks  on   the   lower   left  of   the   image  demonstrate   the  spatial  coherence  of  the  source.    The  small  satellite  peak  to  the  left  of  the  main  peaks  in  Fig.  S4a  is  due  to  slight  ellipticity  of  the  driving  lasers.  Since  the  production  of  circularly  polarized  high-­‐harmonics  is  very  sensitive  to  the  polarization  of  the  fundamental  beams,  even  a  small  (~2  degree)  rotation  of  the  quarter-­‐waveplates  is  enough  to  cause  additional  satellite  peaks  to  appear  outside  of  the  two  primary  peaks.  While  the  main  peaks  correspond  to  a  nearly  equal  mixing  of  photons  by  both  beams  (𝑛𝑛! = 𝑛𝑛! ± 1),  the  satellite  peaks  correspond  to  an  unbalanced   absorption   (𝑛𝑛! = 𝑛𝑛! ± 3, 5,  etc.)   and   are   forbidden   by   selection   rules   if   both   beams   are  perfectly   circularly   polarized.   Indeed,   the   complete   suppression   of   the   satellite   peaks   provides   a  convenient  real-­‐time  diagnostic  with  which  to  optimize  the  polarization,  power,  position,  and  focal  spot  size  of   each  beam   in  order   to  maximize   the   circularity   of   the   emitted  HHG   light.   This  method   can  be  applied  even  when  the  harmonics  are  not  spectrally  dispersed  or  when  only  one  harmonic  is  generated.    

Section  4.  Theory  of  noncollinear  HHG  at  different  driving  frequencies  The  noncollinear  mixing  of  different  frequencies  (Fig.  4  of  the  manuscript)  can  be  explained  using  similar  conservation   of  momentum   arguments   as   when  mixing   at   the   same   frequency.   For   the  mixing   of   n1  photons  of  the  fundamental  with  n2  of  the  second  harmonic,  the  effective  harmonic  order  relative  to  the  fundamental   is   q   =   n1+2n2,   and   conservation   of   spin   angular   momentum   requires   |n1   -­‐n2|=1.   This  restricts  the  allowed  mixing  orders:    

© 2015 Macmillan Publishers Limited. All rights reserved

NATURE PHOTONICS | www.nature.com/naturephotonics 5

SUPPLEMENTARY INFORMATIONDOI: 10.1038/NPHOTON.2015.181  

3  

energies,   mirroring   the   behavior   of   single-­‐beam   HHG.   The   large   energy   separation   between   these  harmonics  may  prove  useful  for  multicolor  nanoscale  imaging  techniques10.  

