Detecting Nanoparticles using Microplasmas Jeff Hopwood Professor, ECE Department Tufts University...

13
Detecting Nanoparticles using Microplasmas Jeff Hopwood Professor, ECE Department Tufts University [email protected] 617-627-4358 Supported by NSF CCF-0403460 (in progress)

Transcript of Detecting Nanoparticles using Microplasmas Jeff Hopwood Professor, ECE Department Tufts University...

Page 1: Detecting Nanoparticles using Microplasmas Jeff Hopwood Professor, ECE Department Tufts University hopwood@ece.tufts.edu 617-627-4358 Supported by NSF.

Detecting Nanoparticles using Microplasmas

Jeff HopwoodProfessor, ECE Department

Tufts [email protected]

617-627-4358

Supported by NSF CCF-0403460 (in progress)

Page 2: Detecting Nanoparticles using Microplasmas Jeff Hopwood Professor, ECE Department Tufts University hopwood@ece.tufts.edu 617-627-4358 Supported by NSF.

Problem Statement

• nanoparticles are too small to detect by scattered laser light (r<100nm).• nanoparticles may be too widely dispersed to sense and count accurately.• radio isotopes used for charging particles in DMA’s or IMS’s must be

tracked.• current systems are not portable.

Goals:To use low power, portable microplasma generators to charge particles.

To use ‘potential wells’ to trap and concentrate charged particles.To investigate novel modes of detecting particles by charge, mobility, or

chemical reactivity in microplasmas.

Page 3: Detecting Nanoparticles using Microplasmas Jeff Hopwood Professor, ECE Department Tufts University hopwood@ece.tufts.edu 617-627-4358 Supported by NSF.

Charging Particles with PlasmasPlasma electrons will rapidly charge nanoparticles (negatively).

These particles may then be trapped within the potential well of the plasma.

(x)

x

+ +

ne = ni

ne~ 0(sheath)

x

V(x)

-qZ

-qZ

Table 1. Approximate charge on a nanoparticle with radius a (nm) trapped in a plasma with electron temperature Te (eV) -excludes photo-ionization

Te (eV) Approx. Number of Charges (Z)

1 1.9a

2 3.5a

3 4.9a

4 6.3a

5 7.6a

charging trapping

microplasma

Page 4: Detecting Nanoparticles using Microplasmas Jeff Hopwood Professor, ECE Department Tufts University hopwood@ece.tufts.edu 617-627-4358 Supported by NSF.

Portable Microplasma System-- the Split Ring Resonator (SRR) --

VCO(900MHz)

Power Amp(GSM BandCell Phone,

4 watts, ~$1)

Split Ring Resonator: SRR

not shown: 6 v battery, power level control

Page 5: Detecting Nanoparticles using Microplasmas Jeff Hopwood Professor, ECE Department Tufts University hopwood@ece.tufts.edu 617-627-4358 Supported by NSF.

Prototype SRR operating in air(3 watts)

Page 6: Detecting Nanoparticles using Microplasmas Jeff Hopwood Professor, ECE Department Tufts University hopwood@ece.tufts.edu 617-627-4358 Supported by NSF.

Split Ring Resonator(SRR)Electric Field Intensity (@ 900 MHz)

Egap > 10 MV/m

25 m discharge gap

This device concentrates power from a cell phone into

a volume of ~ 1 nanoliter

Page 7: Detecting Nanoparticles using Microplasmas Jeff Hopwood Professor, ECE Department Tufts University hopwood@ece.tufts.edu 617-627-4358 Supported by NSF.

Microplasma Particle Trap Experiment

200 m

20 mm

HeNe

Digital SLR

Microscope

632 nm filter

“shaker”

Argon microplasma (SRR)1 mmelamineparticles-

-

--

-- -

--

-coaxialline

Window

pump

particlecounter

37 mm

Page 8: Detecting Nanoparticles using Microplasmas Jeff Hopwood Professor, ECE Department Tufts University hopwood@ece.tufts.edu 617-627-4358 Supported by NSF.

Microplasma Particle Trap Experiment

200 m

20 mm

HeNe

“shaker”

Argon microplasma1 mmelamineparticles-

-

--

-- -

--

-coaxialline

pump

particlecounter

Digital SLR

Microscope

632 nm filterWindow

Page 9: Detecting Nanoparticles using Microplasmas Jeff Hopwood Professor, ECE Department Tufts University hopwood@ece.tufts.edu 617-627-4358 Supported by NSF.

Particle Trapping and Localization

Time (sec)

0 20 40 60 80 100

Par

ticle

Cou

nt

0

100

200

300

400

plasma "on"

shaker

lost particles

trapped particles

Time (sec)

2 cm tres = 2 s

microplasma

1 um - melamine formaldehyde

Page 10: Detecting Nanoparticles using Microplasmas Jeff Hopwood Professor, ECE Department Tufts University hopwood@ece.tufts.edu 617-627-4358 Supported by NSF.

Particles Trapped by a Microplasma(observed through a 632nm filter to block plasma emissions)

200 um

/4 electrode

/4 electrode

SRRSRR

200 um

/4 electrode

/4 electrode

SRRSRR

Page 11: Detecting Nanoparticles using Microplasmas Jeff Hopwood Professor, ECE Department Tufts University hopwood@ece.tufts.edu 617-627-4358 Supported by NSF.

Conceptualdetection and measurement of nanoparticles

O2

CF4

opticalspectrometer

1. Trap and concentrategas-borne nanoparticles

microplasmatrap

2. Pulse reactive gasesSiF

4. Detect emission of light from the etch reaction products

3. Etch the nanoparticles

Page 12: Detecting Nanoparticles using Microplasmas Jeff Hopwood Professor, ECE Department Tufts University hopwood@ece.tufts.edu 617-627-4358 Supported by NSF.

Other concepts

• Use a voltage pulse to ‘push’ the charged nanoparticles from the trap, and detect particle size distribution using time-of-flight

• Use a miniature Ion Mobility Spectrometer to sort and detect charged nanoparticles– See sionex.com, for example

• Use a microplasma to charge the particles prior to entering a commercial DMA

Page 13: Detecting Nanoparticles using Microplasmas Jeff Hopwood Professor, ECE Department Tufts University hopwood@ece.tufts.edu 617-627-4358 Supported by NSF.

Contact Information

Jeff HopwoodProfessor, ECE Department

Tufts [email protected]

617-627-4358