Dendrimers and light: towards electroactive and photoactive dendrimers

55
Dendrimers and light: towards electroactive and photoactive dendrimers Jean M.J. Fréchet, Dept. of Chemistry, UC Berkeley AFOSR MURI Program (Dr. C. Lee) Graduate Students: Alex Adronov, Adam Freeman, Stefan Hecht, Patrick Malenfant. Postdoctoral Fellow: Lysander Chrisstoffels. Collaborators: Prof. M. Thompson, USC Prof. P. Prasad, SUNY Buffalo Dr. S. Gilat, Lucent Bell Labs Prof. G. Fleming, UC Berkeley \ Dr. D. Robello, Kodak

description

Dendrimers and light: towards electroactive and photoactive dendrimers. Jean M.J. Fréchet, Dept. of Chemistry, UC Berkeley AFOSR MURI Program (Dr. C. Lee) Graduate Students: Alex Adronov, Adam Freeman, Stefan Hecht, Patrick Malenfant. - PowerPoint PPT Presentation

Transcript of Dendrimers and light: towards electroactive and photoactive dendrimers

Page 1: Dendrimers and light: towards electroactive and photoactive dendrimers

Dendrimers and light:towards electroactive and photoactive dendrimers

Jean M.J. Fréchet, Dept. of Chemistry, UC BerkeleyAFOSR MURI Program (Dr. C. Lee)

Graduate Students: Alex Adronov, Adam Freeman, Stefan Hecht, Patrick Malenfant.

Postdoctoral Fellow: Lysander Chrisstoffels.

Collaborators: Prof. M. Thompson, USCProf. P. Prasad, SUNY BuffaloDr. S. Gilat, Lucent Bell LabsProf. G. Fleming, UC Berkeley \Dr. D. Robello, Kodak

Page 2: Dendrimers and light: towards electroactive and photoactive dendrimers

e-

e-

e-

1. Light Harvesting

2. EnergyTransfer

Relay

3. Charge Separation

ChlorophyllBound to Protein

Reaction Center

Lipid Bilayer

Natural photosynthetic processes

[email protected]

Page 3: Dendrimers and light: towards electroactive and photoactive dendrimers

• Design & synthesis of a dendritic light harvesting “antenna”• Demonstration of efficient through-space energy transfer• Study of the effect of increasing dendrimer generation on ...the energy transfer efficiency

The dendritic antenna

[email protected]

Page 4: Dendrimers and light: towards electroactive and photoactive dendrimers

OSi

OO

O

O

O

O

NN O

N

NNO

NN

O

N

NN

O

O

O

O

O

NNO

N

N NO

NN

O

N

N N

O

• Efficient light harvesting and energy transfer (>90%) in dendritic systems have been demonstrated.

• Synthesized molecules have been fully characterized and energy transfer was studied by both steady-state and time-resolved techniques.

• The synthetic approach has a modular design that provides versatility in the choice of core acceptor and surface donor dyes (coumarins, oligothiophenes, two-photon chromophores).

[email protected]

Antennas for Light Harvesting and Energy Transfer

O

O

N

N

NN

O

OO

O

OO

OO

OO

O

O

N

OO

O

O

O

O

O O

N

N

N

N

O

O OO

O

O

O OOO

N

N

N

N

O

OOO

O

O

OO

O

O

N

N

N N

O

O O

O

O O

OO

SS

SS

SS

S

OO

C8H17H17C8

ON

OO

NOO

ON

OO

N O O

O

O

NOON

OO

O

O

N O ON

OO

Page 5: Dendrimers and light: towards electroactive and photoactive dendrimers

300320

340360

380400

420440

460480

500

360380

400420 440 460 480 500 520

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ON O

O

OH

Donor Dye Acceptor Dye

G-4 Dendrimer

Compound acc (ps)

ET (ps) D-A Distance (Å) ET (%)

G-1 2266 <30 11.7 98%G-2 2422 <30 13.6 97%G-3 2455 <30 14.3 97%G-4 2636 <50 17.8 >93%

Summary of initial energy transfer results

ON OH

O

O

N

N

NN

O

OO

O

OO

OO

OO

O

O

N

OO

O

O

O

O

O O

N

N

N

N

O

O OO

O

O

O OOO

N

N

N

N

O

OOO

O

O

OO

O

O

N

N

N N

O

O O

O

O O

OO

[email protected]

Page 6: Dendrimers and light: towards electroactive and photoactive dendrimers

Synthetic strategy

nucleophilic

electrophilic

nucleophilicattackN

O

O

N

O

O

N

O

O

N

O

OOH

O O

N

O

O

N

O

O

N

O

OOH

O O

Br

Br Br

OTBDPSO

OHR

R =

O

O

HN

ON OS

SS

SS

C8H17

SS

SS

SS

S

C8H17H17C8

[email protected]

