Development of a six degree of freedom motion simulation ... · PDF fileSUPPLEMENTARYNOTES IS....

180
DEVELOPMENT OF A SIX DEGREE OF FREEDOM MOTION SIMULATION MODEL FOR USE IN SUBMARINE DESIGN ANALYSIS. John Thomas Hammond « Vt ®?9

Transcript of Development of a six degree of freedom motion simulation ... · PDF fileSUPPLEMENTARYNOTES IS....

Page 1: Development of a six degree of freedom motion simulation ... · PDF fileSUPPLEMENTARYNOTES IS. ... modelcanbeusedasadesigntooltostudyandpredictsubmarine ... submarine

DEVELOPMENT OF A SIX DEGREE OF

FREEDOM MOTION SIMULATIONMODEL FOR USE IN

SUBMARINE DESIGN ANALYSIS.

John Thomas Hammond

«Vt®?9

Page 2: Development of a six degree of freedom motion simulation ... · PDF fileSUPPLEMENTARYNOTES IS. ... modelcanbeusedasadesigntooltostudyandpredictsubmarine ... submarine
Page 3: Development of a six degree of freedom motion simulation ... · PDF fileSUPPLEMENTARYNOTES IS. ... modelcanbeusedasadesigntooltostudyandpredictsubmarine ... submarine

SECURITY CLASSIFICATION OF THIS PAGE (Whmn Data F.nlmrnd)

REPORT DOCUMENTATION PAGEI. »£»0»T NUMBER 2. GOVT ACCESSION NO

4. TITL t (and SubltHe)

DEVELOPMENT OF A SIX DEGREE OF FREEDOMMOTION SIMULATION MODEL FOR USE IN SUBMARINEDESIGN ANALYSIS

7. AuTHORfa;

HAMMOND, JOHN T.

I. PERFORMING ORGANIZATION NAME AND ADDRESS

MASS. INST. OF TECHNOLOGY

READ fNSTRUCTfONSBEFORE COMPLETING FORM

S. RECIPIENT'S CATALOG NUMBER

S. TYRE OF REPORT A PERIOO COVERED

THESIS

«. PERFORMING ORG. REPORT NUMBER

IT CONTRACT OR GRANT NUMBER.;

10. PROGRAM ELEMENT, PROJECT, TASKAREA A WORK UNIT NUMBERS

II. CONTROLLING OFFICE NAME AND ADDRESS

CODE 03112. REPORT DATEMAY 78

NAVAL POSTGRADUATE SCHOOLMONTEREY. CALIFORNIA, g314Q

I*. NUMBER OF PAGES

8714. MONITORING AGENCY NAME * AdFrESSC*/ ditfironi Irani ConlrelHnt Oittca) IS. SECURITY CLASS, (ol thla report;

UNCLASS' ti». declassTfication/downgradimg

SCHEDULE

16. DISTRIBUTION STATEMENT (of this, Roport)

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

17. DISTRIBUTION STATEMENT (of th» abatracl anfaratf In Stock 30, II dHtarant tram Report)

IB. SUPPLEMENTARY NOTES

IS. KEY WORDS (Continue on tororaa elcto It nacoaamry and Idar.Uty by block numbor)

MOTION SIMJLATIQN; SUBMARINE DESIGN; SIX DEGREE OF FREEDOM

20. ABSTRACT (Contlnua on revarao aide II necaaamry end Idontlty by block numbor)

SEE REVERSE.

DD I jan*73 1473 eOlTION OF I NOV 6* IS OBSOLETE

(Page 1) S/N 0102-014- 6601 |

SECURITY C

UNCLASS T 1 Q ^7 J / *•

L ASSI F I C A TION OF T^lS PtSgE (Vnon Dale Knlarad)

Page 4: Development of a six degree of freedom motion simulation ... · PDF fileSUPPLEMENTARYNOTES IS. ... modelcanbeusedasadesigntooltostudyandpredictsubmarine ... submarine

DEVELOPMENT OF A SIX DEGREE OF FREEDOM

MOTION SIMULATION MODEL FOR USE IN

SUBMARINE DESIGN ANALYSIS

by

John Thomas Hammond

Submitted to the Department of Ocean Engineering on

May 12, 1978 in partial fulfillment of the requirements for

the Degrees of Ocean Engineer and Master of Science in Naval

Architecture and Marine Engineering.

ABSTRACT

A computer mathematical model that will simulate the six degree

of freedom motion of a submarine has been developed. Hydrodynamic

coefficients obtained from the testing of physical models enable the

user to accurately simulate specific submarine designs. The simulation

model can be used as a design tool to study and predict submarine

dynamic response. Complete three dimensional motion is allowed for

the submarine while constraints in powering, rudder deflection, dive

plane angle, and response time can be selected by the user. Outputs

include a chronological history of all linear and angular velocities

and accelerations, the instantaneous angle of deflection of each

control surface, and the trajectory of the submarine center of

gravity.

Thesis Supervisor: Martin A. ADkowitz

Title: Professor of Ocean Engineering

Page 5: Development of a six degree of freedom motion simulation ... · PDF fileSUPPLEMENTARYNOTES IS. ... modelcanbeusedasadesigntooltostudyandpredictsubmarine ... submarine

Ipproved for publio release"?

distribution unlimited.

DEVELOPMENT OF A SIX DEGREE OF FREEDOM

MOTION SIMULATION MODEL FOR USE IN

SUBMARINE DESIGN ANALYSIS -

by

John Thomas Hammond

Lieutenant, United States Navy

B.S.M.E., University of Washington(1971)

Submitted in partial fulfillmentof the requirements for the

degrees of

Ocean Engineerand

Master of Sciencein Naval Architectureand Marine Engineering

at the

Massachusetts Institute of Technology

May, 1978

© John Thomas Hammond 1978

Page 6: Development of a six degree of freedom motion simulation ... · PDF fileSUPPLEMENTARYNOTES IS. ... modelcanbeusedasadesigntooltostudyandpredictsubmarine ... submarine

Hi

Page 7: Development of a six degree of freedom motion simulation ... · PDF fileSUPPLEMENTARYNOTES IS. ... modelcanbeusedasadesigntooltostudyandpredictsubmarine ... submarine

DEVELOPMENT OF A SIX DEGREE OF FREEDOM

MOTION SIMULATION MODEL FOR USE IN

SUBMARINE DESIGN ANALYSIS

by

John Thomas Hammond

Submitted to the Department of Ocean Engineering on

May 12, 1978 in partial fulfillment of the requirements for

the Degrees of Ocean Engineer and Master of Science in Naval

Architecture and Marine Engineering.

ABSTRACT

A computer mathematical model that will simulate the six degree

of freedom motion of a submarine has been developed. Hydrodynamic

coefficients obtained from the testing of physical models enable the

user to accurately simulate specific submarine designs. The simulation

model can be used as a design tool to study and predict submarine

dynamic response. Complete three dimensional motion is allowed for

the submarine while constraints in powering, rudder deflection, dive

plane angle, and response time can be selected by the user. Outputs

include a chronological history of all linear and angular velocities

and accelerations, the instantaneous angle of deflection of each

control surface, and the trajectory of the submarine center of

gravity.

Thesis Supervisor: Martin A. Abkowitz

Title: Professor of Ocean Engineering

Page 8: Development of a six degree of freedom motion simulation ... · PDF fileSUPPLEMENTARYNOTES IS. ... modelcanbeusedasadesigntooltostudyandpredictsubmarine ... submarine
Page 9: Development of a six degree of freedom motion simulation ... · PDF fileSUPPLEMENTARYNOTES IS. ... modelcanbeusedasadesigntooltostudyandpredictsubmarine ... submarine

ACKNOWLEDGEMENTS

This thesis was prepared under the auspices of the Department

of Ocean Engineering and Professor Martin A. Abkowitz. My

sincerest thanks to Professor Abkowitz for his expert guidance in

developing the simulation model used in this thesis. I would also

like to express special thanks to my wife Robin for her loving

support during the months of thesis preparation and for her

endless hours of expert typing.

J.T.H.

MAY 1978CAMBRIDGE, MASSACHUSETTS

Page 10: Development of a six degree of freedom motion simulation ... · PDF fileSUPPLEMENTARYNOTES IS. ... modelcanbeusedasadesigntooltostudyandpredictsubmarine ... submarine
Page 11: Development of a six degree of freedom motion simulation ... · PDF fileSUPPLEMENTARYNOTES IS. ... modelcanbeusedasadesigntooltostudyandpredictsubmarine ... submarine

TABLE OF CONTENTS

TITLE -1

ABSTRACT 2

ACKNOWLEDGEMENTS 3

LIST OF FIGURES 6

CHAPTER I - INTRODUCTION

1.1 BACKGROUND 7

1.2 MODEL DEVELOPMENT 8

CHAPTER II - THE SIMULATION MODEL

11.

1

GENERAL CAPABILITIES 12

11.

2

COORDINATE SYSTEMS 13

II. 3. EQUATIONS OF MOTION 13

II. 4 CONTROL SURFACES '.17

CHAPTER III - PROGRAM USER'S GUIDE

111.

1

GENERAL FEATURES 19

111.

2

SUBROUTINE FUNC 19

111.

3

SUBROUTINE RUDDER 20

111.

4

SUBROUTINE DEPTH 20

111.

5

SUBROUTINE STERN 21

111.

6

RANGE VARIABLES 22

111.

7

PROGRAM PARAMETERS 23

CHAPTER IV - TEST RESULTS AND CONCLUSIONS

IV. 1 FUNDAMENTAL MOTION TEST 25

IV. 2 HORIZONTAL MOTION TEST 26

IV. 3 VERTICAL MOTION TEST 28

Page 12: Development of a six degree of freedom motion simulation ... · PDF fileSUPPLEMENTARYNOTES IS. ... modelcanbeusedasadesigntooltostudyandpredictsubmarine ... submarine
Page 13: Development of a six degree of freedom motion simulation ... · PDF fileSUPPLEMENTARYNOTES IS. ... modelcanbeusedasadesigntooltostudyandpredictsubmarine ... submarine

5

IV.

4

COMPLETE MODEL TEST 31

IV.

5

USE AS A DESIGN TOOL 31

IV.

6

CONCLUSIONS AND RECOMMENDATIONS . . . 32

REFERENCES 34

APPENDIX A

A.l NOTATION 35

A.

2

EQUATIONS OF MOTION 45

A.

3

AXIS TRANSFORMATIONS 51

APPENDIX B

B.l LIST OF VARIABLES 53

B.2 COMPUTER PROGRAM LISTING 59

B.3 LEQT1F 87

Page 14: Development of a six degree of freedom motion simulation ... · PDF fileSUPPLEMENTARYNOTES IS. ... modelcanbeusedasadesigntooltostudyandpredictsubmarine ... submarine
Page 15: Development of a six degree of freedom motion simulation ... · PDF fileSUPPLEMENTARYNOTES IS. ... modelcanbeusedasadesigntooltostudyandpredictsubmarine ... submarine

LIST OF FIGURES

Figure 1

Local Submarine Coordinate System 10

Figure 2

Relationship of Axes, Angles, Velocities,

Forces, and Moments 14

Figure 3

Simulation Model Trajectory with Constant Dive

Plane Angle .- 27

Figure 4

Rudder Deflection and Angle of Turn as a Function

of Time 29

Figure 5

Depth as a Function of Time for a Simple Dive 30

Page 16: Development of a six degree of freedom motion simulation ... · PDF fileSUPPLEMENTARYNOTES IS. ... modelcanbeusedasadesigntooltostudyandpredictsubmarine ... submarine
Page 17: Development of a six degree of freedom motion simulation ... · PDF fileSUPPLEMENTARYNOTES IS. ... modelcanbeusedasadesigntooltostudyandpredictsubmarine ... submarine

CHAPTER I - INTRODUCTION

1.1 BACKGROUND

During the several years spent in designing a submarine, a

great deal of effort is expended trying to improve the design so that

the best possible vessel is eventually constructed. During the de-

sign phases the designer will frequently examine problems that were

found in older submarines and try to determine the cause of each

problem so that they can be eliminated in the new design. At several

stages during the design, computer models are used to assist in such

things as structural design, equilibrium calculations, and internal

arrangement. As the design progresses, physical models of the

proposed vessel are built and tested in a towing tank to measure the

hydrodynamic coefficients. Finally, when it is possible to deal with

the vessel as a whole, a dynamic analysis is conducted to gauge how

the submarine will perform in an underwater environment when all six

degrees of freedom are available.

While it is possible to gather dynamic information, such as the

hydrodynamic coefficients, from physical model tests, the models are

necessarily too restricted in their motion to permit a complete

Page 18: Development of a six degree of freedom motion simulation ... · PDF fileSUPPLEMENTARYNOTES IS. ... modelcanbeusedasadesigntooltostudyandpredictsubmarine ... submarine
Page 19: Development of a six degree of freedom motion simulation ... · PDF fileSUPPLEMENTARYNOTES IS. ... modelcanbeusedasadesigntooltostudyandpredictsubmarine ... submarine

8

analysis. It is necessary to construct a mathematical model of the

submarine to simulate the submarine's motion and thereby obtain

enough data for a complete analysis. The simulation model will use

the hydrodynamic coefficients obtained from the physical model as a

basis for the simulation. A properly constructed model will permit

the designer to simulate any conceivable maneuver and gauge the

submarine's response. The simulation model then becomes a tool to

assist in improving the design and achieving the best possible

vessel. After the submarine is designed, the model can continue to

be useful by assisting in the evaluation of operating procedures.

The model can be placed in any maneuvering situation without hazard

to crew or vessel. This is especially useful in evaluating casualty

situations. The model can also be used to estimate the effect of

proposed design changes to the submarine. For instance, the model

can show the effect of changing the maximum deflection of a control

surface or its rate of operation.

All of the few six degree of freedom submarine simulation models

in existence are too expensive for daily use in the design office.

Generally, the models are complicated to use and sometimes difficult

to obtain. These problems have created the need for a program that

is both inexpensive enough to permit daily use in the design office

and simple enough so that anyone can use it. This need has formed

the motivation for this thesis.

1.2 MODEL DEVELOPMENT

A mathematical model must use Newton's Law of Motion and the

Page 20: Development of a six degree of freedom motion simulation ... · PDF fileSUPPLEMENTARYNOTES IS. ... modelcanbeusedasadesigntooltostudyandpredictsubmarine ... submarine
Page 21: Development of a six degree of freedom motion simulation ... · PDF fileSUPPLEMENTARYNOTES IS. ... modelcanbeusedasadesigntooltostudyandpredictsubmarine ... submarine

9

differential equations resulting from a dynamic analysis of the

submarine. A submarine has movable appendages, so these must also

be accounted for in the model. Newton's Law of Motion can be

expressed as:

(1) Force = -nr (momentum)

(2) Moment = -nr (angular momentum)

If a submarine with a coordinate system such as shown in Figure 1 is

used, then equation (1) can be applied along each of the three axes.

Similarly, equation (2) can be applied around each axis. This gives

a total of six equations to represent the six degrees of freedom of

the submarine. These six equations of motion are well-known [1] so

they are not developed in detail here. They are, however, included

for reference in Appendix A.

While the equations of motion for the submarine form the heart

of the model, they are insufficient by themselves. On an actual

submarine, the officer of the deck orders the rudder or dive planes

moved in order to maneuver the ship. The routines will normally

sense where the ship currently is and where it is supposed to be and

then move the appendages in the appropriate direction just as the

deck officer would do. The six equations of motion together with

the appendage control subroutines constitute the vital components of

the simulation model. A main program is necessary to coordinate the

input, output, and to control the action of the subroutines.

The components of the model are discussed in detail in Chapter

II of this thesis. The model is written as a computer program whose

features are discussed in Chapter III. The final chapter will

Page 22: Development of a six degree of freedom motion simulation ... · PDF fileSUPPLEMENTARYNOTES IS. ... modelcanbeusedasadesigntooltostudyandpredictsubmarine ... submarine
Page 23: Development of a six degree of freedom motion simulation ... · PDF fileSUPPLEMENTARYNOTES IS. ... modelcanbeusedasadesigntooltostudyandpredictsubmarine ... submarine

10

E<D+->

0)

>^00

<D+->

03

c

oou<L>

c

03

E

Don

ni

o

Page 24: Development of a six degree of freedom motion simulation ... · PDF fileSUPPLEMENTARYNOTES IS. ... modelcanbeusedasadesigntooltostudyandpredictsubmarine ... submarine
Page 25: Development of a six degree of freedom motion simulation ... · PDF fileSUPPLEMENTARYNOTES IS. ... modelcanbeusedasadesigntooltostudyandpredictsubmarine ... submarine

11

discuss the model tests and their results. A listing of the

program will be provided in Appendix B.

Page 26: Development of a six degree of freedom motion simulation ... · PDF fileSUPPLEMENTARYNOTES IS. ... modelcanbeusedasadesigntooltostudyandpredictsubmarine ... submarine
Page 27: Development of a six degree of freedom motion simulation ... · PDF fileSUPPLEMENTARYNOTES IS. ... modelcanbeusedasadesigntooltostudyandpredictsubmarine ... submarine

12

CHAPTER II - THE SIMULATION MODEL

II. 1 GENERAL CAPABILITIES

The simulation model developed in this thesis will provide

trajectory information for routine submarine maneuvers such as

turning or changing depth. The trajectory, which is referenced to

a fixed coordinate system, .is computed as a function of time. As

the trajectory of the model is developed, the velocities and

accelerations are calculated and stored for output to the user.

Both angular and linear velocities and accelerations are provided.

The angle of deflection of each control surface appendage is computed

for each step of the entire trajectory or maneuver.

The rate of deflection of each control surface and its angle

of maximum deflection are specified by the user. Any of the control

surfaces can be "jammed" by specifying a particular angle of

deflection. The model can be initially placed on any course and

depth and then ordered to come to any new course and depth. The

user can select the initial speed and the appropriate thrust

coefficients to cause a change in speed.

Page 28: Development of a six degree of freedom motion simulation ... · PDF fileSUPPLEMENTARYNOTES IS. ... modelcanbeusedasadesigntooltostudyandpredictsubmarine ... submarine
Page 29: Development of a six degree of freedom motion simulation ... · PDF fileSUPPLEMENTARYNOTES IS. ... modelcanbeusedasadesigntooltostudyandpredictsubmarine ... submarine

13

11.

2

COORDINATE SYSTEMS

The coordinate system plan used in the simulation model is

based on [1]. The model uses two orthogonal coordinate systems; one

remaining fixed at the water surface while the other travels with the

submarine to act as a local reference system. The fixed system,

designated x , y , z , is related to the moving system, designated

x, y, z, through the angles <£, 9 , <A as illustrated in Figure 2.

Quantities measured in the moving system can be referenced to the

fixed system by using the transformation [2] given in Appendix A.

The origin of the moving system is at the center of gravity of

the submarine. This has the advantage that only the principal

moments of inertia, I , I , I , are non-zero (i.e.: I »I «I = 0).

It has the additional advantage that the equations of motion in [1]

also use this reference point for the x, y, z system. It would have

been possible to use the centerline of the submarine for the origin.

This would have the advantage of making better use of the symmetry

of the vessel, however it would have the disadvantage of having to

correct both the equations of motion and some of the hydrodynamic

coefficients for the new origin.

Appendage movements are measured with respect to the moving

coordinate system. All velocities and accelerations are measured

along the axes of the moving system. This is also shown in Figure 2.

11.

3

EQUATIONS OF MOTION

The general nature of the six degree- of freedom model requires

the use of the six equations in their non-linear form. A large

Page 30: Development of a six degree of freedom motion simulation ... · PDF fileSUPPLEMENTARYNOTES IS. ... modelcanbeusedasadesigntooltostudyandpredictsubmarine ... submarine
Page 31: Development of a six degree of freedom motion simulation ... · PDF fileSUPPLEMENTARYNOTES IS. ... modelcanbeusedasadesigntooltostudyandpredictsubmarine ... submarine

14

en

cCD

Eo2od

if)

<DuL.

£VfCD

->r->

uO-<P C\J>

CDt/f i_(D DCD O)C • —< Ll

l/f

CD

X<M—oQ.

JZcOco-Mra

CD

cr

Page 32: Development of a six degree of freedom motion simulation ... · PDF fileSUPPLEMENTARYNOTES IS. ... modelcanbeusedasadesigntooltostudyandpredictsubmarine ... submarine
Page 33: Development of a six degree of freedom motion simulation ... · PDF fileSUPPLEMENTARYNOTES IS. ... modelcanbeusedasadesigntooltostudyandpredictsubmarine ... submarine

15

number of hydrodynamic coefficients are necessary for this model.

It would be desirable to derive each coefficient from existing hydro-

dynamic theory. Some coefficients have been obtained for bodies of

revolution or other mathematically amenable shapes;' however, when

appendages such as control surfaces, fairwaters, and propellers are

taken into account, the accuracy of the theoretical values is brought

into question. For this reason it is standard practice to obtain the

numerical value of the coefficients by experimental means. This

usually entails the towing and measurement of physical models.

Once the hydrodynamic coefficients are known, the equations

can be solved for the accelerations. The six equations of motion

must be written such that the highest order derivatives, namely

u, v, w, p, q, r and their coefficients, appear on the left hand

side of the equation. This gives each equation a form like:

• ••*••a,- ^ u + a. .., v + a. • , 9 w + a. •

. , p + a. ... q + a. .. c rl ,J l »J+1 l fJ+2 l ,j+3 K

l ,j+4 ^ l ,j+b

fj (u, Y, w,"p, q, r,<f>, 9, r> 8f

» 8b>

8$

, 1,bi, . . . )

The left hand side is placed in a matrix format. The six equations

are then represented as:

M• • • • —

u•

fi

V• hw•

= f3

p• Uq• hr h

Page 34: Development of a six degree of freedom motion simulation ... · PDF fileSUPPLEMENTARYNOTES IS. ... modelcanbeusedasadesigntooltostudyandpredictsubmarine ... submarine
Page 35: Development of a six degree of freedom motion simulation ... · PDF fileSUPPLEMENTARYNOTES IS. ... modelcanbeusedasadesigntooltostudyandpredictsubmarine ... submarine

16

The method of solution is an iterative technique in which initial

values are used in the right hand side functions and the six acceler-

ations are solved for on the left side. The accelerations are then

used to update the right side functions. A small time increment is

made and the accelerations are again solved by using the latest

value for the right side functions.