 Figure  S3.  NCP-­‐HHG  with  two  400  nm  beams.  a  and  b,  Mixing  of  400  +  400  nm  light   in  argon  produces  a  single  harmonic  at  22  eV  (lower  harmonics  are  blocked  by  an  aluminum  filter),  which  is  ideally  suited  for  applications  that  require  a  high-­‐flux  monochromatic  source,  such  as  photoelectron  spectroscopy  or  nanoscale  imaging.  c  and  d,  The  higher  ionization  potential  of  neon  allows  additional  well-­‐separated  (6  eV)  harmonics  to  be  produced,  providing  a  convenient  source  for  multi-­‐wavelength  imaging  techniques10.      Figure  S4  demonstrates  how  the  spatial  profile  of  the  circularly  polarized  HHG  beams  can  be  controlled  by  adjusting  the  crossing  angle  of  the  driving  lasers;  a  higher  crossing  angle  can  dramatically  increase  the  separation  of  the  HHG  beams  (Fig.  S4b).  Switching  to  linear  polarization  produces  additional  EUV  beams  (Fig.   S4c),   as   predicted   by   the   photon   and   wave   models   presented   in   Fig.   3   of   the   manuscript.  Importantly,  Fig.  S4d  demonstrates  how  the  spatial  separation  of  the  EUV  beams  from  the  fundamental  can  be  utilized  to  deliver  high-­‐fluence  harmonics  directly  to  a  𝜇𝜇m-­‐scale  sample  without  additional  optics  or   filters   and  without   damage   to   the   sample.   In   single-­‐beam  HHG,   the   intense   fundamental   light   co-­‐propagates   with   the   EUV   light,   necessitating   that   optically   dense   filters   must   be   inserted   into   the  diverging   EUV   beam   before   the   sample   can   be   illuminated  with   the   EUV   light   alone.   In   practice,   the  fragility  of  the  filters  under  illumination  by  the  diving  laser  beams  means  that  the  filters  (and  therefore  the  sample)   sample  must  be   located   several  10s  of   cm   from  the  HHG  medium.  The  divergence  of   the  EUV  beam  means  that  additional  focusing  optics  must  be  included  in  the  EUV  beam  path  if  a  high  EUV  fluence  is  required.      In  the  case  of  noncollinear  HHG,  the  generated  EUV  light  does  not  co-­‐propagate  with  the  driving   laser  beams  and  samples  can  be  inserted  immediately  after  the  harmonic  generation  region.  This  allows  the  sample   to   experience   unusually   high   EUV   fluence  without   damage   from   the   driving   laser   beams.  We  demonstrate   this   unique   experimental   geometry   by   inserting   a   single   human  hair   into   the   EUV  beam  only   1   cm   from   the   interaction   region   (Fig.   S4d).   The   hair   completely   blocks   one   of   the   circularly  polarized   EUV   beams   and   is   not   damaged,   demonstrating   that   the   EUV   pulse   is   confined   to   a   region  smaller   than  100  𝜇𝜇m  and  that   the  driving   laser  beams  are  well  separated.  This  demonstrates  how  the  

 

4  

NCP-­‐HHG  method  makes  it  straightforward  to  utilize  EUV  pulses  with  high  intensities.  For  example,  if  we  assume   a   EUV   flux   of   0.4   nJ/pulse   (see   Supplementary   Information,   Section   5),   a   beam   diameter   of  50  𝜇𝜇m  at  the  sample,  and  a  pulse-­‐duration  of  20  fs,  then  the  EUV  intensity  is  ~1  GW/cm2.      

 Figure   S4.   Beam   profiles   of   EUV   emission   from   NCP-­‐HHG   driven   by   400   +   400   nm   lasers.   a,   NCP-­‐HHG   with  25  mrad   crossing   half-­‐angle   produces   two   EUV   beams,  with   a   divergence   ~1/7th   of   the   original   crossing   angle,  since   the   primary   harmonic   order   is   the   7th   (~22eV).   b,  When   the   fundamental   crossing   angle   is   increased   to  50  mrad,  the  angle  between  the  EUV  beams  increases.  c,  Linearly  polarized  400  nm  lasers  with  the  same  crossing  angle  (25  mrad)  produce  HHG  beams  at  the  same  angle,  but  additional  beams  appear  at  higher  angles  due  to  the  relaxed  selection  rules.  d,  Even  with  a  small  crossing  angle  (~30  mrad),  it  is  still  possible  to  place  a  fragile  sample  (in  this   case   a   single   human   hair)   extremely   close   (1   cm)   to   the   interaction   region  without   damage   from   the   laser  beams.   Here   the   hair   almost   completely   blocks   one   of   the   beams,   demonstrating   that   the   full   HHG   flux   is   still  confined   to  a   size  of  <0.1  mm.  Moreover,   the  diffraction  peaks  on   the   lower   left  of   the   image  demonstrate   the  spatial  coherence  of  the  source.    The  small  satellite  peak  to  the  left  of  the  main  peaks  in  Fig.  S4a  is  due  to  slight  ellipticity  of  the  driving  lasers.  Since  the  production  of  circularly  polarized  high-­‐harmonics  is  very  sensitive  to  the  polarization  of  the  fundamental  beams,  even  a  small  (~2  degree)  rotation  of  the  quarter-­‐waveplates  is  enough  to  cause  additional  satellite  peaks  to  appear  outside  of  the  two  primary  peaks.  While  the  main  peaks  correspond  to  a  nearly  equal  mixing  of  photons  by  both  beams  (𝑛𝑛! = 𝑛𝑛! ± 1),  the  satellite  peaks  correspond  to  an  unbalanced   absorption   (𝑛𝑛! = 𝑛𝑛! ± 3, 5,  etc.)   and   are   forbidden   by   selection   rules   if   both   beams   are  perfectly   circularly   polarized.   Indeed,   the   complete   suppression   of   the   satellite   peaks   provides   a  convenient  real-­‐time  diagnostic  with  which  to  optimize  the  polarization,  power,  position,  and  focal  spot  size  of   each  beam   in  order   to  maximize   the   circularity   of   the   emitted  HHG   light.   This  method   can  be  applied  even  when  the  harmonics  are  not  spectrally  dispersed  or  when  only  one  harmonic  is  generated.    