Page 7: Dendrimers and light: towards electroactive and photoactive dendrimers

(C2)8-[G-3]-CH2OH

(C2)4-[G-2]-CH2OH

(C2)2-[G-1]-CH2OH

O

OO

N

N

O

O

O

O

NOON

OO

O

OO

N

N

O

O

O

O

N O ON

OO

OH59%

3. (Br)2-[G-1]-CH2OTBDPS4. TBAF

2. NaOH/EtOH1. K2CO3/CH3CN

OO

OSO2C16H33

Br

Br

Br

Br

OO

N

N

N

N

OO

O O

OO

O O

OH

72%

81%

83%

2. TBAF1. (Br)2-[G-1]-CH2OTBDPS

OO NN

OH

O O

1. K2CO3/CH3CN2. NaOH/EtOH

BrBr

OSO2C16H33

BrBr

OTBDPS

2. TBAF1. K2CO3/CH3CN

OO NN O O

OH

+ON

HO

Peripheral laser-dye donor functionalization

[email protected]

Page 8: Dendrimers and light: towards electroactive and photoactive dendrimers

Identical reactionscan be carried out to link the penta-

thiophene cores tothe donor dendrons

(C2)8-[G-3]-CH2OT7

(C2)4-[G-2]-CH2OT7

(C2)2-[G-1]-CH2OT7

89%

EDC/DMAPCH2Cl2

EDC/DMAPCH2Cl2

89%

87%

EDC/DMAPCH2Cl2

OO

N

N

N

N

OO

O O

OO

O O

O

SS

SS

SS

S

O

H17C8 C8H17

SS

SS

SS

S

OO

H17C8 C8H17

OO NN O O

(C2)2-[G-1]-CH2OH

(C2)4-[G-2]-CH2OH

(C2)8-[G-3]-CH2OH

SS

SS

SS

S

OHO

SS

SS

SS

S

OO

C8H17H17C8

ON

OO

NOO

ON

OO

N O O

O

O

NOON

OO

O

O

N O ON

OO

Core acceptor functionalization

[email protected]

Page 9: Dendrimers and light: towards electroactive and photoactive dendrimers

Thiophene-core fully dye-labeled dendrons

(C2)2-[G-1]-CH2OT5

(C2)4-[G-2]-CH2OT5(C2)8-[G-3]-CH2OT5

(C2)2-[G-1]-CH2OT7

(C2)4-[G-2]-CH2OT7

(C2)8-[G-3]-CH2OT7

S

S

S

S

S

H17C8

OO

OO

N

N

N

N

OO

O O

OO

O O

OO NN O O

O

S

S

S

S

S

H17C8

O

S

S

S

S

S

H17C8

OO

O

OO

N

N

O

O

O

O

NOON

OO

O

OO

N

N

O

O

O

O

N O ON

OO

SS

SS

SS

S

OO

H17C8 C8H17

OO NN O O

OO

N

N

N

N

OO

O O

OO

O O

O

SS

SS

SS

S

O

H17C8 C8H17 SS

SS

SS

S

OO

C8H17H17C8

ON

OO

NOO

ON

OO

N O O

O

O

NOON

OO

O

O

N O ON

OO

[email protected]

Page 10: Dendrimers and light: towards electroactive and photoactive dendrimers

MALDI-TOF of T7-labeled dendrons

1500 2000 2500 3000 3500 4000 4500 5000

Mass (m/z)

1403 (1408)

2075 (2079)

3411 (3420)

G-1

G-2

G-3

[email protected]

Page 11: Dendrimers and light: towards electroactive and photoactive dendrimers

0

1

2

3

4

5

6

300 350 400 450 500 550 600 650

0

50

100

150

200

250

300

Absorption

Absorption

Emission

Emission

Wavelength (nm)

Ex

tin

cti

on

co

eff

icie

nt

(x 1

0-4,

M-1

cm

-1)

Em

iss

ion

In

ten

sit

y (

a.u

.)

SS

SS

SS

S

HOO

H17C8 C8H17

Large overlap between donor emission and acceptorabsorption enables efficient energy transfer.

Spectral properties of the models

OO

N

N

N

N

OO

O O

OO

O O

OH

[email protected]

Page 12: Dendrimers and light: towards electroactive and photoactive dendrimers

0

20000

40000

60000

80000

100000

120000

300 350 400 450 500 550

T7

G-1

G-2

G-3

Wavelength (nm)

Ex

tin

cti

on

co

eff

icie

nt

(M-1

cm

-1)

“Light Harvesting” capacity doubles with generation.