With each iteration the accelerations are used in a Taylor

series expansion to calculate the velocities. The calculations

have the form:

W>(t+At)=^

w\ (t) +

P( IP

q

r

q

r

'(At)

The pitch, roll, and yaw angles are calculated in a similar manner

using the angular velocity and acceleration.

(t) +

In order to plot the trajectory of the submarine, a coordinate

§•'*•' f]-®

system transformation is performed to obtain the linear velocities• • •

x , y , z in the fixed coordinate system. The velocities are used

in a Taylor series expansion to obtain the position of the center of

gravity of the submarine in the x , y , z system.

Page 36: Development of a six degree of freedom motion simulation ... · PDF fileSUPPLEMENTARYNOTES IS. ... modelcanbeusedasadesigntooltostudyandpredictsubmarine ... submarine
Page 37: Development of a six degree of freedom motion simulation ... · PDF fileSUPPLEMENTARYNOTES IS. ... modelcanbeusedasadesigntooltostudyandpredictsubmarine ... submarine

17

y t(t + At) = Jy/ (t) + Jy.L (At)

When the position of the submarine is calculated the time is advanced

one increment and another iteration begins.

The iteration loop will continue to operate until some test

criteria are met. For instance, if the model is performing a dive,

then the model tests the value of zn to see if the model is at theo

appropriate depth. A test is also made of the pitch angle to see if

it is within some specified range of zero. Lastly a check is made to

ensure that all of the dive planes are at zero deflection.

II. 4 CONTROL SURFACES

The motion of the model is controlled by the movement of the

control surfaces. The control surfaces include the rudder, the

stern planes, and the sail planes. For analysis of submarine designs

the movement of the control surfaces can be governed by an automatic

control system. In the model each control surface is provided with

its own automatic control system. The principle of operation for

all of the automatic control systems is the same. In each case the

deflection of the control surface is made proportional to an error

signal and the rate of change of the error. The sail planes, for

instance, control the depth of the model. The calculated deflection

of the planes is proportional to the depth error and the rate of

change of depth.

Page 38: Development of a six degree of freedom motion simulation ... · PDF fileSUPPLEMENTARYNOTES IS. ... modelcanbeusedasadesigntooltostudyandpredictsubmarine ... submarine
Page 39: Development of a six degree of freedom motion simulation ... · PDF fileSUPPLEMENTARYNOTES IS. ... modelcanbeusedasadesigntooltostudyandpredictsubmarine ... submarine

18S = K, (present depth - ordered depth)

+ IC, (rate of change of depth)

A large error will initially cause a large deflection, but as the

rate of change increases, the deflection will decrease until some

moderate rate is achieved. Since movement of the sailplanes does

not have any significant effect on any motion other than depth,

its control system uses only the variables associated with depth.

The stern planes control pitch angle as well as depth. The

control system accounts for this by using the pitch angle, 9* and the

rate of change of 9.

8 = K3

(present depth - ordered depth)

+ K. (rate of change of depth)

+ K5

(pitch angle)

+ K6

(rate of change of pitch angle)

The K's in the control systems are proportionality constants

known as gain. The value of the gain determines the sensitivity and

response of the control system. Since the error signal continually

varies during a maneuver, it is best to keep the gain low. It is

desirable to have just enough gain on the error signal to get the

control system moving and keep it moving in the right direction.

The gain on the rate signals should be much stronger to dampen out

the oscillations caused by response to the error signal.

The control surfaces move at a rate specified by the

user. Whenever the calculated deflection differs from the

present deflection, the control surface will move toward

the calculated value at the specified rate.

Page 40: Development of a six degree of freedom motion simulation ... · PDF fileSUPPLEMENTARYNOTES IS. ... modelcanbeusedasadesigntooltostudyandpredictsubmarine ... submarine
Page 41: Development of a six degree of freedom motion simulation ... · PDF fileSUPPLEMENTARYNOTES IS. ... modelcanbeusedasadesigntooltostudyandpredictsubmarine ... submarine

19

CHAPTER THREE - PROGRAM USER'S GUIDE

111.

1

GENERAL FEATURES

The simulation model consists of a main program and four

subroutines. The four subroutines are named FUNC, RUDDER, DEPTH,

and STERN. The main program reads the input data, changes units,

initializes values, and prints the output. The main program performs

the Taylor series expansions, the coordinate system transforms, and

provides the logical statements for calling the subroutines. On the

first iteration, when time equals zero, no subroutines are called;

the output from this first iteration is then a statement of the

initial conditions of the problem. Each succeeding iteration will

call subroutine FUNC to calculate the new position of the model.

Calls to the control surface subroutines are made on the basis of

need, with no subroutine being called more than once in the iteration.

The decision on whether or not to call RUDDER, DEPTH, or STERN is

contained in a series of logical IF statements in the main program.

111.

2

SUBROUTINE FUNC

Subroutine FUNC contains the six equations of motion. The

Page 42: Development of a six degree of freedom motion simulation ... · PDF fileSUPPLEMENTARYNOTES IS. ... modelcanbeusedasadesigntooltostudyandpredictsubmarine ... submarine
Page 43: Development of a six degree of freedom motion simulation ... · PDF fileSUPPLEMENTARYNOTES IS. ... modelcanbeusedasadesigntooltostudyandpredictsubmarine ... submarine

20

input parameters to FUNC consist of the hydrodynamic coefficients,

the model velocities, the orientation in space, all of the ship's

characteristics such as length and moments of inertia, the deflection

of each control surface, and the propulsive coefficients. The sub-

routine returns the value of the six accelerations: UDT, VDT, WDT,

PDT, QDT, RDT. The input and output for FUNC are all contained in

COMMON /FOUR/ and COMMON /FIVE/. The solution to the matrix equation

in subroutine FUNC is made possible by a call to the library function

LEQT1F [3]. LEQT1F performs a Gaussian reduction for the matrix

equation. Any similar Gaussian reduction could be substituted if

LEQT1F is not available. An explanation of the parameters used in

the call to LEQT1F is found in Appendix B.

111.

3

SUBROUTINE RUDDER

Subroutine RUDDER controls all horizontal motion for the

model. The input parameters include: K9, K10, T5, T6, Til, T12,

T17, T18, TLAGR, RRATE, RUDAMT, COURSE, DELR, DELT, R, PSI. The sub-

routine returns a new value for DELR, the rudder deflection, based on

a calculation using its present and ordered headings. The inputs are

all contained in COMMON /THREE/ and COMMON /FIVE/. Subroutine RUDDER

is called whenever the model is not on the desired course or when the

rudder is deflected.

111.

4

SUBROUTINE DEPTH

Subroutine DEPTH controls the forward set of dive planes. It

can control either bow planes or sail planes depending on what the

Page 44: Development of a six degree of freedom motion simulation ... · PDF fileSUPPLEMENTARYNOTES IS. ... modelcanbeusedasadesigntooltostudyandpredictsubmarine ... submarine
Page 45: Development of a six degree of freedom motion simulation ... · PDF fileSUPPLEMENTARYNOTES IS. ... modelcanbeusedasadesigntooltostudyandpredictsubmarine ... submarine

21

submarine is fitted with. This subroutine is sensitive to the depth

error and the rate of change of depth. Subroutine DEPTH will move

the forward planes in the direction necessary to bring the depth

error to zero. As input parameters, the subroutine uses: Kl , K2

Tl, T2, T13, T14, T15, T16, TLAGB, DELT, DIFF, ADIFF, ZDT, ATHETA,

MAXANG, DCRIT. The subroutine returns a new value for DELB, the

bow plane deflection, after each call.

If MAXANG, the maximum dive/ascent angle, has been exceeded,

then DEPTH will return a diagnostic write statement. The user may

specity MAXANG, the maximum pitch angle for the model. Whenever

MAXANG is exceeded the diving planes are moved to reduce the pitch

angle and a diagnostic signal is generated from within subroutine

DEPTH. The diagnostic will say "Maximum dive/ascent angle exceeded

at time . Standard fixup taken." Since the dive planes only

begin to react when MAXANG is exceeded, the submarine will overshoot

the angle before a reduction in the angle actually occurs. The

diving planes will continue to operate until the pitch angle is

less than MAXANG.

DEPTH makes only a minimal attempt to control the pitch angle

of the model; it only warns the user when the angle is exceeded, and

then moves the bow planes so that the pitch angle does not grow

larger. The principal purpose of DEPTH is to provide depth control;

it does this in conjunction with subroutine STERN.

III. 5 SUBROUTINE STERN

Subroutine STERN controls the movement of the stern planes to

Page 46: Development of a six degree of freedom motion simulation ... · PDF fileSUPPLEMENTARYNOTES IS. ... modelcanbeusedasadesigntooltostudyandpredictsubmarine ... submarine
Page 47: Development of a six degree of freedom motion simulation ... · PDF fileSUPPLEMENTARYNOTES IS. ... modelcanbeusedasadesigntooltostudyandpredictsubmarine ... submarine

22

achieve the desired depth and pitch angle. The movement of the

planes is sensitive to the depth error, the rate of change of depth,

the pitch angle, and the rate of change of pitch. The stern planes

will move to bring the depth error to zero and the pitch angle to

zero. As input parameters the subroutine uses: K5, K6, K7, K8, T3,

T7, T8, T10, TLAGS, STERAT, STERMX, THETA, Q, DELS, DIFF, ADIFF,

ZDT, ATHETA, MAXANG, NOPICH, DCRIT. The subroutine returns a new

value for the stern plane deflection, DELS. The input and output

parameters are all contained in COMMON /ONE/, COMMON /FIVE/, and

COMMON /SIX/. STERN is called to achieve a depth change or to correct

the pitch angle.

III. 6 RANGE VARIABLES

Since it is not usually possible to bring a computer simulation

model to a precise depth or angle, it is necessary to define ranges

around the desired depth or angle which will be acceptable to the

user. For example, if the submarine were to make a depth change of

500 feet, the dive may be considered complete if the model settled

within ten feet of the desired depth. The range is specified by the

user to enable him to achieve whatever precision is desired. Within

this range the main program will not make a call to the control sur-

face subroutine; since no call is made, the control surfaces cannot

be moved. In the program, the variable name for the depth range is

NODIFF; it is usually set at + 5 or + 10 feet. Subroutine DEPTH will

be called whenever the model is off of its ordered depth by more than

NODIFF. The range about zero pitch angle is given the name NOPICH;

Page 48: Development of a six degree of freedom motion simulation ... · PDF fileSUPPLEMENTARYNOTES IS. ... modelcanbeusedasadesigntooltostudyandpredictsubmarine ... submarine
Page 49: Development of a six degree of freedom motion simulation ... · PDF fileSUPPLEMENTARYNOTES IS. ... modelcanbeusedasadesigntooltostudyandpredictsubmarine ... submarine

23

it is usually set at + 1 degree. STERN is called if the pitch angle

is greater than NOPICH. The variable name for achieving the proper

course is ONCRS; it is usually set at + 1 degree. RUDDER will be

called whenever the model is off course by more than ONCRS.

An additional range variable is used during diving or surfacing.

When the model moves within some critical range of the desired depth,

it is time to begin moving the dive planes to zero angle and let the

vessel glide into the desired depth. This maneuver prevents

oscillation of the dive planes as the error signal and the rate

signal both become small. This also ensures that the planes are at

or near zero angle by the time the desired depth is reached. The

name of this variable is DCRIT; it is usually set at 50, 75 or 100

feet depending on the speed of the submarine. STERN will be called

whenever the model is off its ordered depth by more than DCRIT.

III. 7 PROGRAM PARAMETERS

The iterative nature of the program relies on a time increment

being made after each step. The size of the time increment is

optional; the smaller the increment the more accurate the calculations

In selecting the size of the time increment, one must bear in mind

the length of time required to complete the maneuver and the storage

capacity of the program. Due to the quantity of information that is

calculated by the program, it is practical to print only half of the

data at one time. The other half of the data is stored in the

array STOW. This data is then printed when the maneuver is complete.

STOW has the capacity to hold the data resulting from 600 iterations.

Page 50: Development of a six degree of freedom motion simulation ... · PDF fileSUPPLEMENTARYNOTES IS. ... modelcanbeusedasadesigntooltostudyandpredictsubmarine ... submarine
Page 51: Development of a six degree of freedom motion simulation ... · PDF fileSUPPLEMENTARYNOTES IS. ... modelcanbeusedasadesigntooltostudyandpredictsubmarine ... submarine

24

A time check is incorporated in the main program to enable the

user to limit the number of iterations. Achieving a number of

iterations equal to the variable ICNT will cause the program to stop

the present maneuver, print out all data, and see if another maneuver

is desired. ICNT should not be made larger than 600 so that the

available storage space is not exceeded.

Each control surface subroutine has a time lag scheme which

senses the initial command to the control surface and prevents

immediate action. A time lag occurs each time the direction of

movement is changed. A different time lag may be specified for

each control surface.

The variable INDEX is used to allow the user to perform more

•than one maneuver with a given submarine and then shift submarines

to perform more maneuvers. If INDEX is less than or equal to zero

then the same submarine coefficients will be used for each set of

initial conditions. If INDEX is greater than zero the program will

read new coefficients as well as a new set of initial conditions.

Page 52: Development of a six degree of freedom motion simulation ... · PDF fileSUPPLEMENTARYNOTES IS. ... modelcanbeusedasadesigntooltostudyandpredictsubmarine ... submarine
Page 53: Development of a six degree of freedom motion simulation ... · PDF fileSUPPLEMENTARYNOTES IS. ... modelcanbeusedasadesigntooltostudyandpredictsubmarine ... submarine

25

CHAPTER FOUR - TEST RESULTS AND CONCLUSIONS

IV. 1 FUNDAMENTAL MOTION TEST

The validation of the simulation model is a matter of impor-

tance. The method used was an independent test of each component of

the model, and then a series of tests with the components of the

model working together. The test maneuvers were selected either

because the correct dynamic response was known or because the maneuver

was simple enough so that the general nature of the response could

be predicted.

The first portion of the model to be tested was the subroutine

FUNC. FUNC obtains the solution to the six equations of motion. It

was important to establish that tnese equations were properly

installed in the program. A test of subroutine FUNC necessitated a

simultaneous test of the MAIN program to read in the hydrodynamic

coefficients, set up the "A" matrix for FUNC, perform the Taylor

series expansions, and write out the results. The test for FUNC

was to reduce the GM of the vessel to zero and then to assume a

constant angle on the dive planes. If the. model was working cor-

rectly it should traverse a perfect circle in the vertical plane.

Page 54: Development of a six degree of freedom motion simulation ... · PDF fileSUPPLEMENTARYNOTES IS. ... modelcanbeusedasadesigntooltostudyandpredictsubmarine ... submarine
Page 55: Development of a six degree of freedom motion simulation ... · PDF fileSUPPLEMENTARYNOTES IS. ... modelcanbeusedasadesigntooltostudyandpredictsubmarine ... submarine

26

It was known that the rudder should not move and the model should

not roll or yaw. The model should assume a circular trajectory with

a constant angular velocity and a constant vertical component of

velocity, w. Figure 3 shows the results of the maneuver. A circular

trajectory was quickly achieved. The angular velocity was constant,

w was constant, and the position of the model in the fixed coordinate

system confirmed the circular path. The model did not roll or yaw

and the rudder did not move.

IV. 2 HORIZONTAL MOTION TEST

With the knowledge that the equations of motion, the Taylor

series expansions, and the coordinate system transforms are operating

properly, the subroutine RUDDER was the next component to test. It

was decided that a simple left turn of 40 degrees would be an

appropriate test. A left turn was chosen because that presents the

greatest opportunity for error. The original course would be 000

degrees true and the new course would be 320 degrees true. Since the

yaw angle is positive when turning right, the model must cope with a

negative yaw angle as well as a proper method for dealing with course

headings given in true bearing. The subroutines DEPTH and STERN were

rendered inoperative to give the opportunity of seeing RUDDER operate

without interference. The model would be checked to ensure that the

proper rudder rate was used and that the rudder angle did not exceed

the maximum angle ordered. The model would be expected to roll and

squat in the turn. A change in depth was expected since the dive

planes could not act. As the model approached the new heading the

Page 56: Development of a six degree of freedom motion simulation ... · PDF fileSUPPLEMENTARYNOTES IS. ... modelcanbeusedasadesigntooltostudyandpredictsubmarine ... submarine
Page 57: Development of a six degree of freedom motion simulation ... · PDF fileSUPPLEMENTARYNOTES IS. ... modelcanbeusedasadesigntooltostudyandpredictsubmarine ... submarine

27

-1000

direction ofNi travel

•1500>X,

Simulation Model Trajectory With ConstantDive Plane Angle

Figure 3

Page 58: Development of a six degree of freedom motion simulation ... · PDF fileSUPPLEMENTARYNOTES IS. ... modelcanbeusedasadesigntooltostudyandpredictsubmarine ... submarine
Page 59: Development of a six degree of freedom motion simulation ... · PDF fileSUPPLEMENTARYNOTES IS. ... modelcanbeusedasadesigntooltostudyandpredictsubmarine ... submarine

28

rudder should be put amidships and the vessel should steady out.

In Figure 4 the relationship between the rudder and the heading

is shown as a function of time. The model reacted as predicted

except possibly at the end of the turn. The rudder' was amidships and

the new heading was achieved but the program did not run long enough

to ensure that the model was steady on the course. The model did roll,

squat, and change depth as predicted. The test for RUDDER was

considered to be accurate and sufficiently complete to warrant moving

to the next test.

IV. 3 VERTICAL MOTION TEST

Since DEPTH and STERN operate together to regulate the depth

and pitch of the model, they were tested together. The test consisted

of a simple dive with a depth change of 700 feet. The course was not

changed so the rudder should not move. The model should not roll or

yaw. The dive planes should move in the proper direction and at the

ordered rate. They should not deflect more than the ordered angle.

The model should pitch downward and if the maximum ordered pitch

angle is exceeded then the dive planes should move to reduce the

pitch angle. As it approaches the desired depth, the model should

slow its rate of descent and settle within ten feet of the depth,

with -1 degree of pitch angle.

The trajectory for this test is shown in Figure 5. The model

achieved steady state only six feet beyond the desired depth; the

pitch angle was -.03 degrees. The dive planes were all at zero

deflection. The model stayed within ten feet of the ordered depth

Page 60: Development of a six degree of freedom motion simulation ... · PDF fileSUPPLEMENTARYNOTES IS. ... modelcanbeusedasadesigntooltostudyandpredictsubmarine ... submarine
Page 61: Development of a six degree of freedom motion simulation ... · PDF fileSUPPLEMENTARYNOTES IS. ... modelcanbeusedasadesigntooltostudyandpredictsubmarine ... submarine

29

O

CO

<D

CD._ L.

co cdQ_ <D

33oCO a o o

co

<c

o(D CD

*

CDC E< i—

\T"O M—

<D c o CD

E < i_c ZJ

_ c o CD

o -t-> Llu

u cif

»+—

<D

QL.

<DT3"CDcr

co CO

L. +-» • CDCD u cd"D CD L.T3 m— CDD CD (I)

cr Q "D

Page 62: Development of a six degree of freedom motion simulation ... · PDF fileSUPPLEMENTARYNOTES IS. ... modelcanbeusedasadesigntooltostudyandpredictsubmarine ... submarine
Page 63: Development of a six degree of freedom motion simulation ... · PDF fileSUPPLEMENTARYNOTES IS. ... modelcanbeusedasadesigntooltostudyandpredictsubmarine ... submarine

30

E

o o o o o o o Oo o o o o o OT

C\J

Depth

3

Change

^r lO

(D

H

CD IS

CD

>QQJ

Q.

ECO

<L.

oLl

E

Ocg-t->

uc

<CO

<

Q.

Q

lO

i_

Ll

Page 64: Development of a six degree of freedom motion simulation ... · PDF fileSUPPLEMENTARYNOTES IS. ... modelcanbeusedasadesigntooltostudyandpredictsubmarine ... submarine
Page 65: Development of a six degree of freedom motion simulation ... · PDF fileSUPPLEMENTARYNOTES IS. ... modelcanbeusedasadesigntooltostudyandpredictsubmarine ... submarine

31

and within one degree of zero pitch angle for twenty seconds. This

was done to ensure that a steady state had been achieved.

IV. 4 COMPLETE MODEL TEST

As a final test the entire simulation model must work together.

This test repeated the forty degree left hand turn but this time the

dive planes were allowed to react to try to maintain the depth. The

program was kept running until the pitch angle was within one degree

of being zero, the model was within one degree of the proper course

and the depth was within ten feet of the ordered depth. The model

was initialized on course 000 degrees true at an initial speed of

twenty knots.

The maneuver was successfully completed. The model remained

steady at 320 -1 degrees true and the final depth was within one

foot of the ordered depth. Both the pitch and roll angles were near

one degree and were decreasing in magnitude. All of the control

surfaces were at zero angle of deflection. It should be noted that

the new course had been achieved during the first sixty seconds and

that the course was maintained by the model while the proper depth

and attitude were being obtained.

IV. 5 USE AS A DESIGN TOOL

There are numerous design tasks that could be used to demonstrate

the simulation model; a simple example is sufficient for this demon-

stration. Suppose a designer wanted to know the dynamic effects of

increasing the rudder rate in a turn. The designer would elect to

Page 66: Development of a six degree of freedom motion simulation ... · PDF fileSUPPLEMENTARYNOTES IS. ... modelcanbeusedasadesigntooltostudyandpredictsubmarine ... submarine
Page 67: Development of a six degree of freedom motion simulation ... · PDF fileSUPPLEMENTARYNOTES IS. ... modelcanbeusedasadesigntooltostudyandpredictsubmarine ... submarine

32

use a simulation model. Since he would not want the dive planes to

interfere with the analysis, he would set NODIFF, DCRIT, and NOPICH

at large values so that the dive planes would not move. Then he

would set RRATE, the rudder rate, at the value he desired to test

and order the model to come to a new course. For this run, let's

assume that the designer performed the left hand turn from 000

degrees true to 320 degrees true. He used a rudder rate of two

degrees/second. He then caused the model to perform the same

manuever again with a new rudder rate of four degrees/second. With

the output from these two maneuvers he could easily find the time

required for the turn, the advance and transfer of the submarine,

and the roll and pitch angles as a function of time. The designer

could use the information for whatever analysis he had in mind. The

model could be run againat new rudder rates or the dive planes could

be brought into play or virtually any other maneuver could be

simulated. This model can also do snap roll analysis [4].