Section  4.  Theory  of  noncollinear  HHG  at  different  driving  frequencies  The  noncollinear  mixing  of  different  frequencies  (Fig.  4  of  the  manuscript)  can  be  explained  using  similar  conservation   of  momentum   arguments   as   when  mixing   at   the   same   frequency.   For   the  mixing   of   n1  photons  of  the  fundamental  with  n2  of  the  second  harmonic,  the  effective  harmonic  order  relative  to  the  fundamental   is   q   =   n1+2n2,   and   conservation   of   spin   angular   momentum   requires   |n1   -­‐n2|=1.   This  restricts  the  allowed  mixing  orders:    

© 2015 Macmillan Publishers Limited. All rights reserved

6 NATURE PHOTONICS | www.nature.com/naturephotonics

SUPPLEMENTARY INFORMATION DOI: 10.1038/NPHOTON.2015.181  

5  

for  n2  =  n1+1,  q  =  3n1+2  ;  for  n2  =  n1-­‐1,  q  =  3n1-­‐2  ;  and  n2  =  n1  is  forbidden.  

 The  relationship  between  the  harmonic  signal  angle  𝜃𝜃!  and  the  input  angle  𝜃𝜃!  relative  to  the  bisecting  line   is   somewhat   more   complicated   than   we   found   earlier   in   the   degenerate   mixing   case:   tan 𝜃𝜃! =!!!!!!

!tan 𝜃𝜃!.  For  𝑛𝑛! = 𝑛𝑛! ± 1,  tan 𝜃𝜃! = − !±!

!!tan  𝜃𝜃!.    Taking  the  limit  of  high  harmonic  order,  we  

see  that  the  harmonics  are  again  divided  into  left  and  right  circularly  polarized  directions,  centered  on  an  angle  – tan 𝜃𝜃! /3,  which  is  displaced  away  from  the  bisecting  line  toward  the  direction  of  the  second  harmonic  beam.  The  same  principles  of  conservation  of  spin  angular  momentum  and  linear  momentum  can  be  used  to  find  the  output  angles  for  any  mixing  frequencies.    The  wave  mixing  picture  can  be  extended  to   the  𝜔𝜔 + 2𝜔𝜔  case  as  well:  when  the  relative  𝜔𝜔/2𝜔𝜔  phase  varies,  the  orientation  of  the  bursts  of  linearly  polarized  attosecond  pulses  rotates  in  a  manner  similar  to  the  rotation  of  the  linear  polarization  shown  in  Fig.  3d.  The  result  is  a  rotating  polarization  grating  that  behaves   identically   to   the  𝜔𝜔 + 𝜔𝜔   case,   producing   two   beams   of   opposite-­‐helicity   circularly   polarized  light.    

