Diffusion in Fe-Ni PM alloys: microstructure and DICTRA ...Diffusion in Fe-Ni PM alloys:...

25
Diffusion in Fe-Ni PM alloys: microstructure and DICTRA simulations Tomas Gomez-Acebo Francisco Castro CALPHAD XL, Rio de Janeiro, 22-29/95/2011

Transcript of Diffusion in Fe-Ni PM alloys: microstructure and DICTRA ...Diffusion in Fe-Ni PM alloys:...

  • Diffusion in Fe-Ni PM alloys: microstructure and DICTRA simulations

    Tomas Gomez-Acebo

    Francisco Castro

    CALPHAD XL, Rio de Janeiro, 22-29/95/2011

  • • Introduction – Ni in steels

    • Microstructure of sintered Fe-Ni alloys

    • Kinetic modelling

    – Kirkendall porosity

    • Diffusion at high pressures

    Contents

    CALPHAD XL, Rio de Janeiro, 22-29/95/2011 2

  • • Tendency to reduce (and avoid) the use of Ni

    • … but it is essential in powder metallurgy

    • Better understand the role of Ni diffusion during sintering

    • Model the diffusion process and Ni homogenization

    Objectives

    CALPHAD XL, Rio de Janeiro, 22-29/95/2011 3

  • [W.C. Leslie, Met. Trans., vol.3, 1972, pp 5-26] • Does not form any carbides hence remains in solution

    strengthening ferrite • Lowers critical cooling rate • Grain refiner • In combination with Cr, produces steels with greater hardenability,

    higher impact strength and fatigue resistance than can be achieved in carbon steels.

    • The notch toughness of ferritic steels can be improved by grain refinement and by additions of Ni.

    • In the alloy steels, nickel is the most common of the alloying elements used to lower the transition temperature

    • Nickel is the only element in the periodic table that increases toughness of Fe alloys

    • Pt, Ni, Ru, Rh, Ir and Re [de Retana A.F et al., Metal Progress, Sept., 100, 105, 1971]

    Ni in steels

    CALPHAD XL, Rio de Janeiro, 22-29/95/2011 4

  • • Powder mixtures as multiple diffusion couples

    – Fe-0.8 Mo, powder 60 m

    – Ni: 2-6 wt-%, powder 0.5-7 m

    – C (graphite): 0.2 wt-%

    • Thermodynamic and kinetic modelling

    – Mo not considered

    – C: problems in calculations. Skipped

    Experimental procedure

    CALPHAD XL, Rio de Janeiro, 22-29/95/2011 5

  • SEM micrographs from the Nickel powder used

    Commercial powder grade

    Nickel carbonyl powder

    6 CALPHAD XL, Rio de Janeiro, 22-29/95/2011

  • 1000 °C – 0 min 1120 °C – 0 min 1120 °C – 15 min

    Microstructures after quenching

    • 10% Ni + 0.6% graphite + (Fe-0.8Mo) bal.

    • Microstructural progress showing formation of “Nickel-rich”

    areas – Notice constrained shrinkage due to dual particle size distributions

    – First, grain boundary diffusion

    7 CALPHAD XL, Rio de Janeiro, 22-29/95/2011

  • Kinetic data in Fe-Ni alloys

    8 CALPHAD XL, Rio de Janeiro, 22-29/95/2011

    0

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    11

    10-15

    DC

    (FC

    C,N

    I,N

    I,F

    E)

    0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

    MOLE_FRACTION NI

    THERMO-CALC (2011.05.02:11.46) :

    DATABASE:MOBFE1

    T=1393.15, P=1E5, N=1.;

    2011-05-02 11:46:57.99 output by user tgacebo from PCTGACEBO

    Interdiffusion coefficient at 1120 °C (MOBFE1)

    0

    1E-14

    2E-14

    3E-14

    4E-14

    5E-14

    6E-14

    7E-14

    8E-14

    0 20 40 60 80 100

    D

    D-Fe

    D-Ni

    Intrinsic diffusion coefficients at 1200 °C (Landolt-Börnstein)