The cost of running the simulation model is so low that it can

be used on a daily basis if desired. For the test turns mentioned

above, the cost was less than five dollars, which included reading

the cards, compilation, execution, and 900 lines of output. A

designer who used the model regularly could have the model as an on

line dataset which would greatly reduce the cost of using the model.

IV. 6 CONCLUSIONS AND RECOMMENDATIONS

This simulation model does accurately simulate the six degree

of freedom motion of a submarine for moderate maneuvers. The cost of

Page 68: Development of a six degree of freedom motion simulation ... · PDF fileSUPPLEMENTARYNOTES IS. ... modelcanbeusedasadesigntooltostudyandpredictsubmarine ... submarine
Page 69: Development of a six degree of freedom motion simulation ... · PDF fileSUPPLEMENTARYNOTES IS. ... modelcanbeusedasadesigntooltostudyandpredictsubmarine ... submarine

33

operating the model is very low, which will allow frequent usage.

The model is designed to permit a great deal of flexibility in the

application of the model. For those designers who use the simulation

model, it should be a useful design tool.

If work were continued on this simulation model, it is recom-

mended that some time be spent in improving the appendage control

subroutines. Further application of control theory would be helpful

with the appendage subroutines. The data input could be organized

more efficiently to remove some of the opportunity for error. It

could be very useful to have a plotting routine in the model to

visually display the information.

Page 70: Development of a six degree of freedom motion simulation ... · PDF fileSUPPLEMENTARYNOTES IS. ... modelcanbeusedasadesigntooltostudyandpredictsubmarine ... submarine
Page 71: Development of a six degree of freedom motion simulation ... · PDF fileSUPPLEMENTARYNOTES IS. ... modelcanbeusedasadesigntooltostudyandpredictsubmarine ... submarine

34

REFERENCES

(1) Gertler, M. and Hagen, G. R. , "Standard Equations of Motion for

Submarine Simulation," NSRDC Report No. 2510, Washington, D.C.,

June 1967.

(2) Abkowitz, M.A., Stability and Motion Control of Ocean Vehicles ,

Cambridge, Ma.: The M.I.T. Press, May 1969.

(3) (FORTRAN IV) IBM System/370-360, IMSL Library 1, Edition 6,

1977, Xerox Sigma s/6-7-9-11-560.

(4) Liberatore, D.J., "An Investigation Of Snap Roll in Submarines"

M.I.T. Thesis, Cambridge, Ma., May 1977.

(5) , IBM System/360 and System/370 FORTRAN IV Language,

GC28-6515-10, May 1974.

(6) Comstock, John P., ed. Principles of Naval Architecture , New

York: The Society of Naval Architects and Marine Engineers,

1967.

Page 72: Development of a six degree of freedom motion simulation ... · PDF fileSUPPLEMENTARYNOTES IS. ... modelcanbeusedasadesigntooltostudyandpredictsubmarine ... submarine
Page 73: Development of a six degree of freedom motion simulation ... · PDF fileSUPPLEMENTARYNOTES IS. ... modelcanbeusedasadesigntooltostudyandpredictsubmarine ... submarine

A.l NOTATION

Symbol Dimensionlesa Form

35

APPENDIX A

Definition

B B' =B

5P-t2UTTTl

Buoyancy force, positive upward

CB

CG

Center or" buoyancy of submarine

Center of mass of submarine

I

xy

y 'kp*>

s

i =-£»2 its

Ixvxy jp^»

Moment of inertia of submarine about x axis

Moment of inertia of submarine about y axis

Moment of inertia of submarine about z axis

Product of inertia about xy axis

y*i =

lYz Product of inertia about yz axes

zx

K

K.

zx ^K' =

K

K*

Product of inertia about zx axes

Hydrodynamic moment component about xaxis (rolling moment)

Rolling moment when body angle [ry, 8) andcontrol surface angles are zero

K*V

K

K.

KPlPl

Kpq

T ?p-t3 u*

K

K.

P £p-t 4 U

KK

IpI

K

pipI $pe

l££_pq spt

6

Coefficient used in representing K$ as a

function of (77- 1)

First order coefficient used in representingK as a function of p

Coefficient used in representing K as a functionof p

Second order coefficient used in reprssentingK as a fvinction of p

Coefficient used in representing K as a functionof the product pq

Page 74: Development of a six degree of freedom motion simulation ... · PDF fileSUPPLEMENTARYNOTES IS. ... modelcanbeusedasadesigntooltostudyandpredictsubmarine ... submarine
Page 75: Development of a six degree of freedom motion simulation ... · PDF fileSUPPLEMENTARYNOTES IS. ... modelcanbeusedasadesigntooltostudyandpredictsubmarine ... submarine

36

K

K-

K

K.v

Kvq

K

K

K6r

m

M

M*

MPP

M

M.qn

M.q

KK,

K

qr £ p*5

K

K

£p4*U

Kf

ip^"

v £p43 U

, _ Kv|v!K

K

K

KWP £p-t*

K • - Kv/r

v| V1 h^

vqKVq

•^vw

vw 5P43

1Kwp

6r ~*p^u 2

V - i

m 1 * mip*

3

M' =M

*p*3 u2

M l

M*M*

*p*3 u 2

MPP

, .MPP

?P*6

M '

qa

Mq

'

£pt*U

Mqn *pZ«U

M.'q 5P*

6

Coefficient used in representing K as afunction of the product qr

First order coefficient used in representingK as a function of r

Coefficient used in representing K as afunction of f

First order coefficient used in representingK as a function of v

Coefficient used in representing K as afunction of v

Second order coefficient used in representingK as a function of v

Coefficient used in representing K as a functionof the product vq

Coefficient used in representing K as a functionof the product vw

Coefficient used in representing K as a functionof the product wp

Coefficient used in representing K as a functionof the product wr

First order coefficient used in representingK as a function of 6

Overall length of submarine

Mass of submarine, including water in free-flooding spaces

Hydrodynamic moment component about y axis(pitching moment)

Pitching moment when body angles (or, 8) andcontrol surface angles are zero

Second order coefficient used in representingM as a function of p. First order coefficient is

zero.

First order coefficient used in representingM as a function of q

First order coefficient used in representingM as a function of (tj-1)

Coefficient used i-n representing M as a

function of q

Page 76: Development of a six degree of freedom motion simulation ... · PDF fileSUPPLEMENTARYNOTES IS. ... modelcanbeusedasadesigntooltostudyandpredictsubmarine ... submarine
Page 77: Development of a six degree of freedom motion simulation ... · PDF fileSUPPLEMENTARYNOTES IS. ... modelcanbeusedasadesigntooltostudyandpredictsubmarine ... submarine

37

M

l

|q|6s

MrP

M

Mvp

M

q|q| q|q| sp-l

M ,.. MH 6s

|ql 6s fp^u

M ' = T-rp 5pi&

rr ^ois

MVDvp

$p44

MM,

vr kpt*

MvvM M ' = —rrvv vv 5P-C

Second order coefficient used in representingM as a function of q

Coefficient used in representing M, as afunction q

Coefficient used ir. representing M as a

function of the product rp

Second order coefficient used in representingM as a function of r. First order coefficient

Coefficient used in representing M as afunction of the product vp

Coefficient used in representing M as afunction of the product vr

Second order coefficient used in representingM as a function of v

M Mw £p.£,3 U

First order coefficient used in representingM as a function of w

M M .-Atw* jpr u

M. M. 1 -w w jp*.*

MlM

i iM

i i' =;—s-^

M |w |q

l

w |q tot*

First order coefficient used i'n representingMw as a function of (n-l) „

Coefficient used in representing M as a functionof w

First order coefficient used in representing Mas a function of w; equal to zero for symmetricalfunction

Coefficient used in representing M. as a functionof w

Mw| w| Mw i w '

H» |wI

iP-t3

Second order coefficient used in representingMas a function of w

w|w|rj w|w \r)= ,3 ' '

M M ' =-^WW WW fp-t

M 5bM.. M., ' -6b 5b jpi3 U 2

First order coefficient used in representingM . . as a function of (tj-1)w w

|

'

Second order coefficient used in representingM as a function of w; equal to zero for sym-metrical function

First order coefficient used in representingM as .1 function of 6.

M5 s

6s 6s 3pl3 U zFirst order coefficient used in representingM as a function of 6 =

6srj

M 6 srj

6stj " s$l~ U'First order Coefficient used in representing2vlj s <ta a function of (tj-1)

Page 78: Development of a six degree of freedom motion simulation ... · PDF fileSUPPLEMENTARYNOTES IS. ... modelcanbeusedasadesigntooltostudyandpredictsubmarine ... submarine
Page 79: Development of a six degree of freedom motion simulation ... · PDF fileSUPPLEMENTARYNOTES IS. ... modelcanbeusedasadesigntooltostudyandpredictsubmarine ... submarine

38

N

N-

N

N.P

Npq

Nqr

N

Nrr?

N.r

N

N,

N

r!6r

NVTJ

N.v

N

N' - Nipl* u-

N*'

N ' *PP |pt4 U

N.'P

=NP

Npq

, =NPS

ip-t5

Nqr

,.Nqr

N '-Nr

r £p<.*U

N.'r *P*S

"r|, . -N rlr|

V , _ N|r!6rI6r |p£*U

M l

NvV ~ £p*

3 u

NVTJ

, _Nvr,

£p43 U

N '

NvV ipi*

N . _ Nvqvq vq yi*

Hydrodynamic moment component about z

axis (yawing moment)

Yawing moment when body Angles (or, j3) andcontrol surface angles arc zero

First order coefficient used in representing Nas a function of p

Coefficient used in representing N as a functionof p

Coefficient used in representing N as a functionof the product pq

Coefficient used in representing N as a function

of the product qr

First order coefficient used in representing Nas a function of r

First order coefficient used in representingNr as a function of (rj-1)

Coefficient used in representing N as a functionof f

Second order coefficient used in representingN as a function of r

Coefficient used in representing N-. as afunction of r

First order coefficient used in representing Nas a function of v

First order coefficient used in representing Nvas a function of (n- 1)

Coefficient used in representing N as afunction of v

Coefficient used in representing N as a functionof the product vq

N|vlr

N.N|vl

tpl*Coefficient used in representing Nr as afunction of v

Nv ' v l £p-t

3 Second order coefficient used in representingN as a function of v

N|v|tj

N ,_ NvMtl

tefFir:»t order coefficient used in representingN

. - as a mnction of (rj-1)

Page 80: Development of a six degree of freedom motion simulation ... · PDF fileSUPPLEMENTARYNOTES IS. ... modelcanbeusedasadesigntooltostudyandpredictsubmarine ... submarine
Page 81: Development of a six degree of freedom motion simulation ... · PDF fileSUPPLEMENTARYNOTES IS. ... modelcanbeusedasadesigntooltostudyandpredictsubmarine ... submarine

39

N

N

N,

wp

Nwr

N6r

N6rrj

VW J.„»3

N„N ' = Twp ^ p4+

NN6rTT7I6r ipt3 U

p u

Coefficient used in representing N as a functionof the product v\v

Coefficient used in representing N as a function

of the product wp

Coefficient used in representing N as a functionof the product wr

First order coefficient used in representing Nas a function of 5 r

First order coefficient used in representingN, as a function of (tj-1)

Angular velocity component about y^axisrelative to flu : d (roll)

P'

q'u

q'

r'r*

" U

f"

Angular acceleration component about x axisrelative to fluid

Angular velocity component about y axis relativeto fluid (pitch)

Angular acceleration component about y axisrelative to fluid

Angular velocity component about z axisrelative to fluid (yaw)

Angular acceleration component about z axisrelative to fluid

Uu

Linear velocity of origin of body axes relativeto fluid

" U

<!•at

*c u

Component of U in direction of the x axis

Time rate of change of u in direction of the

x axis

Command speed: steady value of ahead speedcomponent u for a jjivr-n propeller rpm whenbody angles (a, 8) and control surface anglesare zero. Sign changes with propeller reversal

Component of U in direction of the y axis

fr,_ vl

U 2Time rate of change of v in direction of the

y axis

Page 82: Development of a six degree of freedom motion simulation ... · PDF fileSUPPLEMENTARYNOTES IS. ... modelcanbeusedasadesigntooltostudyandpredictsubmarine ... submarine
Page 83: Development of a six degree of freedom motion simulation ... · PDF fileSUPPLEMENTARYNOTES IS. ... modelcanbeusedasadesigntooltostudyandpredictsubmarine ... submarine

40

w'U

Component of U in direction of the z axis

• ^4w ' = —

-

Time rate of change of v. in direction of thez axis

W W =W

spW Weight, including water in free flooding spaces

CB>*5l

Longitudinal body axis; also the coordinate cf apoint relative to the origin of body axes

The x coordinate of CB

*G x^-^°- The x coordinate of CG

A coordinate of the displacement of CG relativeto the origin of a set of fixed axes

X' =

qq

rp

X.u

5P<.2U 2

X.-qqqq Ip-t

4

Xrrrp £p£*

X„rr £>£*

Xuwu "ipTT

Hydrodynamic force component along x axis(longitudinal, or axial, force)

Second order coefficient used in representingX as a function of q. First order coefficientis zero -

Coefficient used in representing X as a functionof the product rp

Second order coefficient used in representingX as a function of r. First order coefficient is

zero

Coefficient used in representing X as a functionof u

Second orr'er coefficient used in representingX as a function of u in the non-propelled case.First order coefficient is zero

X '

-vr -£

p<3Coefficient used in rcf-esenting X as a functionof the product vr

*pVSecond order coeffient used in representing Xas a function of v. First order coefficic.it is zero

vvrjx . _ AyvT

7 First order coefficient used in representing Xvvas a function of (77- 1)

Coefficient used in representing X as a function

of the product wq

Page 84: Development of a six degree of freedom motion simulation ... · PDF fileSUPPLEMENTARYNOTES IS. ... modelcanbeusedasadesigntooltostudyandpredictsubmarine ... submarine
Page 85: Development of a six degree of freedom motion simulation ... · PDF fileSUPPLEMENTARYNOTES IS. ... modelcanbeusedasadesigntooltostudyandpredictsubmarine ... submarine

41

Xww

WW17

'6b5b

'5r6r

k

6r6rrj

k

6s6s

'6s6s7j

X ' =WW y^

XWW?)

^wwr;

?P^

3C '

6b6b

x6b6b"

5 Pi2" 2

x . _A6rSr

6r6r '£p.£,

2U 2

"

Van?'6r6r^ " fplTu 2

, _ X6s6s17727726s6s sp-tAU

x , _ x6s6s77

6s6st] ip-t 2U 2

Second order coefficient used in representingX as a function of w. 'First order coefficient is

zero

First order coefficient used in representing Xwas a function of (77- 1)

Second ord^r coefficient used in representing Xas a function of 6^,. First order coefficientis zero

Second order coefficient used in representingX as a function of 6 r . First order coefficient iszero

First order coefficient used in representingX. . as a it. nction of {n- 1)6r6r '

Second order coefficient used in representing Xas a j

zeroas a function of 6S . First order coefficient is

First order coefficient used in representingX. . as a function of (77- 1)6s6s '

^B

^G

Y.P

Pip'

y- =

ys_ ^B

reYG

Yo_ Yo

y» ;

Y

*P*2U Z

Y-4-'Y

£p<,2U 2

Y '

P

YP

£pi3 U

Y.'P

_YP

he***

Y .

, _ypIp!

PIP 1 £pV

Lateral body axis; also the coordinate of apoint relative to the origin of body axes

The y coordinate of CB

The y coordinate of CG

A coordinate of th3 displacement of CG relative

to the origin of a set of fixed axes

Hydrodynamic force component along y axis(lateral force}

Lateral force when body angles (a, fi) and controlsurface angles are zero

First order coefficient used in representingY as a function of p

Coefficient used in representing Y as a function

of p

Second order coefficient used in representingY as a function of p

Page 86: Development of a six degree of freedom motion simulation ... · PDF fileSUPPLEMENTARYNOTES IS. ... modelcanbeusedasadesigntooltostudyandpredictsubmarine ... submarine
Page 87: Development of a six degree of freedom motion simulation ... · PDF fileSUPPLEMENTARYNOTES IS. ... modelcanbeusedasadesigntooltostudyandpredictsubmarine ... submarine

42

pqY • = 23-pq fpt*

Coefficient used in representing Y <is a functionof the product pq

qr q* ipZ*

rip4

Tu

Coefficient used in representing Y as a functionof the product qr

First order coefficient used in representing Y -

as a function of r

«)Y ' - YrT

>

rT7 " fpFUFirst order coefficient used in representingY as a function of (77- 1)

Yf

rl6r

Y.< =—

i

Ylr|6r "ipTTTT

Coefficient used in representing Y as a functionof f

Coefficient used in representing Y. as afunction of r

First order coefficient used in representingY as a function of v

VT?

Yv

l

vTT

Y-Y.' = -* ip*

a

First order coefficient used in representingYy as a function of (tj- 1)

Coefficient used in representing Y as afunction of v -"

vq

'•rl

V|V|TJ

wp

wr

' • - vq

vq " ?p-63

, ,_ Yvlr!vir| -j&r

. -Yvlvl

vivi -j^r

,

Y vlv|T7rv 1 v 1 tj

" TpT1

Y

«" ipt*

YY ' - pWP ~ ?pt3

YY ' - r

»r jpt3

Coefficient used in representing Y as a functionof the product vq

Coefficient used in representing Yv as ;i functionof r

Second order coefficient used in representingY as a function of v

First order coefficient used in representingYv | v i as a function of (77- 1

)

Coefficient used in representing Y as afunction of the product vw

Coefficient used in representing Y as a

function of the product wp

Coefficient used in representing Y as afunction of the product wr

6rY, ' =

6r

&* jpi'lHFirst order coefficient used in representingY as a function of 6r

6rrj

_6rij_

6r7J ^U* First order coefficient used in representing

Y t as a function of (T7-1)or

Page 88: Development of a six degree of freedom motion simulation ... · PDF fileSUPPLEMENTARYNOTES IS. ... modelcanbeusedasadesigntooltostudyandpredictsubmarine ... submarine
Page 89: Development of a six degree of freedom motion simulation ... · PDF fileSUPPLEMENTARYNOTES IS. ... modelcanbeusedasadesigntooltostudyandpredictsubmarine ... submarine

43

Normal body axis; also the coordinate of a

point 'relative to the origin of body axes

2G 6G 4

The z coordinate of CB

The z coordinate of CG

A coordinate of the displacement of CGrelative to the origin of a set of fixed axes

7.

PP

Z' =

z*

*P*2U 2

z.JH2.

PP tpt*

z„Z ' =1 £p<,

a U

Hydrodyn.imic force component along z

axis (normal force)

Normal force when body angles (a, /3) andcontrol surface angles are zero

Second order coefficient used in representingZ as a function of p. First order coefficient

is zero

First or.ler coefficient used in representingZ as a functicn of q

<tn

z.q

|q!6s

rp

rr

Z ' =-32_q*j £p-c

3.u

z^

q " jp^4

!q| 6 s ip<.3 U

1

rp *P<-4

t

Z rrrr ±pi<

First order coefficient used in representing

Z_ as a function of (tj-1)

Coefficient used in representing Z as a

function of q

Coefficient used in representing Z as a, 6s

function of q

Coefficient used in representing Z as afunction of the product rp

Second order coefficient used in representing

Z as a function of r. First order coefficientis zero

i _ v?