Light harvesting: G-1 to G-3

SS

SS

SS

S

OO

C8H17H17C8

ON

OO

NOO

ON

OO

N O O

O

O

NOON

OO

O

O

N O ON

OO

[email protected]

Page 13: Dendrimers and light: towards electroactive and photoactive dendrimers

0

100000

200000

300000

400000

500000

600000

700000

350 400 450 500 550 600 650

T7

G-1

G-2

G-3

Wavelength (nm)

exc = 343 nmconc. = 5.06 x 10-6 M

Em

iss

ion

in

ten

sit

y (

a.u

.)

Beyond G-1, sensitized fluorescence becomes much moreintense than fluorescence from direct excitation of the core.

Energy transfer: G-1 to G-3

SS

SS

SS

S

OO

C8H17H17C8

ON

OO

NOO

ON

OO

N O O

O

O

NOON

OO

O

O

N O ON

OO

Direct Core Emissionmax = 425 nm

[email protected]

Page 14: Dendrimers and light: towards electroactive and photoactive dendrimers

T5-core dendrons as antennas

0

20000

40000

60000

80000

100000

120000

300 350 400 450 500 550 300 350 400 450 500 550 600 650

100000

200000

300000

Wavelength (nm) Wavelength (nm)

Ex

tin

cti

on

co

eff

icie

nt

(M-1c

m-1)

Em

iss

ion

in

ten

sit

y (

a.

u.)

T5

G-1

G-2

G-3

G-1

G-2

G-3

exc = 343 nmconc. = 3.93 x 10-6 M

T5

Direct Core Emissionexc = 425 nm

The observed absorption and fluorescence emission spectra of the G-1 to G-3 pentathiophene core dendrons were very similar to

those for the series of heptathiophene core dendrons.

[email protected]

S

S

S

S

S

H17C8

OO

O

OO

N

N

O

O

O

O

NOON

OO

O

OO

N

N

O

O

O

O

N O ON

OO

Page 15: Dendrimers and light: towards electroactive and photoactive dendrimers

Energy transfer efficiency

Compound max ()

Donors

max ()

AcceptorsEmission

Range

ET

(%)T7-Bn 423 (48 000) 520-580G1-T7 341 (43 500) 426 (47 500) 520-580 99%G2-T7 343 (66 000) 426 (43 500) 520-580 99%G3-T7 344 (103 000) 425 (38 500) 520-580 99%T5-Bn 422 (42 000) 520-580G1-T5 345 (37 000) 423 (40 000) 520-580 99%G2-T5 344 (57000) 423 (35 000) 520-580 99%G3-T5 344 (104 000) 423 (37 000) 520-580 99%

[email protected]

Page 16: Dendrimers and light: towards electroactive and photoactive dendrimers

It is possible to tune the dendrimer emission wavelength by changing the core functionality. Also, by mixing the different types of dendrimers (no dye at core, coumarin 343 at core, and oligothiophene at core), it is possible to obtain broadband emission by exciting at a single wavelength (max of donor dye -

343 nm).

Wavelength (nm) Wavelength (nm)E

mis

sio

n i

nte

ns

ity

(a

. u

.)

Em

iss

ion

in

ten

sit

y (

a.

u.)

0

50000

100000

150000

200000

250000

350 400 450 500 550 600 650 7000

40000

80000

120000

160000

350 400 450 500 550 600 650 700

Tunable emission

OO NN O O

OH

N N

O

OOO O

O

O

O

N

SS

SS

SS

S

OO

H17C8 C8H17

OO NN O O

[email protected]

Page 17: Dendrimers and light: towards electroactive and photoactive dendrimers

NN

O

N

NN

O

OH

O

OHHO

O

OSi

NNO

N

NNO

OO

OO

OSi

NN O

N

NN O

+EDC/DMAP

G-1

Investigation of cooperativity effects of two-photon chromophores when arranged in a branched structure

Incorporation of two-photon dyes

A collaboration with Prof. Paras Prasad.

[email protected]

Page 18: Dendrimers and light: towards electroactive and photoactive dendrimers

NNO

N

NNO

OO

OO

OH

NN O

N

NN O

BrBr

OSi

OSi

OO

O

O

O

O

NN O

N

NNO

NN

O

N

NN

O

O

O

O

O

NNO

N

N NO

NN

O

N

N N

O

+K2CO3

18-Crown-6

G-2

Two-photon dendrimers

Collaboration with Prof. Paras Prasad

[email protected]

Page 19: Dendrimers and light: towards electroactive and photoactive dendrimers

O OHO

O ONH

CF3

O OHO

C OH

O

N C O

Future directions:dendritic energy transfer relay

[email protected]

320 nm

380 nm

390 nm

470 nm

480 nm510 nm

Page 20: Dendrimers and light: towards electroactive and photoactive dendrimers

A

A

AA

A A

A

A

A

h h

h ’h ’

Energy Transfer

• Self-assembly of individualdonor dendrons and acceptor dyes simplifies the preparation of antennas.