  • Mo: 0.53

    Fe: 53.10

    Ni: 46.37

    Mo: 0.7

    Fe: 99.3

    Ni: 0

    Mo: 0.72

    Fe: 96.14

    Ni: 3.14

    EDS analyses

    10%Ni + 0.6%C + (Fe-0.8Mo) bal., 1120 °C – 15min

    9

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    WE

    IGH

    T-P

    ER

    CE

    NT

    NI

    0 5 10 15 20 25 30 35 40

    10-6

    DISTANCE

    DICTRA (2011-03-16:16.24.13) :

    TIME = 0,1,10,100,1000,10000,100000,1000000

    CELL #1

    2011-03-16 16:24:13.11 output by user tgacebo from PCTGACEBO

    1000 s = 16 min

  • • Guillet constitutional diagram for Ni steels (1910)

    • Compositions in wt-%

    • Still used

    Guillet constitutional diagram

    10 CALPHAD XL, Rio de Janeiro, 22-29/95/2011

    0

    5

    10

    15

    20

    25

    30

    MA

    SS

    _P

    ER

    CE

    NT

    NI

    0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

    MASS_PERCENT C

    THERMO-CALC (2011.05.06:17.45) :

    DATABASE:TCFE6

    N=1, P=1E5, T=973;

    FCC_A1CEMENTIT+FCC_A1

    BCC_A2+CEMENTIT

    2011-05-06 17:45:56.13 output by user tgacebo from PCTGACEBO

    700 °C

    0

    5

    10

    15

    20

    25

    30

    MA

    SS

    _P

    ER

    CE

    NT

    NI

    0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

    MASS_PERCENT C

    THERMO-CALC (2011.05.06:17.48) :

    DATABASE:TCFE6

    N=1, P=1E5, T=1273;

    FCC_A1

    CEMENTIT+FCC_A1

    2011-05-06 17:48:56.10 output by user tgacebo from PCTGACEBO

    1000 °C

  • Sintered at 1120 °C for 30 min followed by furnace cooling to RT (10 h)

    CALPHAD XL, Rio de Janeiro, 22-29/95/2011 11

  • Sintered at 1120 °C for 30 min followed by slow cooling to 283 °C

    CALPHAD XL, Rio de Janeiro, 22-29/95/2011 12

    Illustration of chemical gradients thus leading to different transformation products

    10%Ni, 0.6%C,

    (Fe-0.8Mo) bal

  • • Ni-Fe diffusion couple

    • Heating 20 °C/s to 1120 °C

    Calculated diffusion profile

    13 CALPHAD XL, Rio de Janeiro, 22-29/95/2011

    950

    1000

    1050

    1100

    1150

    1200

    T (

    ºC)

    0 500 1000 1500

    time [s]

    DICTRA (2011-05-20:20.18.40) :

    2011-05-20 20:18:40.69 output by user tgacebo from PCTGACEBO

    A B

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    WE

    IGH

    T-P

    ER

    CE

    NT

    FE

    -12 -9 -6 -3 0 3 6

    10-6

    z [m]

    DICTRA (2011-05-20:20.13.32) :

    2011-05-20 20:13:32.14 output by user tgacebo from PCTGACEBO

    A (1120 °C, t=0)

    B (1120 °C, 15 min)

    Kirkendall plane

  • 0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    WE

    IGH

    T-P

    ER

    CE

    NT

    FE

    -12 -9 -6 -3 0 3 6

    10-6

    z [m]

    DICTRA (2011-05-20:20.13.32) :

    2011-05-20 20:13:32.14 output by user tgacebo from PCTGACEBO

    A (1120 °C, t=0)

    B (1120 °C, 15 min)

    Kirkendall plane

    14 CALPHAD XL, Rio de Janeiro, 22-29/95/2011

    1120 °C – 15min

  • • Diffusion couple Ni-Fe, 1120 °C, 15 min

    • Simulation: TCFE6 + MOBFE1

    Isothermal diffusion

    15 CALPHAD XL, Rio de Janeiro, 22-29/95/2011

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1.0

    Ato

    mic

    fra

    cti

    on

    Ni

    -12 -10 -8 -6 -4 -2 0 2 4 6

    10-6

    z [m]

    THERMO-CALC (2011.05.19:13.46) : TIME = 900

    CELL # 1

    Ni Fe

  • • Velocity of the atomic planes in the lattice-fixed frame of reference

    • Two velocity peaks

    Velocity of the atomic planes

    16 CALPHAD XL, Rio de Janeiro, 22-29/95/2011

    z

    x

    VDD

    JJJV

    v

    m

    Ni

    m

    FeNi

    VaFeNi

    1''