^7ip**UFirst ord'2r coefficient used in representingZ as a function of w

wT7z • = T-^n First order coefficient used in representing

Zw as a function of (77- 1)

Z .w Z •' =T-

7

w3- Coefficient used in representing Z as a

function of w

|wl

IpFuFirst order coefficient used in representingZ as a function of w; equal to zero for sym-metrical function

w|q|'w !hI '

ip*LaJ Coefficient uiicd in representing Z as a

function of q

Page 90: Development of a six degree of freedom motion simulation ... · PDF fileSUPPLEMENTARYNOTES IS. ... modelcanbeusedasadesigntooltostudyandpredictsubmarine ... submarine
Page 91: Development of a six degree of freedom motion simulation ... · PDF fileSUPPLEMENTARYNOTES IS. ... modelcanbeusedasadesigntooltostudyandpredictsubmarine ... submarine

44

w I w|Z

i i

Z • •' = -»—j-2 Second order coefficient used in representingW|W| W|W| § p<, _ function of u,

z.Z „•_ Z . I ' = —;

•—;—-t- First order coefficient used in representingWW 77 WW 77 *fli* 1 t r I ,\

b11'

' sP^ Z , ,as a function of (tj-1)w

jw

I

' '

WwZ ,

Z ' = -^——r- Second order coefficient used in representingWW WV/ i O/,- H Z as a function of w; equal to zero for sym-

metrical function

Z 6b

5P^ U as a function of 6^

Z.. Z., ' = ;—T- First order coefficient used in representing Z6b 6b io/Zn*

ZfiaZ Z, ' = - First order coefficient used in representing6s 5s

$p-t2U2 Z as a function of 6

3

Z. Z, ' = ^?—

,

First order coefficient used in representing6sr» ^TJ iP^U 2

Z6a

as a function of (7,-1)

a Angle of attack

P Angle of drift

6. Deflection of bowplane or sailplane

6 Deflection of rudderr

6 Deflection of sternplane

uc7j The ratio —

9 Angle of pitch

# Angle of yaw

Angle of roll

a., b., c. Sets of constants used in the representation ofiiipropeller thrust in the axial equation

Page 92: Development of a six degree of freedom motion simulation ... · PDF fileSUPPLEMENTARYNOTES IS. ... modelcanbeusedasadesigntooltostudyandpredictsubmarine ... submarine
Page 93: Development of a six degree of freedom motion simulation ... · PDF fileSUPPLEMENTARYNOTES IS. ... modelcanbeusedasadesigntooltostudyandpredictsubmarine ... submarine

A. 2 EQUATIONS OF MOTION

AXIAL FORCE

m [u - vr + wq - xG (q3 + r 2 ) + yG (pq - r) + Zq (pr +

q)J=

+ — X4|"x ' q

3 + X ' r2 + X • rp 1

7 L qq n rr rp r J

+ JL x3|"x.« i

2 L u+ X ' vr+X ' wq

vr wq J

?- i2 Tx ' u2 + X '"v

2 + X ' w2l

7 L UU VV WW J

+ — i2 u 2

[~X. ' ' 6r2 +X. . ' '6s2 +X.. * 6b2 ]2 L 6r 6r 6s 6s 6b 6b J

+ I p l? I a. u2 + b. uu + c. u 2I2 K Li icicJ

- (W - B) sin 9

45

|^ <•* [x „' v3

+ X J w2+ X. . _« 6 2 u3

VV7? ww?7 6r6r77 r

+ X, . „ 62 u2

Os6s77 s(T?-l)

Page 94: Development of a six degree of freedom motion simulation ... · PDF fileSUPPLEMENTARYNOTES IS. ... modelcanbeusedasadesigntooltostudyandpredictsubmarine ... submarine
Page 95: Development of a six degree of freedom motion simulation ... · PDF fileSUPPLEMENTARYNOTES IS. ... modelcanbeusedasadesigntooltostudyandpredictsubmarine ... submarine

46

LATERAL FORCE

i[_v - wp + ur - yG (ra

+ p2

) + zQ (qr - p) + xG (qp + r)j=

+-2- i4 [y- 1 r+Y.'p+Y ,'PlPl+Y ' pq + Y qr]

2 Lr pr

PlPl pq qr H J

+~ i3

T Y-' v + Y vq + Y ' wp + Y wr2 L v . vq ^ wp r wr J

+f i3[Y

r'Ur+ V UP + Y

|r|6r,a

lr

l6r+Tv|rr,T,I<va+w">*ll r l]

+t /2 Lv *a + v uv + Y

v|vi'v |(v2 +w3 )'J]

+4- *>

2Ty ' vw + Y, ' u3 6rl

2 L vw 6r J

+ (W - B) cos 9 sin<fr

+f *3-Y

rT?'ur(i/-l)

+T ** [YvV

uv + Yv]v|V

Vl <V* + w2 ^l + Y

6r7?« *, a

3

] (7,-1)

Page 96: Development of a six degree of freedom motion simulation ... · PDF fileSUPPLEMENTARYNOTES IS. ... modelcanbeusedasadesigntooltostudyandpredictsubmarine ... submarine
Page 97: Development of a six degree of freedom motion simulation ... · PDF fileSUPPLEMENTARYNOTES IS. ... modelcanbeusedasadesigntooltostudyandpredictsubmarine ... submarine

47

NORMAL FORCE

m[w - uq + vp - zQ (p2

+ q2

) + xQ(rp - q) + YG (^ + P> j =

+JL X3 [z^' w + Z

yr' vr + Z

vp' vp]

+ i. x» [Z • uq + Z a| q |6s + Zw 'w

|

(v» + w»,i| lq |]

+1 4-[z;'««-+zw'«w + zw1w1'w|(t» +w»)*l]

+f i"[Z |w|,a

lw

l+

-iww' Iw<v"+w">4 l].

*fIs [z— v* + Z

6g' u2 6s + Z

6b' a

a -8b]<

+ (W - B) cos 9 cos<J>

+f t3V uq<T," I)

Page 98: Development of a six degree of freedom motion simulation ... · PDF fileSUPPLEMENTARYNOTES IS. ... modelcanbeusedasadesigntooltostudyandpredictsubmarine ... submarine
Page 99: Development of a six degree of freedom motion simulation ... · PDF fileSUPPLEMENTARYNOTES IS. ... modelcanbeusedasadesigntooltostudyandpredictsubmarine ... submarine

48

ROLLING MOMENT

I p+ (I - I ) qr - (r + pq) I + (r2

- q2

) I + (pr - q) Ix f v z y n r^ xz n yz xy

+ m I y-. (w - uq + vp ) - z_ (v - wp + ur) I=

+-£- X5

i K- » p + K- ' r + K ' qr + K ' pq + K *p|p|l2 L P ^ r qr n

Pq P4p [p |

P 1P' J

+ ^ i4|~K ' up + K ' ur + K-' vl

2 L p r r v J

+-5- 4* j~K ' vq + K ' wp + K » wr2

L vq ^ wp.

r wr J

.+-£ X

3'[v u2 +K

v» uv+K

y|v |« v|(v»-+w»)*|]

+JL i3 [k 'vw + K £

' u2 6p]2 L vw 6r J

+ (y>, W - y_ B) cos cos 4> - (z^W - z_B) cos 8 sin«t>

Ci Jo \j Jd J

+f^ K*V

ufl CM)

Page 100: Development of a six degree of freedom motion simulation ... · PDF fileSUPPLEMENTARYNOTES IS. ... modelcanbeusedasadesigntooltostudyandpredictsubmarine ... submarine
Page 101: Development of a six degree of freedom motion simulation ... · PDF fileSUPPLEMENTARYNOTES IS. ... modelcanbeusedasadesigntooltostudyandpredictsubmarine ... submarine

49

PITCHING MOMENT

I q + (I - I ) rp - (p + qr) I + (p2

- r2

) I + (qp - r) Iy -i x z'Mr \r n / Xy \f ' zx nt^

yz

r »

~|

+ m I zG (u - vr + wq) - x_ (w - uq + vp) j=

+-f iS |M- ' q + M ' p

2+ M ' r

2+ M 'rp+M i I'qlq

2 L. q nPP rr rp qjq| HI4I

P 4 r 1+-=- i jM-'w + M 'vr+M 'vp

2 L w vr vp r J

+-f 24 [M

q'uq + M

lql6s'u|q|6s + M

|w|q'|(v 2 + w2

)-|q]

+4 i3 [^' a2 +Mw ' uw + Mw

|w |' w f(v

2 +w2)^|]

i,"l

+ .L x3 Fm| i

1 u|w| + M ' |w (v2

+ w 2)

2|

I

2 L |w| ' ' ww ' -I

+ .£. X3 [m ' v

2 + M ' u2

6s + M ' a2

-6b|

/ 2 L vv 6s 6b J

- (x W - x B) cos 9 cos 4> - (zG W - zfi

B) sin 8

+ £ l*M ' uq (T]-l)

2 H7?

+ -£-^3 rM 'uw + M|

|

« w|(v2 +w2)

2|

+M -6 u2 l(rj-l)

2 L wT) w|w|7] s7/

s J

Page 102: Development of a six degree of freedom motion simulation ... · PDF fileSUPPLEMENTARYNOTES IS. ... modelcanbeusedasadesigntooltostudyandpredictsubmarine ... submarine
Page 103: Development of a six degree of freedom motion simulation ... · PDF fileSUPPLEMENTARYNOTES IS. ... modelcanbeusedasadesigntooltostudyandpredictsubmarine ... submarine

50

YAWING MOMENT

I r + (I - I ) pq - (q + rp) I + (q2

- p2

) I + (rq - p) Iz y x rn VM Vl yz *

n r xy tr ' zx

r "1

+ m ! x- (v - wp + ur) - y_ (u - vr + wq ) J,=

+— Is|N- ' r + N- ' p + N ' pq + N ' qr + N i I'rlrll

2 U r pK pq ^M qr H

r|r |

' U

+ _£_ x4

|N- ' v + N wr + N ' wp + N * vq I

2 L v wr wp r vq ^ J

+f i4[NP

' UP +Nr'

Ur +N|r|6r'

Qlr

l6r + N

|v|r' ^ + w2 >*l r]

I"

*

• - T+^L £

3I N^' u 2 + N ' uv + Nil 1 v |(v

2 + w2)

2|

J

+ -|-i3

|

r

N ' vw + N. ' u3 6rl2 L y.w Or J

+ (x-. W - xB B) cos'9 sin <J> + (yG W -yBB) sin 8*

2 r7 /

+4 ^N J uv + Ni ,j v|(v2 + w2

)

1I + N. ' 6 u2 ](T7-l)

2 Lvt? v|v|77 lv '' 6r7? r _T '

Page 104: Development of a six degree of freedom motion simulation ... · PDF fileSUPPLEMENTARYNOTES IS. ... modelcanbeusedasadesigntooltostudyandpredictsubmarine ... submarine
Page 105: Development of a six degree of freedom motion simulation ... · PDF fileSUPPLEMENTARYNOTES IS. ... modelcanbeusedasadesigntooltostudyandpredictsubmarine ... submarine

51

A. 3 AXIS TRANSFORMATIONS [2]

1) A transformation of an axes system takes a quantity described

in one frame of reference and transforms it into another frame of

reference such that if we measured the same quantity in the second

frame of reference the transformed quantity and the measured quantity

would be identical

.

2) Transforms between frames are needed in the study of the motions

of ocean vehicles because the equations of motion for such a vehicle

are most easily derived in the inertial frame attached to the earth

(x , y , z ) frame, while the forces acting on the vehicle are most

easily evaluated in the frame attached to the vehicle (x, y, z).

Hence, we ultimately desire to transform the equations of motion

from the inertial frame into the non- inertial frame fixed in the

vehicle.

> >3) If V is some vector measure in the x , y , z frame and V

some vector measured in the x, y, z frame which is only changed

in orientation then:

V = T ( ^ , $ , 4> ) V where T ( <A , 8 , <f> ) = the transform.

Where

T (*, 9,f) =

COS0 cos<A

-sin^ cos<j5> + sin<£ sin<9 cos<A

sin<£ sin^ + cos<t> cos<A sin#

cosfl sin<A

cos<£ cds^ + sin^ sin# sin^

sin<?!> cos«A + cos^ sin# sin^

-sin#

sin<£ cos#

COS0 COS0

Page 106: Development of a six degree of freedom motion simulation ... · PDF fileSUPPLEMENTARYNOTES IS. ... modelcanbeusedasadesigntooltostudyandpredictsubmarine ... submarine
Page 107: Development of a six degree of freedom motion simulation ... · PDF fileSUPPLEMENTARYNOTES IS. ... modelcanbeusedasadesigntooltostudyandpredictsubmarine ... submarine

52

4) If V and V are the same vectors as in (3) above, then

Where

VQ

= T"1

( *, $,*) V

T"1

( + B 0,*) =

cose cos^

cose sin«A

sine

-sin«A cos</> + sin<£ sine cos<A

cos^ cos<A + sin<£ sine sin<A

sin</> cose

sin</> sin^ + cos<£ cos«A sine

•sin<£ cos^ + cos</> sine sin*

cos<£ cose

Page 108: Development of a six degree of freedom motion simulation ... · PDF fileSUPPLEMENTARYNOTES IS. ... modelcanbeusedasadesigntooltostudyandpredictsubmarine ... submarine
Page 109: Development of a six degree of freedom motion simulation ... · PDF fileSUPPLEMENTARYNOTES IS. ... modelcanbeusedasadesigntooltostudyandpredictsubmarine ... submarine

B.l LIST OF VARIABLES

53

APPENDIX B

VARIABLE MEANING

Six by six matrix containing coefficients

of UDT, VDT, WDT, PDT, QDT, RDT.

AA Six by six matrix set equal to matrix A

before each call to FUNC. The values of

AA are lost in the matrix reduction performed

by LEQT1F.

A1,A2 Limits used for selecting the proper

propeller thrust.

AI.BI.CI Set of constants representing the propeller

thrust in the X-equation.

B

BORATE

BOWMAX

COURSE

DECRIT

Ship's buoyancy.

Average bowplane rate.

Maximum ordered bowplane deflection.

New course for the ship.

Value of depth error when dive planes are

returned to zero deflection.

DELI

DEL3

Calculated deflection of the bowplane.

Calculated deflection of the stern plane.

Page 110: Development of a six degree of freedom motion simulation ... · PDF fileSUPPLEMENTARYNOTES IS. ... modelcanbeusedasadesigntooltostudyandpredictsubmarine ... submarine
Page 111: Development of a six degree of freedom motion simulation ... · PDF fileSUPPLEMENTARYNOTES IS. ... modelcanbeusedasadesigntooltostudyandpredictsubmarine ... submarine

54

DEL4

DELB

DELBO

DELGM

DELR

DELRO

DELS

DELSO

DELT

DIFF

ICNT

Calculated deflection of the rudder.

Actual bowplane deflection at time t.

Actual bowplane deflection (units changed

for output).

Amount the original GM is to be changed.

Actual rudder deflection at time t.

Actual rudder deflection (units changed

for output).

Actual stem plane deflection at time t.

Actual stern plane deflection (units

changed for output).

Time increment used in iteration.

Difference between present depth and

ordered depth.

Six by one matrix containing solution to

right hand side of equations of motion.

Counter used to count the number of

iterations

ID

INDEX

Forty- character alphanumeric heading.

If greater than zero, read new submarine

coefficients. If less than or equal to

zero, run same submarine for new initial

Page 112: Development of a six degree of freedom motion simulation ... · PDF fileSUPPLEMENTARYNOTES IS. ... modelcanbeusedasadesigntooltostudyandpredictsubmarine ... submarine
Page 113: Development of a six degree of freedom motion simulation ... · PDF fileSUPPLEMENTARYNOTES IS. ... modelcanbeusedasadesigntooltostudyandpredictsubmarine ... submarine

55

conditions.

IX,IY,IZ,IXY,IXZ,IYZ Moments of inertia.

KCOEFF

L

LEQT1F

M

MAXANG

MCOEFF

NCOEFF

NODIFF

NOPICH

ODEPTH

ONCRS

K - equation coefficients'.

Ship's overall length.

Matrix reduction subroutine from IMSLIB [3]

Ship's mass.

Maximum ordered dive/ascent angle.

M - equation coefficients.

N - equation coefficients.

Acceptable error range around ordered depth

Acceptable error range around zero pitch

angle.

Ordered depth.

Acceptable error range around ordered

course.

P.Q.R

PDT,QDT,RDT

Angular velocity about the x, y, and z

axes respectively.

Angular acceleration about the x, y, and z

axes respectively.

PDT0,QDT0,RDT0 Angular acceleration about the x, y, and z

Page 114: Development of a six degree of freedom motion simulation ... · PDF fileSUPPLEMENTARYNOTES IS. ... modelcanbeusedasadesigntooltostudyandpredictsubmarine ... submarine
Page 115: Development of a six degree of freedom motion simulation ... · PDF fileSUPPLEMENTARYNOTES IS. ... modelcanbeusedasadesigntooltostudyandpredictsubmarine ... submarine

PHI

PHIO

PO,QO,RO

PSI

PSIO

RHO

RRATE

RUDAMT

STERAT

STERHX

STOW

T

Tl . . . T18

THETA

56

axes, respectively (with units changed for

output).

Angle of roll

.

Angle of roll (with units changed for

output).

Angular velocity about the x, y, and z

axes respectively (with units changed for

output).

Angle of yaw.

Angle of yaw (with units changed for

output).

Sea water density.

Average rudder rate.

Maximum ordered rudder deflection.

Average stern plane rate.

Maximum ordered stern plane deflection.

Storage array for half of output data.

Present time.

Time lag signals.

Angle of pitch.

Page 116: Development of a six degree of freedom motion simulation ... · PDF fileSUPPLEMENTARYNOTES IS. ... modelcanbeusedasadesigntooltostudyandpredictsubmarine ... submarine
Page 117: Development of a six degree of freedom motion simulation ... · PDF fileSUPPLEMENTARYNOTES IS. ... modelcanbeusedasadesigntooltostudyandpredictsubmarine ... submarine

THETAO

57

Angle of pitch (with units changed for

output).

TLAGB

TLAGR

TLAGS

U,V,W

Time lag for bowplane control system.

Time lag for the rudder control system.

Time lag for stern plane control system.

Forward, lateral, and vertical velocities

respectively.

UDT,VDT,WDT Forward, lateral, and vertical accelerations

respectively (with units changed for output)

UO

U00,V0,W0

Initial forward velocity.

Forward, lateral, and vertical velocities

respectively (with units changed for output)

WT

X,Y,Z

XB,YB,ZB

Ship's weight.

Coordinate labels of the fixed (x , y ,

z ) coordinate system.

The x, y, z position of the center of

buoyancy.

XCOEFF

XDT,YDT,ZDT

X - equation coefficients

Velocities in the fixed coordinate system

along the x , y , z axes respectively.

XG,YG,ZG The x, y, z position of the center of

Page 118: Development of a six degree of freedom motion simulation ... · PDF fileSUPPLEMENTARYNOTES IS. ... modelcanbeusedasadesigntooltostudyandpredictsubmarine ... submarine
Page 119: Development of a six degree of freedom motion simulation ... · PDF fileSUPPLEMENTARYNOTES IS. ... modelcanbeusedasadesigntooltostudyandpredictsubmarine ... submarine

58

gravity.

YCOEFF Y - equation coefficients

ZCOEFF Z - equation coefficients

Page 120: Development of a six degree of freedom motion simulation ... · PDF fileSUPPLEMENTARYNOTES IS. ... modelcanbeusedasadesigntooltostudyandpredictsubmarine ... submarine
Page 121: Development of a six degree of freedom motion simulation ... · PDF fileSUPPLEMENTARYNOTES IS. ... modelcanbeusedasadesigntooltostudyandpredictsubmarine ... submarine

59

B.2 COMPUTER PROGRAM LISTING

LU Q_• 1—O Oo

ac LU LU LU Z3 a.<C UJ O 1— X O 2: «

• LU »— o 00 C-> C_J «h-WZm z 0k fl 0k u_ aLUMtt A t— 1— h- u_ crO _J 3 *^*s 01 ^" LU «

-J en X 5 O t—< LU O CM LU ^c O a> y- z ^-» 1— 2; => ^ oc«=c < Lu 00 3 C£ A A

_i _i u_ fk O n u_ rviOtf) LU 00 CO LU u_ >-HULI o O 01 H- LU t—1 i—— _J i—

i

o <C LU < O M—1 < (— 2: -J I— Ol O >- C£z <_> •—

A h- 3 cn NX Oi—i o ^"^* 0k m •» M Qo r*»«—

»

O O a: U_ X Me>0 • _l 1— r— CO u_ rvj z

UJ LU ^^ * »— m <c LU X QCUG1N> u_ M CQ —i O »—• Jw2: —

Lu>

cn O i— O «• LU Q.O -J * LU <C H- < «k >- >- a «•-(<(/) O LU 0k _J CO w 1—1 •>zI— z z O OS co 1— Lu •» 0C *NN O O HS h- «k p U- X -CDQ •—t i—

i

t ^O f» LU 1—1 —1 ZZ(^h —*3 l>» 1— r*. O »< 00 «a:oz<(_) LU CX

CM « I— »— r— O M LU a. XCM^-*0 •> #* H- XMflJ •>< <«~^

2 LU >—»0O 1— <* LO 0k • «<H2•—1 O i2 _J •

VO—I —• _J Lu*— i»£ h- ^— CM< CJ LU Lu t—1 • •> h- UN31jJ< **—• 1 o lu cn OO 0% P on* Q f—

.

00 ^~H- Z O *^ H- «* 01 M CJ < #» LU h- nMO< r>j 0^^ « A r"- f"» CQXDQI Z t—

z z i r»si co 00 CO H- P" • « •_! H- LU •«

1-4 •» _i »—;*: __: 0k 1— 1-1 O CM LU <C 1—

1

^—*»^—*^^-^k^-^^—^^-^^

aQ OO ^^1—1 • m CO a < x <c a • <_> m CM CM r<» CO CMoB h- 00 c\j c > r»» rvi r*» — ^O m a #* x f— l-H ^-'CM CM 1— CM CM

LU Z * CM •!*£ >- <—» -_c 1— (— MCflr-(/)Q LU LU n m * ** **

<NUJ —l v_^«"^ •> 1—1 -— A A 0k Z «< _J M LU LU f r— 1— r— 1—H~ •—• HI s LU OO O * r— *Q CM LO a. 1— «lu * LU X LU II II II II It< —X O u-^^iKi rvi •t :_- 1— 1— •2Q3QU. O LU O ,_H HH N«i M 1-4O < H-l as: LU t—1 •»x « 0k O «>tVl »LU O a

1—1 u_ O <C LO —* O LO — O o •> cy*—

z X *-•^*^^»^^*»*^-^^—*»QhU. "^ m O -«- 1— ,— •ICQ »Q -J h-

«C •—• LU X >--—» >- —

»

A 0k ^ 3Qi>.<< < -_^^_^^_.-^_^^_^LU Z O i • 10 «* x : *3- 2 •1 • n a t— m ^^ce •-. <_> < ^-»^_*:*£ >—

1

O i*- CT> >Q.COLJU. E5 cn CT» LU LU LU LU LUO LU • * t— m •> ^ • •> X Z LU M cr» cn LU UJ LU LU LUi co r— "CONV1 co r— Z3 2: »»— •-. 00 cr>cocr>oooooi * ^-»i^ •—

t

0k __: ^ *»^^ «U_ Q z 11*

II OOOOOO >- M i^ S Zi —j Lu O * pi .—•* LU -s»_i a ->s. LU a CM<u. »cm >- O "^ »«^ LU Qi •3U"«n 2: z *y LU LU '-O -- •—

1

0k LU OS 3U. •>> X 1—

<

LU CM LU«2 cc c n WD 25 3 z O 1-u H— •—1 1—

t

O •t •> «—^^™*^-«»^—^^-^cc O < r- X -~-- <* c h- H- U_ LU O LU OO 1 vo •OOOOOOO J— > >—» <C »^, •*^ ^»^ -^O > "^-^ 2g r— X r^ r— f— r- r— r—o —

4

01 O • O O n LUOS O CO ^—> CO CO CO 1—

«

Z Z z Z Z. i— Z Z Z II '^> O LO 'Si LO LO LO LOCL KH * CM -X * * O O O «Q O O X <%^Z >^S^>^<^S^S>

-J —J CM -J -J _l _J 21 S 2: SU.3ZZ O LU O —

1

a a a aZ Ou <C—'<LU

<c «=c 2: x 2: SI LU 2: u_ -s: 2: < a < <<<<<<l-H LU LU LU UUOZ O^Oi/lOUh 00 LU Z LU LU LU LU LU LU LU 1 1 1

rf i-^ oc u_ a: o_ a ex O Q_ oooaiooaoo Ci >—

1

OC 1—

1

OS Q£ OS Q£ OC OC2 "" <— ^^jmm CO

00000 000

Page 122: Development of a six degree of freedom motion simulation ... · PDF fileSUPPLEMENTARYNOTES IS. ... modelcanbeusedasadesigntooltostudyandpredictsubmarine ... submarine
Page 123: Development of a six degree of freedom motion simulation ... · PDF fileSUPPLEMENTARYNOTES IS. ... modelcanbeusedasadesigntooltostudyandpredictsubmarine ... submarine

60

* a.• 00 „o LU oa

h- -JLU C3 X* . i o. ,

X UJ1- *> Q H-C3 OO a -JX UJ UJ M UJUJ O UJ UJ X_J 2 a.

