Development of Stormwater Treatment Methods...7/29/2018 1 Development of Stormwater Treatment...

23
7/29/2018 1 Development of Stormwater Treatment Methods Robert Pitt, P.E., Ph.D., BCEE Emeritus Cudworth Professor of Urban Water Systems Department of Civil, Construction, and Environmental Engineering University of Alabama, Tuscaloosa, AL Treatability of Stormwater Toxicants and Bench‐Scale Tests • Particle size distributions • Pollutant strengths of different sized particulates • Sequential digestions and extractions to determine forms of metals and organics • Bench‐scale treatability tests (settling columns, aeration, photodegradation by different wavelengths, precipitation, sorption, ion exchange, etc.)

Transcript of Development of Stormwater Treatment Methods...7/29/2018 1 Development of Stormwater Treatment...

Page 1: Development of Stormwater Treatment Methods...7/29/2018 1 Development of Stormwater Treatment Methods Robert Pitt, P.E., Ph.D., BCEE Emeritus Cudworth Professor of Urban Water Systems

7/29/2018

1

Development of Stormwater Treatment Methods

Robert Pitt, P.E., Ph.D., BCEEEmeritus Cudworth Professor of Urban Water SystemsDepartment of Civil, Construction, and Environmental EngineeringUniversity of Alabama, Tuscaloosa, AL

Treatability of Stormwater Toxicants and Bench‐Scale Tests

• Particle size distributions

• Pollutant strengths of different sized particulates

• Sequential digestions and extractions to determine forms of metals and organics

• Bench‐scale treatability tests (settling columns, aeration, photodegradation by different wavelengths, precipitation, sorption, ion exchange, etc.)

Page 2: Development of Stormwater Treatment Methods...7/29/2018 1 Development of Stormwater Treatment Methods Robert Pitt, P.E., Ph.D., BCEE Emeritus Cudworth Professor of Urban Water Systems

7/29/2018

2

Measured Particle Sizes, Including Bed Load Component, at Monroe St. Detention Pond, Madison, WI

Need to remove very small particlesfor high levels of stormwater control

Page 3: Development of Stormwater Treatment Methods...7/29/2018 1 Development of Stormwater Treatment Methods Robert Pitt, P.E., Ph.D., BCEE Emeritus Cudworth Professor of Urban Water Systems

7/29/2018

3

High levels of pollutant reduction require the capture of very fine particulates, and likely further capture of filtered pollutant fractions.

6

Analytical scheme used to determine pollutant associations with particle size, colloids, and organic complexes (samples always split using USGS/Decaportcone splitter) 

Page 4: Development of Stormwater Treatment Methods...7/29/2018 1 Development of Stormwater Treatment Methods Robert Pitt, P.E., Ph.D., BCEE Emeritus Cudworth Professor of Urban Water Systems

7/29/2018

4

7

Filterable metal 

percentage in 

ionic forms

Filterable metal 

percentage bound in 

organic complexes

Zinc 15 85

Copper 70 30

Cadmium 10 90

Lead 12 88

Filterable forms of the metals determine their ability to be removed using ion exchange or sorption methods (higher valence ionic forms easiest to remove, large organic‐metal complexes are difficult to remove) 

8

PAH% Association

Water Particulate Matter

Naphthalene 22 78

Fluorene 3 97

Phenanthrene 2 99

Anthracene 8 92

Fluoranthene 29 71

Pyrene 19 81

Benzo(a)anthracene 3 99

Chrysene 1 99

Benzo(b)fluoranthene 1 99

Benzo(k)fluoranthene 2 98

Benzo(ghi)perylene 1 99

Benzo(a) pyrene 1 99

Observed PAH Associations with Stormwater Particulates (MCTT Treatability Tests)

Fugacity modeling generally under‐predicted the particulate bound fractions, but was very useful in identifying significant factors affecting the partitioning.