 Section  5.  Calibration  of  EUV  photon  flux  The  EUV  photon  flux  was  calculated  from  the  response  of  the  CCD  detector,  which  is  characterized,  but  not   precisely   calibrated.   Thus,   while   the   resulting   estimate   of   the   photon   flux   is   a   valid   order-­‐of-­‐magnitude  estimate,  it  should  not  be  regarded  as  a  precise  measurement  of  the  exact  photon  flux.      We   calculate   the   EUV   flux   for   the   NCP-­‐HHG   using   400+400   nm   in   argon   gas,   because   under   these  conditions  monochromatic  light  (22  eV)  is  generated  and  this  allows  for  the  calibration  to  be  performed  without  the  spectrometer  in  place,  thereby  reducing  the  uncertainty  of  the  estimation.  For  the  NCP-­‐HHG  at  400  nm  presented  in  Fig.  S3a,  the  integrated  counts  for  each  beam  was  4.4×10!  for  the  0.1  second  camera   exposure,   giving   a   total   of  8.8×10!   counts   per   pulse   for   both   beams,   considering   the   1   kHz  repetition   rate  of   the   laser.  The  camera   (see  Methods  Section)  was  operated  with  a  2.5  MHz   readout  rate   and   a   pre-­‐amplifier   gain   of   2x,   which   corresponds   to   5.4   electrons   per   count   per   the   camera  specifications.  At  20  eV,  the  CCD  used  has  a  quantum  efficiency  of  approximately  20%,  and  6  electrons  are  excited  per  20  eV  photon  absorbed.  Thus,  we  calculate   that   there  are  ~4×10!   photons  per  pulse  incident  on  the  CCD.      A  200  nm  aluminum  filter  (Luxel)  was  used  to  block  scattered  visible  light  from  reaching  the  CCD.  While  the  theoretical  transmission  of  200  nanometers  of  aluminum  is  better  than  60%  (CXRO  database),  oxide  layers  on  the  surface  reduce  the  actual  transmission  of  the  filter,  and  we  measured  the  filter  to  be  only  20%   transmissive.   Thus,   the  generated  EUV  output  of   the  HHG  process   is  ~2×10!   photons  per  pulse,  which   is   0.7   nJ/pulse.   Given   that   ~200   uJ   of   400   nm   energy   was   used,   this   represents   a   conversion  efficiency  of  3.5×10!!,  which  is  comparable  to  single-­‐beam  HHG11.    

 

6  

 In  many   applications,   the  NCP-­‐HHG  method   actually   represents   a   dramatic   increase   in  usable   photon  flux  due   to   the   fact   that   it   separates   the  EUV   light   from  the  pump  beams.   In   collinear  or   single-­‐beam  HHG,  numerous  filters  are  often  required  to  attenuate  the  pump  beams  and  this  can  reduce  the  photon  flux  by  orders  of  magnitude.  Additionally,  such  filters  are  extremely  fragile  and  can  be  damaged  by  the  pump  beam.   In   the  noncollinear  geometry,  we  were  able   to  employ   just  a   single   filter,  and,   since   the  filter  blocks  only  the  scattered  light  from  the  argon  plasma  and  is  not  exposed  to  the  direct  pump  beam,  the  filter  was  never  damaged  by  the  pump  beams.    

Section  6.  EUV  magnetic  circular  dichroism  (MCD)  measurements  To  demonstrate  the  applicability  of  the  NCP-­‐HHG  source  to  study  magnetic  materials,  we  performed  a  magnetic  circular  dichroism  (MCD)  measurement  on  thin   film  of   iron.  To  confirm  that  our   iron  sample  could   be   fully   saturated  with   the  magnetic   fields   accessible   to   our   apparatus,  we  measured   both   the  maximum  field  strength  of  our  electromagnet   (+/-­‐  15  mT)  with  a  Hall  probe  and  the  magnetization  of  the  sample  as  a  function  of  the  magnetic  field  by  using  an  alternating  gradient  magnetometer  (Fig.  S5).  We  also  calculated  and  extrapolated  the  MCD  asymmetry  for  the  20  nm  thick  iron  sample  that  is  at  45°  incident  on  the  EUV  beam  based  on  the  magneto-­‐optical  constants  obtained  at  a  synchrotron12  (Fig.  S6).  To   demonstrate   that   the   flux   and   stability   of   the   generated   harmonics   are   high   enough   for   fast   and  reliable  MCD  measurements,  we  show  in  Fig.  S7  data  obtained  using  a  2  min  total  acquisition  time.    