0000as h-

41

m OS .*—

*

X 1—4 s:CO =3 M a: <OO 00 X *r r«4 c_><: h- « •ft X X2: -JQ a.

UJ 11

s anOO •yr

ann

1 OS t—

<

_J UL C£ O UJ1 1— A 1— h- UJ O HH h-1 X 1

*-''% 00 a 00 2T ^- gO 1 1-^ 3 OS * OS O <c00 O 1 •M* •> » Qg UJ 1 y as

**"^^^"H*^"^ O 1— 1— •—• 1 1— X c5 •*

CO CO CO t-H a. CO 1—4 O O 00 Ul LU O Ul0t m m H- rsj •-* 00 X —

^

> era. 35" 1-4 u. 00!"• ^~ F— 00 >- x ^ ****»#» <5 a. X OSII II It i—

1

1—

1

00 •» 1—

«

i_ i_ h-i cq r^ 1—

1

X<-* •-* »-* OS O co rvl •» r>» H- a x —1 < X

* * * UJ PNl IVl O 1-^ M OS i<S 1—

1

*"•» => a. a. uj Q- 4k LU»"-^.<-«»^-^ 1— •« •» rc X O «*O X CTi a 41 * £^ u. O 0kM >—1 t—• CM O C3 co OS > 1—4 LU CM ^o r— ~^

cr» 3 X < « >- u. X an—'—»^^ <c <! >- >- fi 1—

1

* CO ^ ^ ^ O CT» • *t— 0O h- •—4 <cM —1 l—M 4» OS n * _i n >• «* 00 • #t A O 11 > o-uj _J t—4 Q X <c<CQUi- < co ** X > t— r» to a* x m • a; lu > O _l^_»-^-»>~_' ^ X X > 1—

4

<

3 2S ^ >. _l X O Q_ h- Q >—

t

X (—

a. 00 co~

co

UJ1

«5T LO LO CVJ CO

1—1—4

OO r^

LUOOanO O O CO CM CM CM CM C\J CO COX r-^

#* •% «t «t x « A c* 2; #1 M A 4* •» LU p «%

lo lo lo lo 00 LO LO LO LO Lf> tO Lf> LO LO »-H LO r— LO LO LO LO OO LO LO^ .""-! -"—1.1..-*-- — ,_r*•t^— ,_r" *-.,- *~_** *-*--* Sh* |t

-1,-*-! I-"" 1.-* ,- «-|_^* *-..r*x x x x a X a a O a O O 1— X X X X O a a X< < < «c < <<<<:<<c < <C < 3 < < Z < < < < < <c < <

UJ UIUIU LU UJ LU LU LU LU UJ UJ UJ UJ UJ LU O LU UJ UJ UJ LU UJ UJ UJan as as as C£. a: Q£ OS OS as X as a: OS OS an OS MQlOCQiQ: ac ce: ac as

CM

OOO (~> <^ <-i OOO O O C_> c_> c_> o

Page 124: Development of a six degree of freedom motion simulation ... · PDF fileSUPPLEMENTARYNOTES IS. ... modelcanbeusedasadesigntooltostudyandpredictsubmarine ... submarine
Page 125: Development of a six degree of freedom motion simulation ... · PDF fileSUPPLEMENTARYNOTES IS. ... modelcanbeusedasadesigntooltostudyandpredictsubmarine ... submarine

61

COo

COca

ooA

LUr-to

1—

o _£1—

1

UJr- r-< OOz: Aa: XOu. !g2: 3:—

i

oCO

LU ft

o LUz h-< <X o.o OCOX

1— CT>a. —

LU ao LO

a a"< <LU LUo. C£

^^ • • • *""*^ • • f^>

•OOOf— 0«—'Or-.Or-r>r-<r-Mr-ar-QQQOa—'QCOQ -*• CO CM «^- <JO *—'LO •*—

'

—'<__:c_:__:ia.L_:a_a.c_:c_:oooooooooU_U_LJ_U_a_U.U_LL.Lu

Or— C\JOO-4"LOLDCOCn

* - < • i— || Q. O _J >cC -—

*

_ 1—* * —

«

>-_: to • lu a. o i _<.

* - -*.3 U- ro UJ 3 Q LU LU X «w** * "v.o • uu to o«—'3_ua <n —* X -*..CO •>Q_ CO O O —

'

a »* CX» * * II - X - - CQZ — X* "4-- I— no** «-c - 3 <A* •* 2 X O X r— X * a* - * <c r- H- <4" •<LUr- #A _.

* * * o o_ o •srfz • X «"

^

* - * LUcCLU- U_- <*:«3- o to* ** a. OH-Q_-—. • »>_U Lu r— H-* X * «k jujo- x a. * H _«_

* O * t- CD LU Q LU || IV —* "4- * < ZQC.CO r- 2: || >• —* ** Q- •—• - OSUI •Q-' M M* -«>.* LU L_ »» {-» (__ . LU O H X* •* h- Q_ X * LU <C "—• »— LU X r«.

* - * to <a:oxoQ_c_jto3 o A* * * A h(MO—' LU O f— »* * LU to •>•— lu a x _j A ^-*.* * 1— . -x. *- X«—'< _J _. t—* * 2 **^- •<: s: <c X LU* * X «>--^r-_J- - _ *—~^* * o O- r— 'Q. • «»LU «%« •* - * CO r— ^-«U. «3- r- X _J X CQ a* •* A "O^-'U- 2. • O O O -J X* r— * LU - LU »Q_ ~d- CM _r i— LU Ps.

* <* H- *—*Q - - LU U- •»<£ • a A* O * < to—' » II h- •*»>. — — _* --J-* Q_ 1— O to - "V.LU M ** ** 52 __: o . lu - ii «

>

- X h-* - * n *—'O LO f— * -1—) • r*. LU* * LU o u- <c x a—^o

»Ot LO LU o x ** * to o - —* * Q_ • II - *3 LU X r- to A« * X o ii or - o a < *_l X* •K * o . LU LU *--* _l *—- __! - LU l-v

'-** - * o foiotauj >- a AO * •>* •t U_ G. t— O UJ <C - * — m _>

-d- * X * X 0.3W "X » •> *"*S

•* O * H- - OLUQ-V.Q_r—LO X X r-to r- * -3--K a. II O O - CD LU • « o r^. LUr- II * •* LU -LU O -T - _ M ^_^X >-• * ^.* o oooxaou.-—«• »mi -a. •>* •* o LU 2T LU O O "O - 1— ax —^* - * ft LU i—• Q_ CM Q_ - LU x a X—

i

•-» * * * i— o_ 1— lu •»-it a - 3 r-.•^* - * _i l/JC-QNs «X *—

*

A * Ao a * •»* LU < QC V.r- < Q X « _Z i—i - X * o LUr-O * -ZLU- r— X< *»_* ~cr» * A OtOtO- - -d-- 3 * r- co c_>X -i* * N2 *-~-«%Ll. «*Or- * « LUO cr> ** M =C CO »XO »«X _U — — toz ro - * o x- xroLU- o_u<5j- 1— r- ^—

1—

<

«——« * * * «•—

s

sc «cnr-Q || C\J<U- >- a >—

j

a cr» r- - * CM ">* x «» -•—» •> •« —

«s> CM A<. -3- x •* -3- •»0 - - LU XLJ - LO X - LO XLU * •—» X - A XW'-.r>. r-"V_U II -—«• #•LO * * COX uo»— o • ' v£3 2. •»—" t— (- * «i *O "-«* ^3 ^--•x to^r- "4" > ^—

Q_ I— LU LU O Q_ - 2TO"^ *— co •r-LU LU < *O LU LU <-C ^-* CO • —»<C LU ""^ LU ^c ** LU ^fr- r- ._: "•"«» -4" r- r- S_ >— -4" LU O 3^ r- S* m 1— 2?i—i i—) OS A # i—

t

00QC- LLZLULUON i—

I

52 r- h—

1

o_Q_ a_ O - *>«» Q_ -o *- «<LOZU « q_ o a Q_ O3 3LL« 3 x u_ o •>- _i '— <: —1

-

3 Lu __> 3 LUr— CM r— r— CMCO-^LO^P^CO —

en CM • r— CM-4- <* LO LO

o o o o o o

Page 126: Development of a six degree of freedom motion simulation ... · PDF fileSUPPLEMENTARYNOTES IS. ... modelcanbeusedasadesigntooltostudyandpredictsubmarine ... submarine
Page 127: Development of a six degree of freedom motion simulation ... · PDF fileSUPPLEMENTARYNOTES IS. ... modelcanbeusedasadesigntooltostudyandpredictsubmarine ... submarine

62

xm

o_joo*^.00

XCM

-JCO

oo

5

XCNi

O—Ioo

00

X

00I—

XvO

1—1o

X

XOS

oI—00

LU

LUeg

O0 LU i—

«

oo oo •

r- WO Or— •> ||

i— a "-aII ^ «LU-o "-a n r?

'-a z1>0 <sO •"—'•—<

O Z <—

SO h- O II

(0

>oz<ocq

anLU

LU

LUI—

oQLU

zso

LUCQ oOO LU-i Q

I

CO

II

ca

o

I—or

ooo

a<c

OOOO<LU

«—

i

-J

O«—

i

00

LU

Mao

00

LU

a:

LU

X1—4

00

OSo00LU

CO

*

oa;*LO

LO

* s s: s:o o o oIZSZZ2ZQi O O O LU LU LU* 2S Z Z Q Q QLO LU LU LU —. ^^.

•OQQ>NNII *>»* *«^ -^X >- XS X >- M t—« t—* I—

«

O i—i

—«—

• II II IIz ii ii ii >- M r>si

lu x >- ivi x >- xO I-1 •—• !—< •—• >—< >—

'

LU>-Hol-M

u. *—>» «««.

U_ <sf UDLU -n.r" *«**o u. LUo Ll.

LUU_LU

LU o o of— <_> CJJ >- O5 X O O O >«4 * O >-

i • • • * S • I

Z> y o o o '~i o s:o II II II II II ii ii ii

_l ^ s ^^^^^^^^^ **™^ *»**^<*"^

< r— CM CO «3- Lf> tO i— CMo<<c<:<<:<<<:

o o o O O (_> o o o o c_> o

Page 128: Development of a six degree of freedom motion simulation ... · PDF fileSUPPLEMENTARYNOTES IS. ... modelcanbeusedasadesigntooltostudyandpredictsubmarine ... submarine
Page 129: Development of a six degree of freedom motion simulation ... · PDF fileSUPPLEMENTARYNOTES IS. ... modelcanbeusedasadesigntooltostudyandpredictsubmarine ... submarine

63

CO

CO IDOr

lu _i *-». u-O "^ _J <o -^ *>* ex

'

i& Q+ u. «— z:

lu u. <C*-«• LU U.

*m.. ^_ ^^ O LU *-J _1 CM O O Z* * * SO oCM * ^- _J -—» —» I—* I—^— --s *—* —«• CM —«

«

—-» CVJ •—

t

LU n- Ll_^> v_^CM *m+ »— COLu >—' U_ O ""^ Lu * -—n -— CM U_ -—«» qUJ Lu '— LU rM —»r— LU «-«» * i— CM* Lu r- CuO U_ IT) O CM—* LU CM -J * * UJ —

-

O LU w O * * LU O * *—- LU * _J O LU>- O LU M * LU O * "^ LU _J O LU UJ+ o a. + s: -j uj s^ _j o ui >-^^. 3 uj s:O >- LU O >—*—'O + >—

' X O ^O + O •—

<

rM i ox —"»».o rM ^ * c_j ox M o H-* O OO* &*!>- X & Z>SIM>* X M ZOSOXOOPM>-2:00 l>- I X •—

• P>J O X I >- * 2 O •—i >- | UJ.— .* . . i * —• . . * x •—•—»* .—» i—i >- •—i 2j «w .«—_ r>j rMOlOSOOSSiOOlIZ"—«l ISO I • •— i —Oi I •—

i—

i

II II II II II II II II II II II II II II II II II II II II II II II II II II II —i <—

n«tLO(Of-Mfy)*lflU3i— CMCO^-UO^Of— CMCO«3-LOvOr-CMCO»d-Lr>lO i—

o • • • •

cvjcMCvjc\jcinroroci(o«t^'^, ^f«d, ^, Lninin^mirt^o^'«oiOkOio •—• on ii ii uw»>^ <—»>^^_^>w«— -^^—*—»•»-»

,—»—«^-».—>w—»>_*—*»—» —. ^,.— 2T II r— CM CO «^-

< < <<<<<<< <c << <c <<<<<<<< «c < <:<<:< < -•i— i— i— i— i

<_> <L_> C__>

Page 130: Development of a six degree of freedom motion simulation ... · PDF fileSUPPLEMENTARYNOTES IS. ... modelcanbeusedasadesigntooltostudyandpredictsubmarine ... submarine
Page 131: Development of a six degree of freedom motion simulation ... · PDF fileSUPPLEMENTARYNOTES IS. ... modelcanbeusedasadesigntooltostudyandpredictsubmarine ... submarine

64

UJCO

UJ

ooUJ

I—o

CO

<o

eoo

ii ii it

• o o •<— i— Oil -ooo o . . . ii < o r> ii

• .f— i— r— ,— r— r- ^-.— t— OOOOOU-I— II II ^<— r- II II II II II II II II II • • II II II U. UJ -• CVJ Oii ii Of-NOO<tiniorNCOOOI-l-h>-"iiuiujCO CT> r— r— i— r— f— i— r- r— r— II II OQOQf— Q. K Xh- i— »— y— y— t— i— i— i— h- I— x>-x>-m«c<<oo

CO</> <T» 0"> CT> UlUJ CO CO CO CT>-J CT> CO 00 CO CMo CO ifi'JD jD •

2: C0CT>CT>C7» • • • !"»

< \O00C0C0r-r-r-LO. CO CO CO -X * * ^

1— r-ifl^lOHHI-i-lCsC * • • • Q Q Q 3CUl Of— .— r— X) > 3 O-=> r3 =D -K -K * II || II ||

35 II II 3 > 3 H h h mO O O II II II a O O 31O 000>30>3Q.

000

Page 132: Development of a six degree of freedom motion simulation ... · PDF fileSUPPLEMENTARYNOTES IS. ... modelcanbeusedasadesigntooltostudyandpredictsubmarine ... submarine
Page 133: Development of a six degree of freedom motion simulation ... · PDF fileSUPPLEMENTARYNOTES IS. ... modelcanbeusedasadesigntooltostudyandpredictsubmarine ... submarine

65

x r>hi QCC LUh- a:

< co- 00

UJa+I—

_J CJ3

Z> i-i

crocLU Z3QXHH Xa: m»— a:< t-2: <c

ot—

I

I—

• Ul<- <->

- ? < sUJ UJ crM >- H- *M O 3 1— —*t—_j ac acvia<C H- r> Q_ ^Q£•—1 00 * -^-K1— UJ -J <—•CVJ'^H-l Q 5 CVJ * CVJ2: CO *>» "K *">»

l-l —1 UJ —»H"—

»

_l l-H CVJ _i CM» •—

jgj t— « u«CO 3 < 1—

1

* Q *^~ Z h->-^t—co 1—1 - UJ _J—'_>

CO CO CO CO CO CO CO CO C3 O 2: _l LU + Uluo lo lo in lt> lo lo lo UJ 2: 1—

1

UJ a—^o00 cT>co<cncrvcT»cT^cy^cr>cocTih- CO =3 1— > ^CT<—

'

uo c\jloc\jc\jc\jc\jc\ic\jloc\j u_ r>2: - a + (—'+'

cm r«.c\jr>»r^.r^r^r^r*»esjr^c3 ^—•* cc ~^*

• C0UO • LO LO LO UO LO UO • in !-• *o CO < CL Ul Qtfr^m^r-.^.^"-.*^'— ^r»» -x-.'—

»

1— 1— "3 Z3 * Q *lo<t>ujlo(— lux^xc5lo:x:i—"scvjoov.si-<<zzxoq <£ « OO CO 1 1

62 <J3 'O ^ UJ —1 -1- —II— 1— 1— 1

(—<C «KUJ<<zaa<(/)MO UJ 3 10 »*—

• _l lj_i <c ulj C3 cm c=ci ten aH-r^coi— qci;3ujluxq;q. • 1— 11 01 -— < O QhOO>3H crujmo<rc3ooi- 1— < 1—1 _j r"~ II II 2: 2T > UJ-*-'* * * * *lv.(jaoicacQoi(/izz2 • _i II

r-3—

.

UJ Z3 T^ «=c + C3Z -1- 1— 1— I— 1

1—h- •—1 11 as 11 11 11 11 11 11 11 a cr < 1»£ "3 -0 ez> LU 13 1—

•1— •—

• 1 —J -J —

1

-JII CO LU II 1— LU X 1— X O II ZUJ T* — u. UJ ~

II CO Ul Ul UJ LU LU<Q.yiUJS)-<<2Z(/)0 •

1— ii D£H<<sa22oJt-i|- < ro 00 •> t—t h- a. <c o_ a auj cr LO lo^i- J —1 < 11 1— 11 + + + + +UjHD<aX2UJUJXOQ. —<• >»—

*

2; _l —1 a •HuiHiz)>3a. criwoo:300hi-<zou.hnua:Q:ca22(/)ioso2i-i00 < O G <c < a. en 3: CO II II It 11 11

-3; UJ a a < Z3 a. I— o_ :o > 3 cl crCO

00 LO

0000 <-><-}<-> <-> <J> <->

Page 134: Development of a six degree of freedom motion simulation ... · PDF fileSUPPLEMENTARYNOTES IS. ... modelcanbeusedasadesigntooltostudyandpredictsubmarine ... submarine
Page 135: Development of a six degree of freedom motion simulation ... · PDF fileSUPPLEMENTARYNOTES IS. ... modelcanbeusedasadesigntooltostudyandpredictsubmarine ... submarine

66

a. a.

x co ^Z "—1 Xi-i o z hh X Oco o i-h CO a. <O Q CO a -_*

+ * a * CO • O• ^^*—K + —

*

h- h-y t—1 1—

1

-^MLU x x •—

• X <C >-h- a_ a. CO Q_ -_^ H- Ol00 * »»« .I. > Q_ •>—

'

* _l <c Z>- to uo >—'CO 3 LU CO OSCO o o CO O + a CO

LULU1—

LU a a **»-** + O COH- * + a + < LU<=c

>«-^«—<» * —

«

h- t— X -JX t—1 1—

1

*—^i-h LU _!i—>« CO CO •—" CO X LU CO OS <O a. a. x a. t— 2: < LU OOS *—It^M* a_— '—

^

1—

1

aO Z Z ^*co CO 1— CO a <—

»

o t—1 M CO o- LU X -^—

s

o CO CO t—< X< OS Xc_>o 1 * a * * —1 _J 1—

LU +*—*^^% *^l^i"~'^ .*—% *^^ a. _l l-HX * i-h * »-• M M < o_1—

1

> X > X X <* *-** CO c_>LU + O- + Q. 0. >- ^~»l-H

t-H CO < ^_^X

•x •—»z *—

z

z X CO CL. <—

^

h-HH t-H l-H

CO COk—

1—I

co co1—4

CO' 0- +

1 r—OSLU

••

LU a. o 0. a LU LU CO O • <cx ^—»--^ •~—' 1 ^_-* X co or a LU X 1—>—

i

CO * Z^ * —

I

OS <_> X h- X LUOS O 3 *-• -K > a: =3 1 OS • Q_ cs X< O + CO 3 + ^ O H-l OS LU LU t—s: a—» a + «"

H

cu 1— _j a 1— <CO * *-* * "—» ^"-* co v-^*^-^ co LU CO "^—*

-3 *—M-H **—•%**—-* <c 13 co co Z3 X X _l •

CO < co-~-<C »-H 1— CO co co 3 1— -«*_**' _l _l ah- a. t— 1— CO 1— LU < < a o. • < _l 2S

LU LU«—»_| LU O. _

1

X LU a < LU csu<<O X CO LU x«— LU H- O 11 11 a •

I— o a (— 2: a «—

^

CM CM • ' s ^"««

>• »^o * -— >—

<

* "^ H- X -*—•-* CO CO H- *^» U_ 1—H- na^ co 00 • l-H _i O < as a: z co u_ K- l-H—

<

* <— a >CO LU i-H 1— CO < OS t-H t-H aso O^—

>

•O -K •a a 1— LU LU LU O OSo a < < a--* —

<

1 * —

(

LU X *"»<-^ —

t

»-^<—

»

Z LU z a_l *—-I— h- >— <C co -—" CO X t—t 1— 1—

<

1—

1

Q. • • t-H CO Z O •

1— LU K LU LU * 1— Q- * 1— H -^ CO X 1 H- Q • • • l—a > X X X =D LU -:d 0. O a a a. co Q_ 0. LU • • X x> i— h- 1— _jcc •— H- h-^x Z -—