    ''

    0

    2

    4

    6

    8

    10

    12

    14

    10-11

    v [

    m/s

    ]

    -12 -10 -8 -6 -4 -2 0 2 4 6

    10-6

    z [m]

    Ni Fe

  • 0

    5

    10

    15

    20

    25

    10-3

    Maxim

    um

    po

    re f

    racti

    on

    -12 -10 -8 -6 -4 -2 0 2 4 6

    10-6

    z [m]

    Maximum pore fraction (model of Höglund & Agren, 2005)

    17

    -12

    -9

    -6

    -3

    0

    3

    6

    9

    12

    15

    d(-

    JV

    a)/

    dz

    -12 -10 -8 -6 -4 -2 0 2 4 6

    10-6

    z [m]

    THERMO-CALC (2011.05.19:19.57) :

    2011-05-19 19:57:21.88 output by user tgacebo from PCTGACEBO

    Ni Fe

    Derivative of the vacancy flux

    z

    v

    Vz

    J

    m

    1)( Va

    Ni Fe

    t

    dtz

    JVy

    0

    VamVa

    )(

    Va

    Va

    1 y

    yf p

    (Only for positive values of the integrand)

    CALPHAD XL, Rio de Janeiro, 22-29/95/2011

  • PRESSURE EFFECT ON FE-NI DIFFUSION

    CALPHAD XL, Rio de Janeiro, 22-29/95/2011 18

  • • Diffusion coefficient decreases with increasing pressure

    – Traditional model: relate to the melting point diffusivity

    – Melting point increases with pressure

    – Same diffusivity at same homologous temperature, T/TM

    • Activation volume

    Pressure dependence on diffusion

    CALPHAD XL, Rio de Janeiro, 22-29/95/2011 19

  • Activation volume

    VPSTUSTHG

    TV

    GV

    Activation volume

    For interstitials: MVV Migration volume

    VPQQ

    QMRTRTMRT

    RTRT

    QMM

    ii

    iii

    mgmgiii

    0

    0

    0

    MQln)ln(

    magnetic-nonfor 1;1

    exp

    Qi0: for 1 bar

    20 CALPHAD XL, Rio de Janeiro, 22-29/95/2011

  • • Diffusion couples Fe-Ni

    – P up to 23 GPa

    – T=1280 – 1700 °C

    • [Goldstein, Trans. Metall. Soc. AIME, 233 (1965) 812]

    • [Yunker, Earth and Planetary Sci. Lett., 254 (2007) 203]

    • Thermodynamic and mobility data:

    – TCFE6 and MOBFE1 (modified introducing the pressure term in mobility)

    Experimental data

    21 CALPHAD XL, Rio de Janeiro, 22-29/95/2011

  • • Preliminary assessment results:

    – V(fcc&Fe,Fe)=13.2E-06 m3/mol

    – V(fcc&Ni,Ni)=0.91E-06 m3/mol

    – V(fcc&Fe,Ni)=5.9E-06 m3/mol

    – V(fcc&Ni,Fe)=4.1E-06 m3/mol

    Diffusion profiles at 1, 12 and 23 GPa

    CALPHAD XL, Rio de Janeiro, 22-29/95/2011 22

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    AT

    OM

    IC-P

    ER

    CE

    NT

    FE

    -300 -200 -100 0 100 200 300 400 500

    DISTANCE (um)

    THERMO-CALC (2011.05.20:17.50) :

    12GPa, 1600C, 2h

    12GPa, 1500C, 2h

    12GPa, 1600C, 10h

    12GPa, 1600C, 0.5h

    2011-05-20 17:50:25.82 output by user tgacebo from PCTGACEBO

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    AT

    OM

    IC-P

    ER

    CE

    NT

    FE

    -150 -100 -50 0 50 100 150 200 250

    DISTANCE (um)

    THERMO-CALC (2011.05.20:17.51) :

    23GPa, 1600C, 6h

    23GPa, 1700C, 6h

    2011-05-20 17:51:28.62 output by user tgacebo from PCTGACEBO

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    AT

    OM

    IC-P

    ER

    CE

    NT

    FE

    -150 -100 -50 0 50 100 150 200 250

    DISTANCE (um)

    THERMO-CALC (2011.05.20:17.48) :