 Figure   S5.   Alternating   gradient   magnetometry   measurements   of   the   20   nm   iron   sample.   This   measurement  confirms  that  the  experimentally  employed  magnetic  field  of  15  mT  is  larger  than  the  coercive  field  𝜇𝜇!  HC  ≈  +/-­‐10  mT   of   the   sample   and   therefore   high   enough   to  magnetically   saturate   the   sample   for   the  MCD  measurement.    

© 2015 Macmillan Publishers Limited. All rights reserved

NATURE PHOTONICS | www.nature.com/naturephotonics 7

SUPPLEMENTARY INFORMATIONDOI: 10.1038/NPHOTON.2015.181  

5  

for  n2  =  n1+1,  q  =  3n1+2  ;  for  n2  =  n1-­‐1,  q  =  3n1-­‐2  ;  and  n2  =  n1  is  forbidden.  

 The  relationship  between  the  harmonic  signal  angle  𝜃𝜃!  and  the  input  angle  𝜃𝜃!  relative  to  the  bisecting  line   is   somewhat   more   complicated   than   we   found   earlier   in   the   degenerate   mixing   case:   tan 𝜃𝜃! =!!!!!!

!tan 𝜃𝜃!.  For  𝑛𝑛! = 𝑛𝑛! ± 1,  tan 𝜃𝜃! = − !±!

!!tan  𝜃𝜃!.    Taking  the  limit  of  high  harmonic  order,  we  

see  that  the  harmonics  are  again  divided  into  left  and  right  circularly  polarized  directions,  centered  on  an  angle  – tan 𝜃𝜃! /3,  which  is  displaced  away  from  the  bisecting  line  toward  the  direction  of  the  second  harmonic  beam.  The  same  principles  of  conservation  of  spin  angular  momentum  and  linear  momentum  can  be  used  to  find  the  output  angles  for  any  mixing  frequencies.    The  wave  mixing  picture  can  be  extended  to   the  𝜔𝜔 + 2𝜔𝜔  case  as  well:  when  the  relative  𝜔𝜔/2𝜔𝜔  phase  varies,  the  orientation  of  the  bursts  of  linearly  polarized  attosecond  pulses  rotates  in  a  manner  similar  to  the  rotation  of  the  linear  polarization  shown  in  Fig.  3d.  The  result  is  a  rotating  polarization  grating  that  behaves   identically   to   the  𝜔𝜔 + 𝜔𝜔   case,   producing   two   beams   of   opposite-­‐helicity   circularly   polarized  light.    