Page 5: Development of Stormwater Treatment Methods...7/29/2018 1 Development of Stormwater Treatment Methods Robert Pitt, P.E., Ph.D., BCEE Emeritus Cudworth Professor of Urban Water Systems

7/29/2018

5

Settling and Scour of Stormwater Particulates

9

10

Settling velocity of discrete particulates as a function of size and specific gravity (Reynolds and Richards 1996)

Erodibility of previously settled material based on size and shear stresses (Chow 1959)

Traditional methods can be used to calculate settleability of stormwater particulates and scour of previously settled material. 

Page 6: Development of Stormwater Treatment Methods...7/29/2018 1 Development of Stormwater Treatment Methods Robert Pitt, P.E., Ph.D., BCEE Emeritus Cudworth Professor of Urban Water Systems

7/29/2018

6

86420-2

99

95

90

80

70

60

50

40

30

20

10

5

1

Specific Gravity (3-250 um) (g/cc)

Percent

3.167 1.674 30 0.799 0.034

1.533 0.6348 30 0.268 0.661

Mean StDev N AD P

Influent S.G. (3-250 um)

Effluent S.G. (3-250 um)

Variable

Normal - 95% CI

Changes in Specific Gravity with Sedimentation Treatment at an Industrial SiteInfluent: 5th to 95th percentile, 1.3 to 6 g/cc (median: 3.2 g/cc)Effluent: 5th to 95th percentile, 0.5 to 2.3 g/cc (median: 1.5 g/cc)

Preferential removal of higher specific gravity materials results in a shift to lower overall specific gravity of particulates in effluent water (and greater migration distance in receiving water after discharge).

12

Sieve size range (μm)Average Specific Gravity (g/cc)

Average Volatile Solids (%)

Large organic matter (mostly sticks and leaves)

0.84 81.2

>2800 0.66 70.91400 ‐ 2800 1.15 57.8710‐1400 1.43 42.7355‐710 2.56 26.1180‐355 2.76 19.475‐180 2.97 20.645‐75 3.30 25.7

<45 (Pan) 3.46 26.0

Specific Gravity and Volatile Solids of Sediment Collected from Stormwater Treatment Device 

Specific gravity decreases as the volatile solids content increases; larger particle sizes have lower specific gravity and greater volatile solids as they contain larger amounts of light‐weight organic debris for these industrial area stormwater sediment samples. Their settling rates are still large due to their large sizes.

Page 7: Development of Stormwater Treatment Methods...7/29/2018 1 Development of Stormwater Treatment Methods Robert Pitt, P.E., Ph.D., BCEE Emeritus Cudworth Professor of Urban Water Systems

7/29/2018

7

Three flow rates: 10, 5, and 2.5 LPS (160, 80, and 40 GPM)Velocity measurements (Vx, Vy, and Vz) Five overlying water depths above the sediment: 16, 36, 56, 76, 

and 96 cmG 12 19 20

F 5 11 18 21 27

E 4 10 17 22 28

D 3 9 16 23 29

C 2 8 15 24 30

B 1 7 14 25 31

A 6 13 26

y

x

Total points per test: 15530 instantaneous velocity measurements at each point

1636

5676

96

Scour of Captured Sediment in Storm Drain Catchbasin Inlets

CFD Modeling to Calculate Scour/Design Variations

Used CFD (Fluent 6.2 and Flow 3D) to determine scour from stormwater controls; results verified with full‐scale physical model

This is an example of the effects of the way that water enters a sump on the depth of the water jet and resulting scour

Page 8: Development of Stormwater Treatment Methods...7/29/2018 1 Development of Stormwater Treatment Methods Robert Pitt, P.E., Ph.D., BCEE Emeritus Cudworth Professor of Urban Water Systems

7/29/2018

8

-10

0

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100 120

Buffered Aluminum Sulfate (mg/L)

% r

edu

ctio

n

Turbidity

Copper

Lead

Toxicity

Chemical Coagulation and Precipitation Stormwater Treatment for Turbidity, Lead and Copper

Alum usually had adverse toxicity effect, while ferric chloride with microsand gave best overall reductions.