*

<: X >- IVI LU co co *—

^

CT. CO LU 1 oc CD O •

* LU '11 mi—

1.11-1 . r.^u. 1—1 —

'

(— LU * * * a CQ<CCOCOLOQi_IO as • • • LUI— I— z z >»^» CO LU 1— t-HHO<acQCQ p«* r> • • CO CM U- LU __j 5 1—1 t-H T^ IE < _] _i _l 1 a 11 < < -^- O t— r— Z3 X CO LU LU l-H

LU co co l-H * h- —1 LU UJ LU M II < a a 1— co co co LU OS —

1

l-H Oa Z3 CO =3 O C5 O II LU l— n 11 • 11 as c£ CU a <c+ O 11 * * 11 a « 11 CO O + + + u_ LU LU 1—«• t-H ro r^ C_) _i LU -—

#

< < »—»as _J \— —S-- • 1— * 1— 1— -J X >- PsJ u. M x co X 11 CO **-*»»*^-»* —i *-!!!- *^-^

II < CO l-H 1—

1

a—* lu a < II II II —

<

QhCuQ. t-H C£ Lu LU < OS LU LU Lu LUOS o XIOl>H X rM O X >- M C O. O l-H t-H t-H t-H t-H t-H

r— CM •— CNJ »~

<^}<J> <-) 000 0000

Page 136: Development of a six degree of freedom motion simulation ... · PDF fileSUPPLEMENTARYNOTES IS. ... modelcanbeusedasadesigntooltostudyandpredictsubmarine ... submarine
Page 137: Development of a six degree of freedom motion simulation ... · PDF fileSUPPLEMENTARYNOTES IS. ... modelcanbeusedasadesigntooltostudyandpredictsubmarine ... submarine

67

XOa_o

o

uo

o00

o ccLU 1—CO <>» s:h-U. xaz 3< OXt/»_J XLU LUa_ h-o 1—LU I—

I

a Q_3oh- LU

COLO •z 1— CO< O X1—1 Z •—

1

o z a< CO <:<a_ LO (_> LU

co co a en Xz LO LO LO CM H-1—

«

co co co en en en co CO CO • <C 3LO LO LO CSJ CM CM LO LO LO p^ en Cn <T> Z LU

LO en CTi en • • • en en en lo co co co 1— zLU CM CM cm r»» r-. !>•» CM CM CM * co co co-J • • • LO LO LO • en • »<C*OLOLOC0C0C0 oo <CD p— r>. t-»* * * r«* co en en r^ r-» h- • • • LO LO LO LUz lO LO lO Q_ LO CO LO CO CO CO LO LO LU rmm —— r-" en en en ZD Z< * * -« -J _l -J * LO CO CO * * X "•^ ->^ """v. CM CM CM _i h-HHHUJ U Ul 1—

»

• LO LO —4 l—l |— t— H- H- • • • «=c •—

>

r— O — a a a a X |— • • LO X II q a a r-» r-~. r««. > 3ex: a. era. h ii it a. ->^ 1— 1—

>

a.n03>3mmmLU ii ii II o o o ii ZD ^"^ ^, ii ii <f ii ii ii -K * * LU Ci> O O O Q_ CO CQ o II =>300h-000Q.CrQ: Q_ LUZ I— 1— 1— _J _

i

_

i

i—

i

o II II hmujhHH II n ii O I—O a a O LU LU LU zoooloxzqoqooo 1— <c_> Q.O^C£QOQQ.05>3:Q-Q.t— 3>3a c_ro_ co _i

o osc o a-OhO O O H- _JmUJm I-HQIUzzoooooaoo-a

l— cut— Q_cuc.yorcL.czr ii uii ti ii ii ii ii ii ii n -—*•"•

r-CM(O-J-Lfll_)N00C?lr-r-

OOOOOOOOOOOI— I— h-H-l— H- t— H-h-H-H-LOLOLOLOLOLOLO-OLOLOLO

co

o o c_> o o o

Page 138: Development of a six degree of freedom motion simulation ... · PDF fileSUPPLEMENTARYNOTES IS. ... modelcanbeusedasadesigntooltostudyandpredictsubmarine ... submarine
Page 139: Development of a six degree of freedom motion simulation ... · PDF fileSUPPLEMENTARYNOTES IS. ... modelcanbeusedasadesigntooltostudyandpredictsubmarine ... submarine

68

z - * . cn - X< 3 * ft <-~* — —»<r• o * - "^. * CJ •

*^** • 1— * • ^» X UJ -Z UJ O0 * x — o OO—

»

o h- * CTV * •^s.CVJft^ Ul * ^r- * CO c_>a. —1 X * «ft * UJ UJo Q_ »-4 * - * cr Q 00a z z: as * ft * —»"»•»

UJ • o l— * - * * - COo Z UJ CJ i * •ft X «> UJca CJ -J * X ft o X Q_j < • UJ * O ft «*•>—'Ul y< as z * «d- ft m * •o a: h- < t—

4

* •ft m - ^—

%

zH UJ * •*>.* Q- —hCnJ zO oo z oo o * •ft — CO O a:

00 »-• h- z UJ * - ft m UJ UJ '

_J < o OS * * ft X Q OO OiUl X*

H-

o * ft o *—' ^^* UJo H- • 1— h- * ft ^-« - CO z

« a. o 3 oo ft ft ft A UJ I—o UJ z ft ft — x a ot- Q < UJ z ft ft t—

4

(J3>-^ zo • *- UJ ft - ft 00 » <c3 Q<—

*

1—4 UJ ft •ft a. - *—«» *^^H* Z U. CO ft i— ft •> ^—

%

*-^CM »— OSO-— <U_ u. ft < * • — CO o Z o1— ^ i—

o oo ft O ft X cc Ul UJ CJ u.Q • uj a < ft «3- ft ^O —J Q O0 1—4>-^ CO o OS z ft • ft •> uj ^^^•^ * CO• co as z UJ ft - ft - a - CO -— T^o • z • CO 1— ft ft <- • UJ II

>—

1

f— o o »— s: s ft ft 1— • X z o H-Q i— o _l z * ft UJ X VO » ft t-4

=3 O • z 1— ft ft z r>. ft ^^ <•X o u_ * ft ft h- • • ^-N — 3o — UJ u. • •— ft - ft — — —>CJ f-"3^ OS i-i H- z ft • ft •l— CO UJ ft OO• oo uj a Z Q. • ft X ft X Q UJ 00 r— •—

<

o - • Z < CT> O en h- O * O ft CO C£ z ^ II> «* s: oc:>w» 0O t-4 CO Z «T * ^ ft *• • ^»CO t—

1

<ft • X o • a O # * • ft m #* - UJ ft 1—o i— h- a c o i^ ft ">^* t-i X •a ^—

^

^—

^

<O i— —

z z h- z i— a: II ft • ft z oo x«—

1—

1

~>^ Q3 o OS UJ < UJ o i—i ft - ft Q- • ^o - ft ft

ft ft O z • O z o U_ # ft ft ft • - ft ft ^ ^-^. 3M—*• CO 3—

»

CO 3 CO >ft - ft •f- - X ^_-- oo UJ•CO —J 00 CO t—

i

* •ft x a —•CM 3 • z>- • <C 00 C£. O0 ^""»» z '— X ft r— co- o • O C•o z cj- z o >—

1

Q « en * r— • Ul - h- r-~ u_X r— J— o z o o o a i—

i

x «a- * * * O0—<• oo Q 1-^

•Q z 1-4 O • •—

1

<J0 < •cr> •ft - X •wo '*«-' *»— • UJ 1— • r— 1— • UJ oo - * h- 00 - UJ -— X Ul—»X z: <£ UJ • < UJ r— z • ft ft t« 0%,•—» «oo <«"h r-^ Ulo — UJ —1 —1 UJ _J CO + O0 f*m - ft «3- 0* — P*. X "^ oo •-—

'

ooLf> » as z • -J z • i— 3 ** Z •ft «d- x 1— "3- oo co -—• 'd- r^•CO cj i— CJ CM • CJ y- ss o UJ m r— X - • ui a • ^->UJ - A r— o

tO«^ z -j _l OO 1—4 -J 2S CJ oo z co o • <& > ^Q. '^d a—.^o ^—^ H-^l— 1—4 UJ <C as Z < CJ i—

«

•1— ^ '1

w»— ^-'CS ^—UJ <C Q f— cj cj a_ CJ 1—

1

ii O UJ UJ g •O UJ ^c ** uj <a; - uj uj <c ^h- S UJ + + >—

*

< "~-* I— 1— 1— H- ^«sl- J— S X 1— 5 CJH-l 2 s: 1— -3 Q>-^ z zz 1—

<

as A 9> —

i

o; en mq:x —

i

•1—4 K UlQ2 O —

«

II II z u. • z u. c_ o OS as o — ""N^, CC O • aoevj- QJ o z3 U_ f— t— ^ UJ i—

a UJ >—

1

1—

<

CO 3 3 u_ ft •3 u. . 3 U_ • *3 _ or— CM ft p- CMO i>_ <j\ a «=3- r«» oo

LO CM oo «*• 'i- <* ^r

CJ CJ CJ CJ CJ CJ CJ CJ CJ CJ CJ CJ CJ CJ

Page 140: Development of a six degree of freedom motion simulation ... · PDF fileSUPPLEMENTARYNOTES IS. ... modelcanbeusedasadesigntooltostudyandpredictsubmarine ... submarine
Page 141: Development of a six degree of freedom motion simulation ... · PDF fileSUPPLEMENTARYNOTES IS. ... modelcanbeusedasadesigntooltostudyandpredictsubmarine ... submarine

69

o1— Q.O aO H- 25C3 OO UJ

G\<y\

o\

Page 142: Development of a six degree of freedom motion simulation ... · PDF fileSUPPLEMENTARYNOTES IS. ... modelcanbeusedasadesigntooltostudyandpredictsubmarine ... submarine
Page 143: Development of a six degree of freedom motion simulation ... · PDF fileSUPPLEMENTARYNOTES IS. ... modelcanbeusedasadesigntooltostudyandpredictsubmarine ... submarine

70

LUo

roCM

o

r- VO

Lu*—

»

uj <€O LUO OS

KgCMCM'

C>)

oOSCO

CO

rvi

i

CO*—I<x.LUCC

I

00

<LUor

oI—

<

_1

•CO

LU OO •

rvi co

CVJCflNCM *>-

LU CO »LU —'MLU i—I XO < *-*

<_)••»>- '->>-•VO X

{Q |_U »»

»— «PM

Lu <sO «LU •>-UJ <^Q •—

i

O—' •>o <ac xX <C —'

co '-"CO* CM *_l CM —J

O CU

LU Olu o*LU •>O I—o o^ en

Lu MLU >-UJ I—

i

O »O >-M X« i-*

LU «u. MLU XO l-Ho •>- >-

•> l-HLU •>

LU XUJ —o •O MX »-i• «•

i—i <Jo MA *

i—I oCO >-

i—i O<C XHaI £QICa. h-

O »Z3 O*rc3 CC

> Cu

CC_lLUQ»

en

<C colu cucc »

<c -cs: co*_j

CM LU< Q«> «

r— CO< _l« UJ

co enM «•Or

CO *>

>- <C• I—

CO LUx x

._! Q ">*

— en lu en

O LU h- •—

I

LU LU CO LU"^O > —o •>

s: 3 h- so *a oS ^ 3 s:

o LU i— oO O Q Or- CM

CC

2

I

oXH-l

CO

LUa:

a1—4

CO

o<en

H-enCDi—

i

cc

COLUt—

cj o-j •—

1

< ^o <IDo cr

:r lu

1—• z eoI— LU O=o cnO LU Ocn lu 11

CO LU <eo >—

1

K-CO Q LU

(_>o_lLU

cnoh-o

LUO

LU

_J

o_i

5

LU1—

I

LUOC_> o

£ ~

CM

3+CM

* CMK*

CM

+CM

—'eo 1—u. CD LUcn 1—1 eco*ca 1—co >>». 11 ec ena o cn cu cr11 eo <c 11 coZ3 11 K- cn coo < lu •-• 11"HXX3CO LU I— Cu 2-

I—CO

cc

LU

CCCX.oCCa.cu<cno

co

CM<

OHCVJ

O • O(— a I—

o <c o

1— cC CM< •<

_J «Or— r— r— OCMCM. < . -^ <^- >—.^_*

<^ H~ < M t-4 —

«

I—I I—

I

LU *—' LU II II II f— II I

•>-»•>—•>«* H^ I—I (—< l-H l-HLLLlUmmmO>-*ih

0000 000 <-) <-3 <-J

Page 144: Development of a six degree of freedom motion simulation ... · PDF fileSUPPLEMENTARYNOTES IS. ... modelcanbeusedasadesigntooltostudyandpredictsubmarine ... submarine
Page 145: Development of a six degree of freedom motion simulation ... · PDF fileSUPPLEMENTARYNOTES IS. ... modelcanbeusedasadesigntooltostudyandpredictsubmarine ... submarine

71

oz< lu + * + —'* r^ cj >- o cc a. *—^>- + >-—'Lu 3 —^r- O * *la LU CM OJ—»—» CO LU + —^+ ""^LU 1 —'LU —'* CVJ

h- O * * —*lo i LU o_ ai > CVJ o cc LU LU * —»*o C_) -K * CVJ r— \— LU * ^^-)c —'O * LU LU'-nLO *Cr X > ZD * —3 O Z3 CO ID-— >- 3O * CQ * + ww LU O _J (— =3O <_> ^^—'—

"

A + * * CQ U_ -It *~» >-^<.—s— »-»c * O M r— LU *H- ^».—»,-«» _j uj —» a: —^r- a lo'-^—-»s: M + —'LU—

^

a —»co jujo-~>* + r— * t— CC—»—

^

+ CO—'LU COa. Q.—"x,Q CJ—»CU

* Lu .—»X CO * CC LU 3 LU LU T—»—*—1 + o >—^-»UJ-^0>-'

* OS Uu t— * + * CJ3 * IL>U.Q<-^ aQr-NLLh- * LU—'—x^-*.* ixi CTLU—'LU -X 1—-^. * * 1 + LUa —^O—'CVJ cvj _J + * O CO O-—»LU CVJ ce:*— <--^lu3 fou + i-* —'Cr —»0 CQ O CVJ—*M

LO >- < >- * * -K

* cri— 3 O—'X —»—'* * * —».—'LU > C_3A LU + —*Lu 3 O Q- —'+ Q + -K —-ID *^ CO'——'M

h- LU —n—^ LU—'X * Lu or * —»=> _l—.

'

—'CO * oo +Q LU CVJ CVJ LU * CC CD Lu -K —»CVJ—»^.* Lu <C crco—'

»

> O* * O—»w>- LU O—^-l« * r— d LU Q * < CVJo * * o ^r ->^ + O * > * —»—^_J LU * 3Q*•1 X 3 o X <— •"-"» O—-> 3 CO—'LU O ZD * * *

H- + —'^ + —'cm—^ >- o——•* i——a O * —^3 >a —** —"-»LUwCVJ + r— CO * w+ * rv4-^r- * —

'

=3 CVJ—»* CVJLU—'** Nm* HI 1 «

cr—" co —« lu—*—

»

* LU < ^- LU—hCVJ+ Cftr- -^*

cc * •— »-• * o—»a: cu lu a t— lu cs: CVJ CVlLL UUr-^io 0£ U_ O CO o —«.—' * LU ->»—'O •—•—

'

* LU LU > r—lu wLu + _j x—* +

* LU O LU + CVJ —>»

^O >u.uzu.«3- <_>—'LU >- Q_ LU

* LU LU U_—

'

OC O O LU LUCO —»o ^ a--** cvj ^>- * LU + —'LU —'O O LU LUM CVJ CJ * — CM * * LU + —^O 3 CO O * NNOUJ

• —x 3 * * —»* LU OS CO CJ * O O —*+ + ooUJ lu—'* —** o cr LU * i— >- > O >- co c-^rvj o

• LU * Mr->* —

'

o 3—'w* a + —'* cr + mo LU—*••-• r— —-'CO —

»

O * Lu * —»* —«. CU lu ro—'3 +O -J CO"—'* -J * >--^lu—*r>*.—»3* LU * CO * —

»

Oi O ^v. + Lu—-LU CD + <T> LU _J r— Qi > CT LU—^CQ 3 3< X .—»LU CO O X —*—»o ->.—'<:—'* ooo<* >LU + r— CM LU r——' 1 LO CULuOr— Luh- COO LO O—'Q—>»*z —»— * O—'—'OS r^ —'LU >-> LU LU CO X r— NU.-K (*)31—1 CVJ—'* UU.4 « 1 CO LU + —'LU X < + 1 + Lu —-i '

_J * +DX Lu—^> a caoa + ohoo: a CVJ LU 3 »^CO* —»—' + lu y3 i r^» <z o _i—^o«—

*

* r'— * O => Lu CO— crcr* —^o >— cr • o>-Lu--^>-co>cr • * (_)—'LU <o '* M CVJ O '* o * + Q i— + O * * o O. M CO LU Q* 3 •-• * X Lu 3 II CU Q_ * 1 —»0. CD II * + CO O *

UJ —»* < * —^Lu —

'

> * * —*< 3 a t— rvi 3 —'Q. < O—

x

a r——«• + OS * LU * 5» —^3 OS 1— > -K CVJ + 3 cvj * a fsi udi—

«— wo—»_i —^o s: CO* —-LU^—'—^>

.-—^ —'=» * + r—CO LU—'CVJ LU • O —

'

*»»% "-^CO—'CO CO LU CVJ <^"»% LU * —x—*—

'

1 U.U.* O i— X 1 r~> LU CO CO * CQ 1 Lu -K r—

LU--^—".CVJ Luo LU LU * —' 1 + —

»

O lu—-<o:<i— LU* a LU r»«. 3 * LUz O LU 3 * <—»—

?

o LULuQ* 0300. o O—'3 * LU

$ O O—'—*H- cvj c£ • o u_ * ro * —^o + • C_> Lu —'ZD OX O * OUJ« < o OUJD* > * >- CVJ o hsl LU UO O«—*» *—**»-^*^s 1 > X-^r——-* h- • >- o * —** —

+

* • —'LU CO * MCVJ O CO CO CO 1— * + CT» —'* ^UJ cr —.»o—» en —*«-»> * cr * o <:—^ +>—*- *^* ^—* ^—*'^—

'

X _l C£ —'LU—»CJ X LU * > CVJ p— V^ CO * or LU _l O O CVJ—

>

l-H "—• >—> i—

i

CD —* LU Li 1*1— • _j + »——'r— * rs • —'IVJ -^.r- 3uo<cao i—

i

II >U.UI^Oi>-' > II >—'LU—'* **"" 3 II + 3—'—

'

ii i— ii ii ii cc *-^* LU O • _J Z > 3» —^* LU LU LU _J —

>

o 3 3 —^CC —'LU COl-H H-• l-H t—t f— —^O O r— LU t—

I

II -

CVJ CTLU LU Lu * O >- II —

'

CO * * LU CO»—• O *—* •—» •""

—'CO O X^—'Q CO > U. —'* LU O LU O CVJ i 3 Lu —'>—^LU <Co o < co o uj—»x —'—"—'a 5» •—

i

LU—»O O O X -

Q. 3 >-i lu * o o aI-" CVJ CO <^" LO ^o r- CVJ CO «3- LO <0 r^. r— CVJ CO «d"

CVJ o«5T

<J> (-3<~>

Page 146: Development of a six degree of freedom motion simulation ... · PDF fileSUPPLEMENTARYNOTES IS. ... modelcanbeusedasadesigntooltostudyandpredictsubmarine ... submarine
Page 147: Development of a six degree of freedom motion simulation ... · PDF fileSUPPLEMENTARYNOTES IS. ... modelcanbeusedasadesigntooltostudyandpredictsubmarine ... submarine

72

o * * lu a; >«-^co- <C O—'0>—-X—n* * LU + LU O * —*»C_> XC_>—-O LU * >—'— -n* CM Qr-v^SU. 1 CM =3—^ uauju^cnzMnco> O 3 oo i i * * -^+ +Luh-* -— CM LU* z ct: — + —

'

+ i + O * CQ<H* 0*LU—»—MJJ3* * * O "3 c_3 + <C *-^— 13 1— Cu •*:-< 1— 3 cr * Lu—»3 O * _J OO * C_> * Z>hU.3^ •

* 3 * r— Q LU * I *-^LU—.>UO' l_l ^-^.«—^* LULU>—

»

XO^Cr: * r— * «—'O CM LOOi 'SI Xr-lUN —'r— * 3 X LU CM >—1

* * * «-"» '> * IN| * —-O 1 OO + »—«—-Q ^~ * 1——»* P co * CC^>^-*o _J Lu * —--^* U.Z<CO —»v-^>^ * »^ .—»«—CM—>^<_) CO * 1—o—

x

•»>»Lu—-CM 1 Off*. LU + H- <C CM -K +—^* -JLU* NWZ<Q. <cm co + f— LU <* * —^——

»

LJauiQ* —»-—^ro s -«^LU * r- O * Q 1 g——* * *"'— >—-o r- * a:—*— O * —'* * —s-^CM—

*

r- LU _J ^— * CMLu * — —'O^O — 1 —

»

U3* 3 > LO -—^>— 1 —'O "-^LU Q . > * —Lu _l CM + i*c lu—^x— cu 2: * cr* ^-k oc lu cr + O r— LU * 1— * * <LU * * —"» + LU * cu a. * + — * -^-IC -X eCU.* -^z ,-lj-^ 1 — cr <co o * Cu Q_ LU—^—'* 3 a-cno-Nf— _if— luq: CC + —'OQ<r- *—

»

—UIO —'* o rs. oo 13* i * —'* 1— r». -K LU * »— O. + O * 1— CM *IVI Qi« OO 3 O r— O * CC C£ LU *-^--' 1— O X O M OO * 2- CO LU—'•>- LUV_^«M» -f- CO * ^>—'O fM * K UOlL^xhSX COO*^+ Xv^UX^ X

*"*'»»^~"» «"C— + Lu O X X —^LU CM Lu Lu CH —' + •—

<* o:— 1 * LUi-<—

»

1——»CM CM Q03U« •-•—

'

«vT O LU LU-^"-Z—• 1 a— * 3H-^uj'—

""»'~-'* * »— * LU—.