 Section  5.  Calibration  of  EUV  photon  flux  The  EUV  photon  flux  was  calculated  from  the  response  of  the  CCD  detector,  which  is  characterized,  but  not   precisely   calibrated.   Thus,   while   the   resulting   estimate   of   the   photon   flux   is   a   valid   order-­‐of-­‐magnitude  estimate,  it  should  not  be  regarded  as  a  precise  measurement  of  the  exact  photon  flux.      We   calculate   the   EUV   flux   for   the   NCP-­‐HHG   using   400+400   nm   in   argon   gas,   because   under   these  conditions  monochromatic  light  (22  eV)  is  generated  and  this  allows  for  the  calibration  to  be  performed  without  the  spectrometer  in  place,  thereby  reducing  the  uncertainty  of  the  estimation.  For  the  NCP-­‐HHG  at  400  nm  presented  in  Fig.  S3a,  the  integrated  counts  for  each  beam  was  4.4×10!  for  the  0.1  second  camera   exposure,   giving   a   total   of  8.8×10!   counts   per   pulse   for   both   beams,   considering   the   1   kHz  repetition   rate  of   the   laser.  The  camera   (see  Methods  Section)  was  operated  with  a  2.5  MHz   readout  rate   and   a   pre-­‐amplifier   gain   of   2x,   which   corresponds   to   5.4   electrons   per   count   per   the   camera  specifications.  At  20  eV,  the  CCD  used  has  a  quantum  efficiency  of  approximately  20%,  and  6  electrons  are  excited  per  20  eV  photon  absorbed.  Thus,  we  calculate   that   there  are  ~4×10!   photons  per  pulse  incident  on  the  CCD.      A  200  nm  aluminum  filter  (Luxel)  was  used  to  block  scattered  visible  light  from  reaching  the  CCD.  While  the  theoretical  transmission  of  200  nanometers  of  aluminum  is  better  than  60%  (CXRO  database),  oxide  layers  on  the  surface  reduce  the  actual  transmission  of  the  filter,  and  we  measured  the  filter  to  be  only  20%   transmissive.   Thus,   the  generated  EUV  output  of   the  HHG  process   is  ~2×10!   photons  per  pulse,  which   is   0.7   nJ/pulse.   Given   that   ~200   uJ   of   400   nm   energy   was   used,   this   represents   a   conversion  efficiency  of  3.5×10!!,  which  is  comparable  to  single-­‐beam  HHG11.    

 

6  

 In  many   applications,   the  NCP-­‐HHG  method   actually   represents   a   dramatic   increase   in  usable   photon  flux  due   to   the   fact   that   it   separates   the  EUV   light   from  the  pump  beams.   In   collinear  or   single-­‐beam  HHG,  numerous  filters  are  often  required  to  attenuate  the  pump  beams  and  this  can  reduce  the  photon  flux  by  orders  of  magnitude.  Additionally,  such  filters  are  extremely  fragile  and  can  be  damaged  by  the  pump  beam.   In   the  noncollinear  geometry,  we  were  able   to  employ   just  a   single   filter,  and,   since   the  filter  blocks  only  the  scattered  light  from  the  argon  plasma  and  is  not  exposed  to  the  direct  pump  beam,  the  filter  was  never  damaged  by  the  pump  beams.    

Section  6.  EUV  magnetic  circular  dichroism  (MCD)  measurements  To  demonstrate  the  applicability  of  the  NCP-­‐HHG  source  to  study  magnetic  materials,  we  performed  a  magnetic  circular  dichroism  (MCD)  measurement  on  thin   film  of   iron.  To  confirm  that  our   iron  sample  could   be   fully   saturated  with   the  magnetic   fields   accessible   to   our   apparatus,  we  measured   both   the  maximum  field  strength  of  our  electromagnet   (+/-­‐  15  mT)  with  a  Hall  probe  and  the  magnetization  of  the  sample  as  a  function  of  the  magnetic  field  by  using  an  alternating  gradient  magnetometer  (Fig.  S5).  We  also  calculated  and  extrapolated  the  MCD  asymmetry  for  the  20  nm  thick  iron  sample  that  is  at  45°  incident  on  the  EUV  beam  based  on  the  magneto-­‐optical  constants  obtained  at  a  synchrotron12  (Fig.  S6).  To   demonstrate   that   the   flux   and   stability   of   the   generated   harmonics   are   high   enough   for   fast   and  reliable  MCD  measurements,  we  show  in  Fig.  S7  data  obtained  using  a  2  min  total  acquisition  time.    

 Figure   S5.   Alternating   gradient   magnetometry   measurements   of   the   20   nm   iron   sample.   This   measurement  confirms  that  the  experimentally  employed  magnetic  field  of  15  mT  is  larger  than  the  coercive  field  𝜇𝜇!  HC  ≈  +/-­‐10  mT   of   the   sample   and   therefore   high   enough   to  magnetically   saturate   the   sample   for   the  MCD  measurement.    