Bench‐scale to Full‐scale Treatment Schemes

Page 9: Development of Stormwater Treatment Methods...7/29/2018 1 Development of Stormwater Treatment Methods Robert Pitt, P.E., Ph.D., BCEE Emeritus Cudworth Professor of Urban Water Systems

7/29/2018

9

Design Modifications to Enhance Control of Toxicants in Stormwater Controls and Pilot‐

Scale Tests

• Capture of fine particulates

• Photo‐degradation (enhanced vertical circulation, but not complete mixing that can scour sediments)

• Aeration 

• Floatation (subsurface discharges) to increase trapping of floating litter

Development of Stormwater Control Devices

• Multiple treatment processes can be incorporated into stormwater treatment units sized for various applications.

– Gross solids and floatables control (screening)

– Capture of fine solids (settling or filtration)

– Control of targeted “dissolved” pollutants (sorption/ion exchange)

Page 10: Development of Stormwater Treatment Methods...7/29/2018 1 Development of Stormwater Treatment Methods Robert Pitt, P.E., Ph.D., BCEE Emeritus Cudworth Professor of Urban Water Systems

7/29/2018

10

Laboratory Media Studies • Rate and Extent of Metals Capture

– Capacities (partitioning)

– Kinetics (rate of uptake)

• Effect of pH & pH changes due to media, particle size, interfering ions, etc

• Packed bed filter studies

• Physical properties and surface area determinations

Some laboratory and field pilot‐scale test setups (EPA and WERF‐supported research at Univ. of Alabama). Critical that tests use actual stormwater, not artificial mixtures.

Page 11: Development of Stormwater Treatment Methods...7/29/2018 1 Development of Stormwater Treatment Methods Robert Pitt, P.E., Ph.D., BCEE Emeritus Cudworth Professor of Urban Water Systems

7/29/2018

11

Development and Testing of  Treatment Methods 

Multi Chamber Treatment Tank (MCTT)

• Developed under support of the US EPA to provide treatment before stormwater infiltration

• In the public domain, not commercialized

• Targets organic and metallic toxicants

• Very high levels of control through multiple treatment unit processes

• Relatively slow treatment flow rate

• An underground treatment device

Page 12: Development of Stormwater Treatment Methods...7/29/2018 1 Development of Stormwater Treatment Methods Robert Pitt, P.E., Ph.D., BCEE Emeritus Cudworth Professor of Urban Water Systems

7/29/2018

12

MCTT Cross‐Section

Milwaukee, WI, Ruby Garage Maintenance Yard Drainage Area

Page 13: Development of Stormwater Treatment Methods...7/29/2018 1 Development of Stormwater Treatment Methods Robert Pitt, P.E., Ph.D., BCEE Emeritus Cudworth Professor of Urban Water Systems

7/29/2018

13

Milwaukee, WI, Ruby Garage Maintenance Yard MCTT Installation

Minocqua, WI, MCTT Installation

Page 14: Development of Stormwater Treatment Methods...7/29/2018 1 Development of Stormwater Treatment Methods Robert Pitt, P.E., Ph.D., BCEE Emeritus Cudworth Professor of Urban Water Systems

7/29/2018

14

Caltrans MCTT Test Installations

Part of the Caltrans stormwater monitoring project in Los 

Angeles County, CA. Both drainage areas are 100% impervious. The MCTTs comprise about 1.3 to 1.5% of the drainage areas.

Drainage Area, ha (acres)

Sedimentation Basin Area, m2

(ft2)

Filter Basin Area, m2 (ft2)

Via Verde 0.44 (1.1) 35.5 (380) 17.4 (190)

Lakewood 0.76 (1.9) 61.2 (660) 32.9 (350)

MCTT Installation, Above Ground View, Taipei County, Taiwan

Grit Chamber

Settling Chamber Filtering

Chamber

Sampling Chamber

Pump

Page 15: Development of Stormwater Treatment Methods...7/29/2018 1 Development of Stormwater Treatment Methods Robert Pitt, P.E., Ph.D., BCEE Emeritus Cudworth Professor of Urban Water Systems

7/29/2018

15

New Control for NASA (Red Dragon) based on MCTT to Meet Dioxin 2.8 x 10‐8 μg/L Numeric Effluent Limit at SSFL