    1GPa, 1280C, 6h

    1GPa, 1150C, 18h

    1GPa, 1420C, 2h

    2011-05-20 17:48:45.21 output by user tgacebo from PCTGACEBO

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    AT

    OM

    IC-P

    ER

    CE

    NT

    FE

    -150 -100 -50 0 50 100 150 200 250

    DISTANCE (um)

    THERMO-CALC (2011.05.20:17.48) :

    1GPa, 1280C, 6h

    1GPa, 1150C, 18h

    1GPa, 1420C, 2h

    2011-05-20 17:48:45.21 output by user tgacebo from PCTGACEBO

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    AT

    OM

    IC-P

    ER

    CE

    NT

    FE

    -300 -200 -100 0 100 200 300 400 500

    DISTANCE (um)

    THERMO-CALC (2011.05.20:17.50) :

    12GPa, 1600C, 2h

    12GPa, 1500C, 2h

    12GPa, 1600C, 10h

    12GPa, 1600C, 0.5h

    2011-05-20 17:50:25.82 output by user tgacebo from PCTGACEBO

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    AT

    OM

    IC-P

    ER

    CE

    NT

    FE

    -150 -100 -50 0 50 100 150 200 250

    DISTANCE (um)

    THERMO-CALC (2011.05.20:17.51) :

    23GPa, 1600C, 6h

    23GPa, 1700C, 6h

    2011-05-20 17:51:28.62 output by user tgacebo from PCTGACEBO

  • Interdiffusion coeff. at 1, 12 and 23 GPa

    -15.0

    -14.5

    -14.0

    -13.5

    -13.0

    -12.5

    -12.0

    LO

    GD

    C(F

    CC

    ,NI,

    NI,

    FE

    )

    0 10 20 30 40 50 60 70 80 90 100

    MOLE_PERCENT FE

    1GPa, 1280C, 6h

    1GPa, 1150C, 18h

    1GPa, 1420C, 2h

    -15.0

    -14.5

    -14.0

    -13.5

    -13.0

    -12.5

    -12.0

    LO

    GD

    C(F

    CC

    ,NI,

    NI,

    FE

    )

    0 10 20 30 40 50 60 70 80 90 100

    MOLE_PERCENT FE

    23GPa, 1600C, 6h

    23GPa, 1700C, 6h

    -15.0

    -14.5

    -14.0

    -13.5

    -13.0

    -12.5

    -12.0

    LO

    GD

    C(F

    CC

    ,NI,

    NI,

    FE

    )

    0 10 20 30 40 50 60 70 80 90 100

    MOLE_PERCENT FE

    12GPa, 1600C, 2h

    12GPa, 1500C, 2h

    12GPa, 1600C, 10h

    12GPa, 1600C, 0.5h

    23 CALPHAD XL, Rio de Janeiro, 22-29/95/2011 -15.0

    -14.5

    -14.0

    -13.5

    -13.0

    -12.5

    -12.0

    LO

    GD

    C(F

    CC

    ,NI,

    NI,

    FE

    )

    0 10 20 30 40 50 60 70 80 90 100

    MOLE_PERCENT FE

    23GPa, 1600C, 6h

    23GPa, 1700C, 6h

    -15.0

    -14.5

    -14.0

    -13.5

    -13.0

    -12.5

    -12.0

    LO

    GD

    C(F

    CC

    ,NI,

    NI,

    FE

    )

    0 10 20 30 40 50 60 70 80 90 100

    MOLE_PERCENT FE

    1GPa, 1280C, 6h

    1GPa, 1150C, 18h

    1GPa, 1420C, 2h

    -15.0

    -14.5

    -14.0

    -13.5

    -13.0

    -12.5

    -12.0

    LO

    GD

    C(F

    CC

    ,NI,

    NI,

    FE

    )

    0 10 20 30 40 50 60 70 80 90 100

    MOLE_PERCENT FE

    12GPa, 1600C, 2h

    12GPa, 1500C, 2h

    12GPa, 1600C, 10h

    12GPa, 1600C, 0.5h

  • • (On-going work)

    • Study of Ni diffusion in Fe powders

    • Modelling the pressure effect on diffusion

    Summary and conclusions

    24 CALPHAD XL, Rio de Janeiro, 22-29/95/2011

  • THANK YOU! (and see you at Calphad 2013

    in San Sebastian, Spain)