© 2015 Macmillan Publishers Limited. All rights reserved

8 NATURE PHOTONICS | www.nature.com/naturephotonics

SUPPLEMENTARY INFORMATION DOI: 10.1038/NPHOTON.2015.181  

7  

 Figure  S6.  Predicted  MCD  contrast  for  a  20  nm  iron  sample  at  45°.  In  this  study  we  probed  the  iron  sample  in  the  range  of  29  eV  to  39  eV,  which   is  not  explicitly  covered  by  the  available  data  and  this  graph.  However,  the  MCD  asymmetry   is   approximately  3.5%  at   45  eV,   and   slowly  decreasing.   Thus,   the  MCD  asymmetry  of   approximately  1.5%  seen  experimentally  at  33  eV  is  consistent  with  an  extrapolation  of  this  synchrotron-­‐derived  data12.      

 

8  

 Figure   S7.   Rapid   collection   of   an   EUV   MCD   measurement.   This   figure   is   identical   to   the   MCD   measurement  presented   in  Fig.  5  of   the  manuscript,  except   that   it  was  calculated  using  only   six  10-­‐second  exposures   for  each  field   direction,   for   a   total   acquisition   time   of   2   minutes.   While   the   data   quality   is   lower   than   the   30-­‐minute  exposure,  the  magneto-­‐optical  contrast  is  still  clearly  visible.  This  demonstrates  the  practicality  of  rapidly  collecting  MCD  spectra  at  many  time  delays  in  order  to  study  ultrafast  dynamics  of  magnetic  materials.    

References  

1.   Bertrand,  J.  B.  et  al.  Ultrahigh-­‐Order  Wave  Mixing  in  Noncollinear  High  Harmonic  Generation.  Phys.  Rev.  Lett.  106,  023001  (2011).  

2.   Heyl,  C.  M.  et  al.  Macroscopic  Effects  in  Noncollinear  High-­‐Order  Harmonic  Generation.  Phys.  Rev.  Lett.  112,  143902  (2014).  

3.   Heyl,  C.  M.  et  al.  Noncollinear  optical  gating.  N.  J.  Phys  16,  052001  (2014).  

4.   Fleischer,  A.,  Kfir,  O.,  Diskin,  T.,  Sidorenko,  P.  &  Cohen,  O.  Spin  angular  momentum  and  tunable  polarization  in  high-­‐harmonic  generation.  Nat.  Photon.  8,  543–549  (2014).  

5.   Kfir,  O.  et  al.  Generation  of  bright  circularly-­‐polarized  extreme  ultraviolet  high  harmonics  for  magnetic  circular  dichroism  spectroscopy.  Nat.  Photon.  9,  99–105  (2015).  

6.   Vincenti,  H.  &  Quéré,  F.  Attosecond  lighthouses:  How  to  use  spatiotemporally  coupled  light  fields  to  generate  isolated  attosecond  pulses.  Phys.  Rev.  Lett.  108,  1–5  (2012).  

© 2015 Macmillan Publishers Limited. All rights reserved

NATURE PHOTONICS | www.nature.com/naturephotonics 9

SUPPLEMENTARY INFORMATIONDOI: 10.1038/NPHOTON.2015.181  

7  

 Figure  S6.  Predicted  MCD  contrast  for  a  20  nm  iron  sample  at  45°.  In  this  study  we  probed  the  iron  sample  in  the  range  of  29  eV  to  39  eV,  which   is  not  explicitly  covered  by  the  available  data  and  this  graph.  However,  the  MCD  asymmetry   is   approximately  3.5%  at   45  eV,   and   slowly  decreasing.   Thus,   the  MCD  asymmetry  of   approximately  1.5%  seen  experimentally  at  33  eV  is  consistent  with  an  extrapolation  of  this  synchrotron-­‐derived  data12.      