Pilot‐Scale MCTT Test Results

Ruby Garage MCTT samplesinfluent effluent

Page 16: Development of Stormwater Treatment Methods...7/29/2018 1 Development of Stormwater Treatment Methods Robert Pitt, P.E., Ph.D., BCEE Emeritus Cudworth Professor of Urban Water Systems

7/29/2018

16

Pilot‐Scale Test Results

Pilot‐Scale Test Results

Page 17: Development of Stormwater Treatment Methods...7/29/2018 1 Development of Stormwater Treatment Methods Robert Pitt, P.E., Ph.D., BCEE Emeritus Cudworth Professor of Urban Water Systems

7/29/2018

17

Wisconsin Full‐Scale MCTT Test Results

(median % reductions and median effluent quality)

Milwaukee (15 events)

Minocqua (7 events)

Suspended Solids >98 (<5 mg/L) 85 (10 mg/L)

Phosphorus 88 (0.02 mg/L) >80 (<0.1 mg/L)

Copper 90 (3 g/L) 65 (15 g/L)

Lead 96 (1.8 g/L) nd (<3 g/L)

Zinc >91 (<20 g/L) 90 (15 g/L)

Benzo (b) fluoranthene >95 (<0.1 g/L) >75 <0.1 g/L)

Phenanthrene >99 (<0.05 g/L) >65 (<0.2 g/L)

Pyrene >98 (<0.05 g/L) >75 (<0.2 g/L)

UpFlow Filter (developed as part of EPA SBIR program)

• High level treatment at high treatment flow rates

• Retrofit at standard inlet locations

• Minimum clogging

• Multiple and complimentary treatment unit processes

• Developed as part of the US EPA Small Business Innovative Research program and commercialized by HydroInternational

Page 18: Development of Stormwater Treatment Methods...7/29/2018 1 Development of Stormwater Treatment Methods Robert Pitt, P.E., Ph.D., BCEE Emeritus Cudworth Professor of Urban Water Systems

7/29/2018

18

Pilot‐Scale Field Monitoring•Data collected through extensive field testing by the University of Alabama

•No chemical exhaustion of media after 12 months of field testing

•Greater than 70% removal of particulate metals & nutrients and fine SSC in filter and another 10% capture of SSC in the sump

•SSC removal down to 1 micrometer particles

Full‐Scale Setup in Tuscaloosa, AL

Page 19: Development of Stormwater Treatment Methods...7/29/2018 1 Development of Stormwater Treatment Methods Robert Pitt, P.E., Ph.D., BCEE Emeritus Cudworth Professor of Urban Water Systems

7/29/2018

19

mg/L

Perc

ent

100806040200

99

95

90

80706050403020

10

5

1

Mean0.771

84.17 10.81 12 0.402 0.302

StDev N AD P78.25 13.71 12 0.224

VariableInfluent (mg/L)Effluent (mg/L)

Normal Probability Plot of Concentration for Particle Range 0-0.45 um

mg/L

Perc

ent

2520151050

99

95

90

80706050403020

10

5

1

Mean0.011

5.215 3.384 12 0.500 0.167

StDev N AD P9.36 7.604 12 0.942

VariableInfluent (mg/L)_1Effluent (mg/L)_1

Normal Probability Plot of Concentration for Particle Range 0.45-3 um

mg/L

Perc

ent

100806040200-20

99.9999

99.99

99

95

80

50

20

5

1

Mean0.011

0.6858 0.9493 12 1.699 <0.005

StDev N AD P19.98 16.23 12 0.942

VariableInfluent (mg/L)_6Effluent (mg/L)_6

Normal Probability Plot of Concentration for Particle Range 60-120 um

mg/L

Perc

ent

3002001000-100

99

95

90

80706050403020

10

5

1

Mean0.011

* * 12 *

StDev N AD P113.2 91.94 12 0.942

VariableInfluent (mg/L)_8Effluent (mg/L)_8

Normal Probability Plot of Concentration for Particle Range >240 um

050

100150200250300350400450500

0 10 20 30 40 50 60 70 80 90 100

Data Set No.