'¥. —'OL-OUJ >shi3/-> * 0'>>3J0 IC£ LU •

^~ *^^"* o.>—> ocn + CD lu2:luoocmoo:=>—> Cr: 1— 3^* -^o—»* O CQ• + Cu * Lu * <_> <—sPM LU + LUSO^-'Q CM * —»> 00 C3 «ZQi> >—*<—*--* —«LU- i£ I— CC 1 UJCLO + S>-"K OO* — LU^^CO X 1— + * 1 2: _Jh-^-*^^ LO LU CO + LU * •— * 03++ —»CO * lo lu 00 «< >—**-'>aa 00LU CM * -—o r-oii cro* O > SI * --^—* CO <C Q. s^UcOQ^- '* * * t—i 22>-** C3 Lu C_>—'_J 1— * * 21* +=33— * Q'—

'

LuO<* * + 3N3 h- »-H

* * r>4 LU ^ LU LU —'—•» Z3 + ^CT* > CO CO * I Lu C_) Q > —*—» *>--_' .— 3 1 LU + LU O (/) >- 1 — CO* ^-^* _irM3— LU Z * * —-^—^t-i * Z3 LO_j>—-cr O CTLU * OwQ. CM ^— CO 3 LU l * CM O + —»—- LO *-*>O «—'O 00•x** -k O * O—O I * * Lu 3 r-^-'Q »— —»* croo us * q: cm + >- LU >-i— GO =3 ^>UCVJQN> * Lu>—'OO * 3 CM * Z * 1— r— * < ->-^^-» 1 Cr: 00""— _J 1 + * SC * * -«•«—# CC LU—'LUCO—»* CM cr + >—'-— _i H- lu cr-~+

LU Cu cr— + * —«—'* O OO LU <C CM CJ3 • cc * lulu* lulu* a. = ZO * * cy>-X CQ^—'O * OCOLUO* NlL>

* —LuLuOXLUCu* < «-i

+ * > Cu«—'CM^** 1 >- — SI <C O * * ^-'Lu * 0*CT» LU LU X h- O * 3^^^"*N»^ * Lu * * CO —«»—

*

CO + Q O— "3 1 LU >- * ^O O Ci^-'O'-- 1 oo 2:— CM * —-Lu # -— >-—

*

«^a:* s:io«——^0 x <^^ —LUOO-—'ar-zxer: 00CO CM 21 «-*• LU X lO 1 —— '

*

LU* —»+r— * CrT C_) •—

«a-Lu-Z"2:"^^-i t-t-K 1—1_j *—^^—

*

^o—^i— i— os— LL>r-/-s—'*—».i—1 2: |*-^> —'LU + + . OO * 1 3 < 1—

LU Lu 1 U.U* ^-"3 •—I CM LU* r-(MLLCnX + a. CC LLOa>(MQ'-»>-«—'Q Lu— LU 5>£—-LU * X * O —*>—'»* U.r-Q.3* * LU C_) _l * >-<* »*— ** LU— LU + CM Lu O Cu * O P*. LU * LU —'"-^* Cr: S» UJZLU -3-—">r-^0 LU =5—»o cs: oa--uj>s-'j SI'—'LurJOLuOOZD* 1 O + Q * + CO 1 —'X X LUMUM o * —*o-—-x -*» + LULU^--0LU0* MO* O Q. * —>•—* < 1 —

'

H-* r-J x 1>^ X LU <_> *-> r— CM LU O * SUJL)^> * 2:* -^LO^'^ca 1—— * >-* + a. + * LU Sx** * 00»—

'

* LUO'-^+OQr— t—

1

3 + 3 CC r— CC >• LU —»—

»

00 or:

X»—>—

'

Q-*- LU + —Q * * OSN^U* CM + ^-^ cr* —'—J 1 CM CM 2: <^3 00 * r»» O 3—* z: 0. + ^- 3 2:—»-* cr * * —»O0 LU LU 1— * * * 2 cc* > O O"—'O * LO— * * s: 00 -—«—' + 0: lu * Q-COCOLUQ3—»* * O co-—.^->o * lu *£ > * cs:^ —•»«>— _JLUOOOO«-CLuO->- * • < LU * * CM O _J LU 1—

1

en oo a — Lu -K « < | CM* LU Lu CO _J 1— LU * 1 —»LuOO—O* * ""-. Off* _l*— CO * CO LU * — _I (— OS -^-^QuKUJUiO'^^—» COLu*OCM>-*Cr: . LU—'< —

V

»—»0—*LO * LU * U 1* OQO-EOXCu ^-'LU-cts:* ^--j—ir- 0- «a:Lu Q OS lu o cm i— o x a. LU «^—»O * * 1— S •-• * LUO* +* +"^LU«u. * < U.^« «—= H- »« LU r- CT 21 O —-.<*-' 1 3 U.O'--CM O— »Cl* _i 00UJ3H LU + * Lu cr:-—'>- O >—•—-^- * CM OO * >- 1 uzw* •— cr:^-* s _i <-*

O * LU O Q. _J Lu CO X O—-OO* -

* O—*»•—

1

CC + f— * * •- •w—>—' <cc_>—

x

<_> * NLUNsO"-" 2I + CO—*LO* Oi * ua^D^i^N

1

O LUNr-H ^Dr-ONU 1 —«>«-C CM r— O Q 1 1 ZZ. * Lu* COQ.4-CM— r—+ CM- —"* II * ^O—'Q—

^

II —»Q* —"--^* <—

^

^—-^11 3 lu— r— >-^—

^q: OO 1—oo «—^co«— —-——'i^^^* M *-*<zr* * lu * /->h^> * — * LU «d 2: Q£ Lu * -« O*ju.oa *>f iO + + + ^>- LO "3—ILU-—^LU—

»

1^ —.O 1— LU 1—1 * Lu a. X LULU Lu O * ^^^»*--—^*—"^^"*» rQ H^ *—'OO * *-».LU CO * ^CM X — r*^o—^luooz3lu* 1— —Ia lu a cc UU Lu—^3—» * * LU CO —»r— O 1— CO * * ^^-»* UI^ZU-LUQ* ONLo^orsoj i— CM CO «"3- uO ^O 1— cMco-es-LOvor^cocn 1— cMco«3-LO^or>»co

<-> <-i ^

Page 148: Development of a six degree of freedom motion simulation ... · PDF fileSUPPLEMENTARYNOTES IS. ... modelcanbeusedasadesigntooltostudyandpredictsubmarine ... submarine
Page 149: Development of a six degree of freedom motion simulation ... · PDF fileSUPPLEMENTARYNOTES IS. ... modelcanbeusedasadesigntooltostudyandpredictsubmarine ... submarine

73

2as

en

Ulft

<

11

1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ry_l II II II II II II =3_l H- H- I— I— I— H- I— Q<OOOOOOLUZO Q£ 0"Q. 3 > ^ OS LU

Page 150: Development of a six degree of freedom motion simulation ... · PDF fileSUPPLEMENTARYNOTES IS. ... modelcanbeusedasadesigntooltostudyandpredictsubmarine ... submarine
Page 151: Development of a six degree of freedom motion simulation ... · PDF fileSUPPLEMENTARYNOTES IS. ... modelcanbeusedasadesigntooltostudyandpredictsubmarine ... submarine

74

oo

g< toQ H-X x a OSa: UJ UJM 00 OS OS

UJ UJ UJ UJ OSK- as a CO UJ

s a. asUJ o Q UJ UJ

of OS -J CQ Xa UJ X H-

OS OO X O ao OS 1— X _j > •< OS o OO X h- 00-J _j o a o UJ1— U4 a z. OS X —1 >*

00a

•UJa 00 O

r^ or X C3 a >-i— * OS X X \— 1—4 OSn i—i X H-l OS t-H 1— UJ

r»» oo 1— Q o OS ar™> a. o 2 UJ o ao H- * ^•^ X —J 0. X

P— A »— H- X •—

1

h- UJ OS^ CVJ _i OO > OS* — UJ >- H- a. UJ a. UJ

<—»<T» H- o < X + OO OS CO • asM s«£ • •t 3 UJ OS < p— 00 >-| * f"- CO 00 HH H^ X —

i

*-" H- u._J OOr- -J X UJ 00 OO o X 1—

1

UJ^:*: h- UJ O OS a. UJ o o J— X O Xoo « a l-l Q_ i 1— X O O* r>. vo A X UJ 1 X c »-i _J a_j ^ 1— CO 3 UJ OO >—

1

o CJ3 «— UJ UJ^ fk 0k —1 X as a. UJ > 00UJ VO CO UJ UJ H- X +^^ >- X -*-*»» UJ 00as :*: i— a o o ^^ -J h- UJ _l OS <z

* A M i—» 2; o 1 OS 00 u. < r-» a.•»un o c O UJ II II <. o O UJ _l

-—«^ r— M UJ UJ OO OO UJ TW -j a x O 00X "^ ft a 3 OS OS X <: OS H- <c| ^ • 1— I— o o • • OS X K X

OS < i^ (T» UJ O uj o o OO OO a UJ uj <c O OUJ ^ «i^ X »— H- co a a h—

«

o. Ul —J a 1— CDQ oo ro ^- -J 1—

«

OS • a uj *£ ctX * ^ >>» Ul i— UJ HH rf—

*

—J X o h- <—

%

X X + —N -Jx _J «UJ "v^ a 00 o a. • • UJ 00 H- 00 00 OS h- OO •

os <C CNJ UJ UJ * UJ X t o c a a l-H UJ OS OS UJUJ i^ OS > UJ »— UJ UJ • • o »—

«

X \— O a a • 2:UJ OS *X HH er> h OS 00 UJ K- •?" 2: c * UJ 2S f— H-

1

3 i— H- U_ uo 3 < UJ os -J o < y C\J Q t- < X C3 H-i-h f— ^ — *«s^ r— u. X • • UJ ^^ ^—

^

< *H- i—

-sl- Q s u. . OHI- X f- >- • 00 —1 —J en «^- UJ3 ocoz X r-» it OS >—i UJ O OO O0 H- X -J II OS) = < ^ -J OSO «-> * o o • < O Q OO II UJ UJ O UJ UJ < O Z II UJ 13 .

os JJ2 2: ro H- U. OS 1— ^ 1— Z x 00 00 a —I O •sf X O0 Oco o- < s: ujSuiOWi s: II _i OS UJ X oo >i^ •«—* UJ O -^—

'

< »-« -J-^-* X ||x i o M UJ UJ X O UJ u. u. X OS _j -J u. O O0 UJ u_ UJ U">00 mo:oq:o a. o a- t— o 1— M l-H 3 CQ I-H a t-> 1—

00000 (^> <^> <-} <-3 (-3 OOOO OOO

Page 152: Development of a six degree of freedom motion simulation ... · PDF fileSUPPLEMENTARYNOTES IS. ... modelcanbeusedasadesigntooltostudyandpredictsubmarine ... submarine
Page 153: Development of a six degree of freedom motion simulation ... · PDF fileSUPPLEMENTARYNOTES IS. ... modelcanbeusedasadesigntooltostudyandpredictsubmarine ... submarine

75

a => aUJ Q UJa UJ aUJ CC UJUJ UJCJ UJ oX • ca X •

UJ*

COUJ z •

ooUJ OO

UJ- > ^ UJ 1— >o o '-> > o Oz z:UJ

O z.

oo CC -J oo CCt-^ UJO cc

UJ—

«

UJaz o < o 2S ao ZD o o H- aM cc CC 3 O M £ cch- UJ cc 1— cCo UJ a CQ < o o a UJUJ CC a H- 1— UJ i— UJ zci cc-J O Z3 _J -J cc _1 cc ou_ u. cc UJ UJ © o Li_ 1 u.

Lf> UJ 1— UJ00 n i i

u_UJ

o UJ II

ccUJCOo <. cc a: ac CO »»»% —1

h- CC a a UJ —I _J *—

*

CC UJ aUJ =3 UJ -J UJ UJ Q cc UJ a UJo o cc 00 —

i

o o UJ -J o ooo o ii CO t^ <c II II oo UJ a «—»•» ooco =3 06 < s cc cc oo •* C- rs I— «c

^-«s CC _l a. o oo —i _l < Vm* cc 2^ a.O OS UJ 1— LU UJ a. O OO <21— _J O a 00 oo "T c 1— CQ o a OO

LlJ UJ ^c o h- _J oo <c UJ r>sso o q; «*-** ^3 C3 UJ UJ *—*fc*»^^ <t o <~ cc cco • UJ i— O a «= X o • UJ •

t— o ac o *—

*

1— 1— H- o UJ o^-*_l «SJ Q£ < < Q£ _i oo —I —1 o •_i « cc C3 3CC • 1— o Q _J O < QQ UJ UJ < o: • \— o •o^ _J => < z < a a -J o »—>» _1 *-^»

< «* UJ • CC UJ _l o a • • < «a- UJ • CC UJ—1 -J o

g• s: t- 1—1 i (— 1— UJ -j _l o X —i s:

1— UJ + UJ —1 • O0 Qi _l O 2: H- UJ 1 < UJ »—

• o CC ej h- UJ _J • • *—

<

• Q CC s o i—LU^ -J • en _J cc UJ CQ CQ <J\ i— UJ ^** —

1

v^^ CT>—I 00 UJ UJ q; <y> UJ • o QhhO) _l 00 UJ UJ oo <J\ UJ

• co O CC _j Q£ • CM CC II _l _1 UJ • CO o cc CQ cc^o < II rj LU O o O r- Ci CO UJ UJ o cc • LO < II zo < O => o1— a a oo Q J— oo II 1— UJ h- a a h- ZD O 1— a cc oo a f— 00 II

^—^^w* -J z >—

*

z ^~ ^^ _

J

»—**^~-^ O0 II •—

«

•^-*^ -J z. ^.^ Z. CM_ u_ UJ UJ u. o UJ i— U- 00 UJU.U.O z O U. u. UJ UJ u. o UJ ^~»—« l-H a —i o 1— l-i < a MM (5 UJ 1— •-• 1—A Q »—

«

C3 1—

LO U3

O O O o o o o o o O O C_) o o o c_> o o

Page 154: Development of a six degree of freedom motion simulation ... · PDF fileSUPPLEMENTARYNOTES IS. ... modelcanbeusedasadesigntooltostudyandpredictsubmarine ... submarine
Page 155: Development of a six degree of freedom motion simulation ... · PDF fileSUPPLEMENTARYNOTES IS. ... modelcanbeusedasadesigntooltostudyandpredictsubmarine ... submarine

76

00

oooOCo<

LU

oUJoOOUJce

LUCO

<oUJ-Jo<c

ceUJQ

CCUJ

00

OOH-LUo—1<o•-*

oo

OCOce

UJ

oo

33 <C

+ +ce ce

-—»_j _j•4- UJ LU_J O QUJ II IIO OS CC'—'-J _JO0ULUCO Q Q

I < <T^^- fr-ee _i _j_l UJ UJUJ O QQ • •

•*"*— h-00 —I O2Q • •

< CO CO CX>O I— H- enII I —

I

co uj uj Oi— a a y-

uj u_ u_ o

00

<ooo

ceoence

<00

enou.

ceoo

i— C\J

o oo oCD CD

00UJ

Qo

UJceou_UJCO

0000<Q.

OO

o

LO

poo

oUJ

00ceot_>o 5

cr>

o o H-. • CT>— 1— en UJ

_1 o ce• • o O

ce ce 1— OO^-•^-^ 2:u_ u_ o UJ«MO

oOce <c-—

i

o h- •

< _i o_l UJ •

I— Q I—• t -J

uj ce •

_j _j ce o• UJ _] r—

• CO Q UJOr— II Q Oit h- ce—'i—

I— U.LUU.Oh— —* O <—» O

00

oo

UJceoCO

QUJOO00<.a.

oo

O

UJce

oo

co

o

LO

ooO

UJo00ceoooo

ce«=c^O I— •

<C —I o-J LU • I— I—

• •+• O LU LUlu ce . Q O—i—ice^- en + o> + en

• uj_jr— • en co o> r** en• NOUJ O i

i—0>— II OO II OH-Ot—

O

it H-ce—'i— ce i— pi I— ii I—co>— _i-—' _i co rv.r— U_UJU_OUJO^-Oi— OI— i—1Q1—toOOH— Oh— O

CO CM LO en CO

o o o o o o o o o o o o

Page 156: Development of a six degree of freedom motion simulation ... · PDF fileSUPPLEMENTARYNOTES IS. ... modelcanbeusedasadesigntooltostudyandpredictsubmarine ... submarine
Page 157: Development of a six degree of freedom motion simulation ... · PDF fileSUPPLEMENTARYNOTES IS. ... modelcanbeusedasadesigntooltostudyandpredictsubmarine ... submarine

77

\— H- LU LU_i _i Q aUJ <T» UJ a* + CTV +Q (3> 3 (71 CVJ 3\ r-+ + i— r- z

I— I— I— I— tt I— II Z=>

II II CVJ r— H- Q^oounoi— Oi— ujzh-Oh— Oh-CJI— CCLU

ro co a*

Page 158: Development of a six degree of freedom motion simulation ... · PDF fileSUPPLEMENTARYNOTES IS. ... modelcanbeusedasadesigntooltostudyandpredictsubmarine ... submarine
Page 159: Development of a six degree of freedom motion simulation ... · PDF fileSUPPLEMENTARYNOTES IS. ... modelcanbeusedasadesigntooltostudyandpredictsubmarine ... submarine

78

rf or O^^ t—i3 or • H-O or —I Ooa LU O <n 1— or

LU 1—4 2T 1— LUJ— or h- >Si

CJ a. »-^a LU c_> H-o m O OCO 3C or • LU CMA or <_> O LU • or

oa -J H-l h- 2; OO or Oo LU Q_ »—> LU »—< Q Q -J u. >_i * 13 <c O Ot— or • z or 21 3 O* •o

VO M Z M LU LU < ^^ •

oo < 1— Z H- ^—

^

aP Q. X or CO < • LUO »<c r— —1 O O OP- LO 1— 2: 0. • O. LU • LU^ — _J • 3: O O LU LU• t— LU < or 1— H- LU LU O O

•"-^CT» " a f— Q. O. or LU • XN^^t « LU LU O O < LU1 ••— co x 00 a O LU X H-_l CO I— _j I— •—

1

LU LU LU h-^i<£ » LU < u. -J CO X Oco "co a • LU O —1 OO t— 3g* rs.,— «h- -J ^ CO O •—

<

^M^_J ^ »— co a O LU r— LU • O OO^£ •* • —I M Z O 00 0O LU O r— —

1

LU O CM 1 r 1 •>«=C Z O 00 CT» _J •z.

or s^ i— O LU <c 00 »— < CO as < O LU« » • U. LU X — 1—4 <3- a. 25 • H- —J

•>Lft r— cy-« 2= O —

1

O «=c^-^ O

--^H- •a uu.LU -J as c 00 H- O O 2:

T" * * < < 1— O < H- < H- z O <i *r cm,< ^: *2

i— • 0. a «=c ^E **** x O z <LU Lu r-4 h- 1 C3 H- C O LU X .*—

s

LUx ^m^ M * X Lu LU LU * _J ^—** 1—

<

1—

1

as O g r— 2JJt- CO CO r— 1— M 5> 1— CM r— LU CO 00 or <c *^>» OO < _ <o_ * *£34 a 22 iH _l C _l *—

^

—J CO < • P LU -JLU —1 • ^^ + LU * LU or • '-^ LU _l O O.a LU ^» u_ Q LU a • LU < LU as Lu <c> X LU 1— «—

^

or H- • as -J 2> • O • XLU or »>3: *-4 —

«

LU 2T <—

1

00 g 00 or _J H- 1—

4

1— t—i < + H-2E r— h- LU (>0 H- < a co CO LU t -J y- • a J— CO C3 S1

3-i * < c LU • LU LU _l •

H- i—

I

r*» CO a LU LU r— LU _l >< X LU CO LU3D ucoz 2T 3 _? < ^ II II 11 X >-* -J or • « V— C5 _l orO >-• * o o o 3 II r— <C CO f— O LU _o • F— 2. < It LU ^>OS JUS 2: 2: —i as ^— _l 1— 1— <_a 00 O H- 23 O 0033 o- < 2: 2: 2: < HH _l LU -J _i LU -_^ 2: II —» LU ^

I-* —I s^2 s tu o ^ o o <_> OO LU Q LU LU h—

1

LU LU LU CM LU 1—

<

LU LU LU LUoo h-i CC o o o o O < O O 1—

1

H^ f— —

»

t-^ O —

LO

OOOO OOO OOO OOO OOO

Page 160: Development of a six degree of freedom motion simulation ... · PDF fileSUPPLEMENTARYNOTES IS. ... modelcanbeusedasadesigntooltostudyandpredictsubmarine ... submarine
Page 161: Development of a six degree of freedom motion simulation ... · PDF fileSUPPLEMENTARYNOTES IS. ... modelcanbeusedasadesigntooltostudyandpredictsubmarine ... submarine

79

oUJoUJOT cj<

UJ

coo 00ogg a CJ zCD UJ ro CD< • UJ • or cC>—

i

CO _l CO or O —

1

a UJ> cdz UJ> H- OUJ < O UJ»- 2: UJ CD h-1—

«

UJ ^r t—t

as UJ z UJ < <-» • or3 z 5 z f— »—* a 3< < • UJa —1 Q. -J O X aUJ a. 0. UJ • UJ < UJo UJ UJ UJ 2: aUJ UJ 3= <C UJ UJ _J CJ 3 UJUJ or 1— «— CC UJ • X O UJcj -J <c ^~ UJ COX u_ m LU li- X »— r— 1 XX UJ UJ

CQorUJ

O CUCQ

UJ UJX O »— II

COUJ

s CO U0 _J _j CO 00 h- t— z —1 003 1—

1

O _l UJ _l O 1—

<

«•«.* UJ MO O UJ i O UJ UJ • O CO COCO UJ »— CO CO < a CO UJ O CD t—4 UJII -J CO CO CO u 11 CO _

J

Z ^-"

^

—1CO cd o < CO CO <c CP> CD < *—* UJ X CD-J 7Z. o a. CO -j -J a. z • f— _l £ zUJ <s. I— 3 UJ UJ < «•—h _l CD <o ^""* CO O a CO h- CD UJ z 3

1— CD X or3E

- z O < 1—*~** Z Z *^»% *•-"* O T^ < <=C CQ zX UJ =£ <<: CD UJ X • UJ • UJ< o X *"^% _i h- 1— CD ^c 1— z UJ2: co rf < < CO < —i _j < *"~o co 3g < a <: CD CO2 < 2f h- _i z UJ UJ —J CO < • h- • -j • <o • -J < a CD •*-< UJ _j *—«» Q. «—

*

"-^23 UJ UJ UJ UJ _l 1-^ • » UJ < LU CD uj a CO UJ

• > O 2: H- CO UJ h- 51 _J > • a _i X -J >UJ *—< • 1 1—

1

• _J CD >—

<

h- M <C 1 UJ < UJ 1—

I

cd o <c CO h- UJ or • • ^ • a ha3Q 2: CO• t— f— _l -J CO CO CM UJ UJ _j ^^^ Nm#

CQ X UJ (7) UJ CO UJ • a; H- 1— a> UJ -J 3 X UJ CO UJ CO X—1 < X a OS . K£) or —i _

>

cc • f- CO or CO gUJ s h- O 11 rs O r— UJ UJ UJ rs • C\J 2: < n <c 23 <CO <HCOH co II H- QOH CO O K- CO a co-^** u. ~i_r" —i z U"><—' CO ^-***** ^3 II —

*

u. * r" _J ^_^- T^ «^/ u.— H< U_ O UJ UJ r— U_ <c u_ u_ UJ 1— U_ 1—

1

u. UJ u. UJ u. -^H^ 1—

1 CD CO CD H- M M M (J 1— •-• M 1—

1

1—1

en CVJ CO

OOO OOO OOO CJ CJ CJ CJ CJ CJ CJ CJ CJ CJ CJ CJ

Page 162: Development of a six degree of freedom motion simulation ... · PDF fileSUPPLEMENTARYNOTES IS. ... modelcanbeusedasadesigntooltostudyandpredictsubmarine ... submarine
Page 163: Development of a six degree of freedom motion simulation ... · PDF fileSUPPLEMENTARYNOTES IS. ... modelcanbeusedasadesigntooltostudyandpredictsubmarine ... submarine

80

O «LU •O ii

=>a LULU s:ca 1—4

LU mCO <*z *< LU -Ko -J *

03• LU z z

00 _J <£ LULU CD s> Z K- <Co <C z t—s:

LULUo a.