 

8  

 Figure   S7.   Rapid   collection   of   an   EUV   MCD   measurement.   This   figure   is   identical   to   the   MCD   measurement  presented   in  Fig.  5  of   the  manuscript,  except   that   it  was  calculated  using  only   six  10-­‐second  exposures   for  each  field   direction,   for   a   total   acquisition   time   of   2   minutes.   While   the   data   quality   is   lower   than   the   30-­‐minute  exposure,  the  magneto-­‐optical  contrast  is  still  clearly  visible.  This  demonstrates  the  practicality  of  rapidly  collecting  MCD  spectra  at  many  time  delays  in  order  to  study  ultrafast  dynamics  of  magnetic  materials.    

References  

1.   Bertrand,  J.  B.  et  al.  Ultrahigh-­‐Order  Wave  Mixing  in  Noncollinear  High  Harmonic  Generation.  Phys.  Rev.  Lett.  106,  023001  (2011).  

2.   Heyl,  C.  M.  et  al.  Macroscopic  Effects  in  Noncollinear  High-­‐Order  Harmonic  Generation.  Phys.  Rev.  Lett.  112,  143902  (2014).  

3.   Heyl,  C.  M.  et  al.  Noncollinear  optical  gating.  N.  J.  Phys  16,  052001  (2014).  

4.   Fleischer,  A.,  Kfir,  O.,  Diskin,  T.,  Sidorenko,  P.  &  Cohen,  O.  Spin  angular  momentum  and  tunable  polarization  in  high-­‐harmonic  generation.  Nat.  Photon.  8,  543–549  (2014).  

5.   Kfir,  O.  et  al.  Generation  of  bright  circularly-­‐polarized  extreme  ultraviolet  high  harmonics  for  magnetic  circular  dichroism  spectroscopy.  Nat.  Photon.  9,  99–105  (2015).  

6.   Vincenti,  H.  &  Quéré,  F.  Attosecond  lighthouses:  How  to  use  spatiotemporally  coupled  light  fields  to  generate  isolated  attosecond  pulses.  Phys.  Rev.  Lett.  108,  1–5  (2012).  

© 2015 Macmillan Publishers Limited. All rights reserved

10 NATURE PHOTONICS | www.nature.com/naturephotonics

SUPPLEMENTARY INFORMATION DOI: 10.1038/NPHOTON.2015.181  

9  

7.   Quéré,  F.  et  al.  Applications  of  ultrafast  wavefront  rotation  in  highly  nonlinear  optics.  J.  Phys.  B  47,  124004  (2014).  

8.   Louisy,  M.  et  al.  Gating  attosecond  pulses  in  a  noncollinear  geometry.  Optica  2,  563–566  (2015).  

9.   Popmintchev,  T.,  Chen,  M.-­‐C.,  Arpin,  P.,  Murnane,  M.  M.  &  Kapteyn,  H.  C.  The  attosecond  nonlinear  optics  of  bright  coherent  X-­‐ray  generation.  Nat.  Phot.  4,  822–832  (2010).  

10.   Witte,  S.,  Tenner,  V.  T.,  Noom,  D.  W.  &  Eikema,  K.  S.  Lensless  diffractive  imaging  with  ultra-­‐broadband  table-­‐top  sources:  from  infrared  to  extreme-­‐ultraviolet  wavelengths.  Nat.  LSA  3,  e163  (2014).  

11.   Rothhardt,  J.  et  al.  Absorption-­‐limited  and  phase-­‐matched  high  harmonic  generation  in  the  tight  focusing  regime.  N.  J.  Phys.  16,  033022  (2014).  

12.   Valencia,  S.  et  al.  Faraday  rotation  spectra  at  shallow  core  levels:  3p  edges  of  Fe,  Co,  and  Ni.  N.  J.  Phys.  8,  254  (2006).    

© 2015 Macmillan Publishers Limited. All rights reserved