TS

S C

on

cen

trat

ion

(m

g/l

)

Influent Effluent

Field Test Data

Data Set No:

Media

1 ‐ 41 CPZ

42 ‐49 Perlite

50 ‐61Sand & Perlite

62 ‐ 71 Mycelex

72 ‐ 81 CPS

82 ‐ 107

CPZ 

(ETV Phase 1)

Page 20: Development of Stormwater Treatment Methods...7/29/2018 1 Development of Stormwater Treatment Methods Robert Pitt, P.E., Ph.D., BCEE Emeritus Cudworth Professor of Urban Water Systems

7/29/2018

20

Treatment Flow Rate Changes during 10 Month Monitoring Period of Prototype UpFloTM Filter

Evaluation of Chemically Active Media for Stormwater Treatment

• Different media can be used to target different categories of contaminants

• Fine particulate removal is the most critical as most stormwater toxicants are associated with the solids

• However, significant portions can be associated with the filterable phases and media mixtures can be optimized 

Page 21: Development of Stormwater Treatment Methods...7/29/2018 1 Development of Stormwater Treatment Methods Robert Pitt, P.E., Ph.D., BCEE Emeritus Cudworth Professor of Urban Water Systems

7/29/2018

21

Tests on media filtration

• Batch kinetic tests to estimate expected capacity and uptake rate

• Full‐depth, long‐term column tests to measure removal and maintenance

• Vary‐depth column tests to measure effects of contact time on removal

• Aerobic and anaerobic exposure tests to examine interevent leaching of previously captured materials and media degradation

Example Media TestedSite Zeolite GAC

Peat SMZ

Rhyolite Sand

Page 22: Development of Stormwater Treatment Methods...7/29/2018 1 Development of Stormwater Treatment Methods Robert Pitt, P.E., Ph.D., BCEE Emeritus Cudworth Professor of Urban Water Systems

7/29/2018

22

ConclusionsConstituent and units Typically reported 

irreducible concentrations (conventional high‐level stormwater treatment)

Effluent concentrations possible with treatment train using sedimentation along with sorption/ion exchange

Particulate solids (mg/L)

10 to 45 <5 to 10

Phosphorus (mg/L) 0.2 to 0.3 0.02 to 0.1

TKN (mg/L) 0.9 to 1.3 0.8

Cadmium (g/L) 3 0.1

Copper (g/L) 15 3 to 15

Lead (g/L) 12 3 to 15

Zinc (g/L) 37 <20

PAHs (g/L) 10 to 100 <1 to 5

Stormwater Treatability Findings• Biological receiving water problems due to stormwater in 

heavily urbanized areas associated with contaminated sediment and habitat destruction (along with safety, trash, secondary contact); water column concentrations rarely have direct effects.

• Need to reduce sediment‐associated pollutants in discharges; try to remove particles down to about 5 μm. Very low NELs may require filtered forms also to be partially removed, usually by active treatment media (sorption and ion exchange). Filtered forms may mostly be as colloids and organic complexes and not amenable to ion exchange.

• Allowing stormwater to flow through captured debris (as in some netting and filter systems) can cause degradation of debris with increased effluent concentrations.

Page 23: Development of Stormwater Treatment Methods...7/29/2018 1 Development of Stormwater Treatment Methods Robert Pitt, P.E., Ph.D., BCEE Emeritus Cudworth Professor of Urban Water Systems

7/29/2018

23

Stormwater Treatability Findings (cont.)

• Treatment media may be source of pollutants (such as phosphorus from compost, or release of previously captured material if anaerobic, or snowmelt affecting ion exchange) 

• Clogging and related maintenance issues are very critical. Flows decrease with use; chemical capacity is reduced with use; sediment and trash storage capacity is reduced with use.

• Snowmelt hinders performance due to increased viscosity of water (slower settling rates), SAR detrimental effects on clays and organics in treatment media, groundwater contamination by chlorides, etc.

Stormwater Treatability Findings (cont.)

• Evaluation of stormwater controls requires both controlled and long‐term tests using actual stormwater (“synthetic” stormwater does not have correct mixture of particulate bound pollutants and interfering major ions, and variability of concentrations).

• Tests must represent the range of expected concentrations and flows.

• Long‐term evaluations are needed to indicate decreased performance with use and associated maintenance issues.