UJ Z OO IDz < <c x3 —1 ^ HH

a. LU LUa.

LU>1-4 a

LU x <c a a:as I— h- <co _l X QLl. m LU ^ 3SLU as r"» a Z <CQ LU _l + H-

10 -J LU CQ a ooO _l Q -J t— LUo LU i <Z. LU z. a1— OO r^ 1 a LU LU *

oo CO oo II ii s: LU *o < CO CO LU O *cd a. o oo —J _

i

1— X *h- 3 LU LU < LU *

4*-** oo O a a f— mo £ O CC oo * -z cd cd »—»» * X< << LU * OX cd <~% -J t— h- H- * C\i

^c <c < CD < _j _i •—

<

* «^? h- _i CD z LU LU OS - ^>.

• —J 5 cd a C- 3 A «k

LlI UJ LU 1—

1

• • X -

cd o s H- CO LU 1— O 1— o *• + 1—

1

• _J CD »—

i

-^CM *< CO H- LU Q£ • • 1— r*» «*p= — —1 —1 o CO CQ CM 00 •>*>** •—LU C7> LU CX> LU • a; h- I— cr> o <0— * enIE o as • LO as _i _J ^2 —'H-1— o II o id o r— LU LU LU O 03 LU < O< »— CO 1— to II — a a h- < h- s: - y-^, M- _l z lO %^ oo "-^ M i-* as •>

LU CD LU CD LU f—

"

LU < u. LU O a OS o «3- oi—• CD O CD 1— i—

*

1—4 —t 0D 3 Lu .03*

CO ,_

<sr cmCO

CM r—

zz as o enQiDiOODOI-D:^=> ^=> I— i— I— I— I—I— J— LU O LULULUCDOOSOCDCiSCCQiOlU CD

sr «4-

O O <sf O ** O l I

0"0"LULUJ— LU LU h—UIU JZC5ZO JCQCQCQCQCQCQCaca—I I I I —3 —I —I —

I

iii iii i,i i i i i,< 1

1

1 iii i

i

jOOOCDOOOOQOOQOOQOZZZZZZZZ< < < < < <c < <

oo ........<z, oooooooo03•-• I— i— i— i— i— i— i— i

0O CD_JCD-J03CD_I_ICC LULULULULULULULUO LULULULULULULULUCMQ2 WHMMMHMMNCC QOOCDOOOOLU —

»

*— ^_x— —*oh-

_i aaooaocDa_J Z.Z.Z.Z.Z.-ZZ.Z.Q<C < < < «a; < < < < 03s:OO «-^*->--^-*,-^-*^,»^.^

o: O O O O O CD O CD* ooLU 4^— I— I— I— I— I— 1— I— I

—t C_3 <_E5 CJD> CJ3> I —I I —

I

IO I— \— »— I— Y— h- I— 1— CO CMas cD.aaaaaoo_inY— NNNNNNNNLUi^O w•—»—'

'—'«— »— LUO LuLuLuLuLuLULuLULuri:l_IK-ll-lh-l |-HI-l >-4»-4H-lO

00 CM

ooo uua uuu (-><-><->

Page 164: Development of a six degree of freedom motion simulation ... · PDF fileSUPPLEMENTARYNOTES IS. ... modelcanbeusedasadesigntooltostudyandpredictsubmarine ... submarine
Page 165: Development of a six degree of freedom motion simulation ... · PDF fileSUPPLEMENTARYNOTES IS. ... modelcanbeusedasadesigntooltostudyandpredictsubmarine ... submarine

81

00LU

00LU

LU

<CU

LU

oLUco

oooo

Q.

oo

Z3O0

r— CO OCM CMo

t— o oI— t—oo o o

Lf>

ooo

03CJ

-J • I

I— cr •

• LU t—LU • O_l 1*1 •

• O CO. «3" LU _JO P— X LU

II hOQCO—- —

<

r— LU LU LU

«C H-

I

i— COa> _i

LUO Q

QI

CO_JLUaii

CO

I—I l-H —I O HH Qo u_cj

CO roCMOCM

CM •

en <—IIo ^

t— oLUo x

cj oCMCM

—Ia.

ofoCO

aLUOO00<a.

oo

<

QC

OO

to

CM CT>O i—I— O

H- OO »—cj oo o—» oca-—<•o • -—»< r— •

—I • <X3

h- cr •

LO

oo

oCJ

<C I—

_J LULU O

• luh a +LU • _J + COJ^ • i— CO -J CM r-

• O CO <T» -J LU CT> • 0\• CO LU _l UO OO r- X LJ O Q || O II O

II hOQH-'CQI-cai-«a->-.^-"— ^--—i _jr— LULULUOLULUOLUOI-wihmCJ'-'QOCIO

CM i—LO

a Q o a _J _i+ i— + <— + r- + r- LU r— LUrocy>*^"<T>LftcT»^o,>QGr>Qr— r— r— i— + +1— OH-Of-Ot—

O

O CMII 1— II h- II 1— II 1— P 1— 1—CO «* LO 10 II II

f^» O <— O i— O i— O p-" O CMh- CJ H- CJ H- CJ 1— CJ 1— CJ 1—

VO rv. r^ CO en Or— t—

oo co CO (T>

o o o o o <_>

Page 166: Development of a six degree of freedom motion simulation ... · PDF fileSUPPLEMENTARYNOTES IS. ... modelcanbeusedasadesigntooltostudyandpredictsubmarine ... submarine
Page 167: Development of a six degree of freedom motion simulation ... · PDF fileSUPPLEMENTARYNOTES IS. ... modelcanbeusedasadesigntooltostudyandpredictsubmarine ... submarine

82

X<s: x3 <O Soa 3

1 oii co03 II

_l CQLU _JO UJQ*-*«»

X*-**

^33 SIO 3CO O

i co* •

J— H-_J O

<— * *

Q* CQ CO_J _l 2O UJ LU C£

h- Q Q Z3-—«^(- ^3OU.U.UJZo •—< <-* cc LU

CM r—CTk G%

Page 168: Development of a six degree of freedom motion simulation ... · PDF fileSUPPLEMENTARYNOTES IS. ... modelcanbeusedasadesigntooltostudyandpredictsubmarine ... submarine
Page 169: Development of a six degree of freedom motion simulation ... · PDF fileSUPPLEMENTARYNOTES IS. ... modelcanbeusedasadesigntooltostudyandpredictsubmarine ... submarine

83

OO

1oLU

oUJ H- • »—

1

»— <x t-00 x o oA H- <c

00 •> i—

i

x I— cc a. LU< —

1

o X >-J Qg ct: u- ,— X M1— O x o r— H-m a LU o Oo M LU h- o LU

r* X X X J— X LO •

»— ac o 1— Z o • X XA _i •-• a. < x o OO o o LU

<7> UJ Q. LU X o LU X H- Xh- a o a o CC > • LU

«* "Z. o ^^* o LU O LUCO x « o u. X *-"

^

2tf£ X Xh- *x H- o X X < X* *-< x LU c_> LU 1— *"~^ LU

r*.£x" -J LU 1—

1

X ^^»•— ^ *— X X < • h-o « * '-s is o o _l X o o

•"5 * H- 2 1— X OL LU • z:*£ h- -J » M —

<

• X LU#% «k LU <C H- Q Q_ h- LU LU _l to

«-^oo ror«4 Si i—

a t— x 2= cr X X LU • l-H•> ijj o<c * LU • o O <

| • M CO X Q_ CO CD < LU X H- LU_J CO 00 _l h- O • *£ X 1— LU LU LU -J—'^ S«£ UJ <c X LU + <c LU '2Q X XCO • X •» a. _i < _J X OO 1— X* r^. r^ «f— x h- I— X »—t -1_l

J <j^ii O0 o OO X LU X < LU •

-J M « <c X X oo LU X O LULU •» f— < • oo -J z 2gq:^^ O Lu LU X * X <c X X < C: «C

r * •> Lu —I o r*» ro X X CsJ a. 21 • t— —1• uo uo cyt-i X h- Srf! —i o < o < ^-«» a.

«->^ :*£ •>x 2: •—

+ LU X • o 00 t— X oX * * < < < a. 1— X X <^«» H- < h- X X Xi -^ «r f— • X < LU H- X o Sg < LU< ^ ^ LU Lu 1 1 1 « r>4 i— i •—

<

O X LU X Xx ^—* a « X u. X X * _j ^^s X X X X O ^c ro LUcc CO CO CO H- i-h <C H- LQ CO LU 00 h- o < ^^ OO 3g —I <C XLU * iZ ^ a _! Q. ^ JQ J a. Q _J oo «sC • LU H- Xt— -J * ^^ a. lu + LU * LU LU • • X ^>» LU X —I o00 2 •*: lu

LU -^ a u. a j— a O H- C LU < LU X < UJ> X Q u. < —--* -J • zz _l > • • X XUJ x "2: t—1 t—

LU LL. i—i O0 Q -J • 1— >—t 1— i—i < h- + <2: <— o u_ oo »— o a CO LU X _J Lu X y— • X I— X OO s:H^ »— ^ -^ -^^ < * <C 1— < < LU • LU LU • -J1— M -J LU LO x oo a ~x —

ro LU _u 3 X OO LU LUX ucoz x x X x ^ ii II II oo X -J X • h- _l X Xo >-i * O o o O X II ro < a. < LU O • •* s: <C LU II OCC JJS s: s: -1 < ro _i 1— H- X •^p^X OO o — —

^

X OO ooca a. < s: x

i 5 s: < X -J LU _i —J o «»^' X II*

LU s«^> —J 2:X S UJ o 2 ;o o o o UJ a LU LU u_ LU LU LU CO LU i—

«

LU LU LU LU00 MtfuS ! o o x <=c x a t—

«

t-H f— »-i HH i—i a

0000 O l_> o 000 000 000

Page 170: Development of a six degree of freedom motion simulation ... · PDF fileSUPPLEMENTARYNOTES IS. ... modelcanbeusedasadesigntooltostudyandpredictsubmarine ... submarine
Page 171: Development of a six degree of freedom motion simulation ... · PDF fileSUPPLEMENTARYNOTES IS. ... modelcanbeusedasadesigntooltostudyandpredictsubmarine ... submarine

84

oLU<->

UJon

CO

o <LU OC£ «3" • »

• CC Q • LU •

CO o o LU CO —I COLU o H- Q LU CD LU> LU > Z. >i LU

<OCD

LUCJX

o <LU

iLU 1— *»""^ LU LU 2^ LUzz -*^^ rr 5 2=< A • H- < <C-J a o O X _j a. -Ja. LUo •

LUz. s Q.

LUa.

LU LU cd CO LU LU 3C < LUQ£ LU • >—

t

I— c£ h- I— oco CJ <c CO O _i oLu X h- r^ LU 1 Lu n LU LUX LU LU LU _J II LU en a LU

I;ca

CO3= Ot-H-

CD CO-J

CQ LU-J

co i

_l COca

LU a t—t 'o^*^ < LU a -J LU —1 oh- LU • O a LU rf a lu LUco CO LU a cd LU CO 3E < a COII CO _J 32 z. *'* to o CO ii ii COCO < CTl o <*-N < X < r— CO CO <-J a. z. « co —1 s a. CO -J —1 a.LU O < «—»_J a. as o 3: LU LUo CO H- CD LU LU CO 1— o O C3 CO

s 1— z a a i— < a; ^^—«. O z < < LU CO ac o CD ^-^^^X CD LU X • cc • CD < <

CD o2u CD

LU LU CD —i 1— h- CD2_5

*~«» CO < O CD «< <c < <»—

»

< _l -J <LU CO < • • f- a: • H- H- _J co z. LU LU -J1— o •^H. LU-—

»

J

o ^^* _l —1 CD CD a aCO LU < LU CD CO LU CO LU LU LU <c •—4 • • LU

• S _l > • _l Q X _J O a 3g -J CO LU V— s:LU — h- i—

i

<C LU I < LU + i t—

1— -J CD »—

4

eg 1— • o I— a co s: a co co h- • cc • • I—• o> LU UJ-

' —

1

—"0> —i _i LU o CO CO <T>co a> LU _l X a: co lu LU co a» LU f— LU CO LU _l Q£ H- H- a> LU_i cc • < u» CQ O ec eg a a OS • as -J _J orLU O _3 . ro J£ < < II o < o II o II o r> . r*. LU LU LU O _3a t— CO O H- ^-»a co co a f— co t— co t— CO O 1— a o h- CO-^^ z II ^-, LU ^-^"-—-* _

1

s •*-^ —i _i z ll >—

CO ^•^-"-«-' 3u_ o LU -sS- LU 1-4 LU LU LU LU LU O LU O LU O LU CO Lu <x. LU LU o LU»-^ o h- <— i—» i—

I

Q >—i CD Q CD O CD 1— <-> I—I t—

I

CD

CM co LO UD

O O CJ c_> o o <~) l-> u (-3 (-> 1-3 uoo uua

Page 172: Development of a six degree of freedom motion simulation ... · PDF fileSUPPLEMENTARYNOTES IS. ... modelcanbeusedasadesigntooltostudyandpredictsubmarine ... submarine
Page 173: Development of a six degree of freedom motion simulation ... · PDF fileSUPPLEMENTARYNOTES IS. ... modelcanbeusedasadesigntooltostudyandpredictsubmarine ... submarine

85

—LU

UJen

5LU_J

<

OOUJ>O

ooUJ>o

oooo

<

UJ

• COO I—II

'"'r>» u_

-Ja.

OSUJ—I—I<C•i.

oo

oo

Oa:

<5co

OSOora:

oo<

UJpo a_i +UJ OOO _l< LU

i aii ii

OO 00_j —iUJ LUo a

< <c

UJQ

oU_UJCO

oUJoooo

«3- <"~ a.

o ooH-

!gOto o<

LU-J

23

O H- I— I— I— I—1 —J I I I

cocnujcnujcnujcnujoi •

_j + + + + -JUJO^OMONOCOOUJah l— i— t— i— i— i— i— i— a-w ii it n ii —

*

U-O^fOCOOr-^OCOOU->—<OI— Oh C3 h- Ot— 03*—

i

LUor^>oo

LU

LO

or*» of— o

o

oo

< I—

^-*<

CO cr» o >— CM

• aLU I

—J oo• _iO LU

• r— QO f-^II -~"cr> u_ u_

co

QI

oo—J CT^lu enC2II O

•oo l—•_Juj oa ooCM

UJz<-JQ_

UJOSOu.UJCO

aLUoooo<a.

oo

LU

CC

oo

UJ

LO

O<J3 O

O I—03 C5

OO < \—O »— _l•a: _i luJUQI— Q +

• + oouj co _i ai cr>_i _i lu cr> • crt

• • LU Q OO CT> Q II O II OII I 'OO I— OO I—

i— U_ U_ UJ O UJ oI— •—1 1—

• a o a o<T> un

+CT>

I—II

CT>

I—

O C_) c_> o o c_> o o o

Page 174: Development of a six degree of freedom motion simulation ... · PDF fileSUPPLEMENTARYNOTES IS. ... modelcanbeusedasadesigntooltostudyandpredictsubmarine ... submarine
Page 175: Development of a six degree of freedom motion simulation ... · PDF fileSUPPLEMENTARYNOTES IS. ... modelcanbeusedasadesigntooltostudyandpredictsubmarine ... submarine

86

_oo> +CT» OO PI— IIoO r—

CNJ CM fO ^t (Jt Or— r— r— r— r- C\J

2: 2: z 2:q:cxq:q:oooooo3333H H- I— H-h-»—H- h- h- f-LUUJUJLiJOOOOOO

0000000000• •••••••••

crcrt- h- ujuH-i- 00UIU_IOZZU_IUJUJCOOOCOOOOOCOt/TtOOUOCO—I —t —I —t —I —t —t I I 1

LlJ UJ LlJ IjI III 111 111 III III III0000000000aaoooooooo2=2:2:2:2:2:2:2:2:2:

UJ

o . • . . • .T^TTT2: 0000000000< •

I— I— H-h-h-h-l— H- I— h-ZC O _J _l O O _J __J o O _lo1— o- 0*0*0* o- 0*0* 0*0-0-

Q_ OOOOOOOOOOf— 2:2:2:2:2:2:2:2:2:2:o <<<<<<< <=c <: <UJ

zco 0000000000oI— I— I— I— I— f-»— I— f— f—

O _JO_JC"J_JO_IOO_lh-

<<<<'--:<'-*:<<«s:a* _l I— t— t— I— I— I— I— I— I— I

O^ O uJLUUJLiJUJLiJUJUJIjJLlJ

o 1— 1^— 1— 1— 1— 1— 1— 1— 1— 1— 1— ct:

I— 2: ^--—»-s_x^^^_^-~^^^ ^3

O O U.U-LL.U-U_LL.Ll_Ll-U.U_LU2:CJ HMHMMMMMMMaiUJ

CO CT>1— CT>

000

Page 176: Development of a six degree of freedom motion simulation ... · PDF fileSUPPLEMENTARYNOTES IS. ... modelcanbeusedasadesigntooltostudyandpredictsubmarine ... submarine
Page 177: Development of a six degree of freedom motion simulation ... · PDF fileSUPPLEMENTARYNOTES IS. ... modelcanbeusedasadesigntooltostudyandpredictsubmarine ... submarine

87

B.3 LEQT1F

A - input matrix of dimension N by N containing the coefficient

matrix of the equation AX = B.

On output, A is replaced by the LU decomposition of a

rowwise permutation of A.

M - number of right-hand sides, (input)

N - order of A and number of rows in B. (input)

IA - number of rows in the dimension statement for A and B in

the calling program, (input)

B - input matrix of dimension N by M containing right-hand

sides of the equation AX = B.

On output, the N by M solution X replaces B.

ID6T - input option.

If ID6T is greater than the elements of A and B are

assumed to be correct to ID6T Decimal digits and the

routine performs an accuracy test.

If IDGT equals zero, the accuracy test is bypassed.

WKAREA - work area of dimension greater than or equal to N.

IER - error parameter

terminal error = 128 + N

N = 1 indicates that A is algorithmically singular.

Warning error = 32 + N.

N = 2 indicates that the accuracy test failed. The

computed solution may be in error by more than can be

accounted for by the uncertainty of the data.

CALL LEQT1F (A, M, N, IA, B, IDGT, WKAREA, IER)

Page 178: Development of a six degree of freedom motion simulation ... · PDF fileSUPPLEMENTARYNOTES IS. ... modelcanbeusedasadesigntooltostudyandpredictsubmarine ... submarine
Page 179: Development of a six degree of freedom motion simulation ... · PDF fileSUPPLEMENTARYNOTES IS. ... modelcanbeusedasadesigntooltostudyandpredictsubmarine ... submarine

ThesisHI 753c.l

184696

Hammond , - xDevelopment of a si a

degree of freedom mo-

tion simulation model

for use in submarine

design analysis.

n novr "

, 7 7 O 1

Thesis 184696Hi753 Hammondc,l Development of a six

degree of freedom mo-tion simulation model

for use in submarinedesign analysis.

Page 180: Development of a six degree of freedom motion simulation ... · PDF fileSUPPLEMENTARYNOTES IS. ... modelcanbeusedasadesigntooltostudyandpredictsubmarine ... submarine

JthesH1753

Di!,!!,°,

Pment of a SIX de9 ree of freedom m

3 2768 002 07594 7DUDLEY KNOX LIBRARY