• Energy transfer on surfaces opens avenues for the fabrication of novel photonic devices.

• Variation of photoactive donors and acceptors allows for numerous applications, ranging from sensors to solar cells and new devices.

[email protected]

Surface-confined energy transfer

Page 21: Dendrimers and light: towards electroactive and photoactive dendrimers

O

O

N

Si SiSi

Si

O

O

NH

SiOO O

Si

O

NN

O

O

O

O

O

NH

Si

O

O

NH

Si OOO

O

NN

OO

OO

O

Si

O

O

NH

SiOO

O

Si

O

NN

OO

OO

O

NH

Si

O

O

O

O

N

O

NH

SiO

OO

Si

O

NN

O

OO

O

O

O

Si SiSi

O

Si

NHO

O

O

N

NHO

O

O

N

h

• Self-assembled monolayers of chromophores with different aspect ratios were prepared on silicon wafers by using siloxane chemistry.• Complete quenching of the donor emission as well as efficient energy transfer from the assembled coumarin-2 (donor) dyes to the coumarin-343 (acceptor) dyes was observed.• The photophysical properties are tuned by varying the molar ratio of assembled donor and acceptor chromophores on the surface.

h’

Energy transfer on self-assembled surfaces

[email protected]

Page 22: Dendrimers and light: towards electroactive and photoactive dendrimers

Synthesis of adsorbates

Donor chromophore

Acceptor chromophore

[email protected]

+MeCN

O

O

O

N N

OOO O

HO

OO

O

N N

OOO O

HO

EDC / DPTS

CH2Cl2

DMAP

(85%) (69%)

SiOO

O

O

NH

O

N N

OOO O

O

Si O

O O

NH2

+

OHO

OO

N

EDC / DPTS

CH2Cl2(73%)

Si O

O O

NHO

OO

N

Si O

O O

NH2

Page 23: Dendrimers and light: towards electroactive and photoactive dendrimers

Physisorption of coumarin-343 onto amino-terminated SAMs

0

10000

20000

30000

40000

400 500 600

em

(nm)

Emission scan

cps ( s -1 )

ex = 420 nm

I

II

III

[email protected]

OHO

OO

N

CH2Cl2 CH2Cl2

NEt3

I III

II

SiSi

SiO

H2N

SiOO O

Si

H2N

Si

H2N

Si OOO

OO

Si Si

H2N

Si

O-O

OO

N

O-O

OO

N

SiSi

SiO

+H3N

SiOO O

Si

H2N

Si

+H3N

Si OOO

OO

Si Si

H2N

Si

Page 24: Dendrimers and light: towards electroactive and photoactive dendrimers

1 2 (nm)

0

0.25

0.5

0.75

1

320 370 420 470 520 570

em

A.U.

Excitation spectra and Emission spectra of SAMs of 1 or 2

1

2 2 1

Photophysical properties of coumarin-derivatized SAMs

[email protected]

SiOO

O

O

NH

O

N N

OOO O

O

Si O

O O

NHO

OO

N

Page 25: Dendrimers and light: towards electroactive and photoactive dendrimers

Energy transfer within SAMs of mixed monolayers of coumarin chromophores

Emission spectra from mixed monolayer of 1 and 2 (1:2 ratio)

1 2

0

20000

40000

60000

80000

350 400 450 500 550 600

em (nm)

cps (s-1

)

ex = 420 nm

ex = 370 nm

[email protected]

Si O

O O

NHO

OO

N

SiOO

O

O

NH

O

N N

OOO O

O

Page 26: Dendrimers and light: towards electroactive and photoactive dendrimers

Ae De

Ae DeAe De

Ae De

Ae De

Ae De AeDe

Ae De

h h

e-

e-e-

e-

Electron Transfer

E lectron Injectioninto SemiconductingSubstrate

• Light harvesting event is followed by electron transfer.

• The excited state of secondary donor (De) transfers an electron instead of emitting light.

• Electron acceptor can inject an e- into a semi-conducting substrate.

[email protected]

Energy transfer on surfaces… The next step

Page 27: Dendrimers and light: towards electroactive and photoactive dendrimers

1. Light Harvesting & Energy Transfer

h

+

-+ -

S

S'

2. Charge Separation

3. Charge Transport

4. Subsequent Reaction

Light harvesting and electron transfer:the concept

Electroactive core is capable of donating an electron to attached acceptor;this effects charge separation that may be followed by charge transport

and subsequent [email protected]

Page 28: Dendrimers and light: towards electroactive and photoactive dendrimers

1. Light Harvesting

2. Energy Transfer

3. Electron Transfer

+ +

N

OO

OO

OO

NN

N

OO

N

OO

N O O

NOO

OO

N O O

O

ON

N

N

OO

NOO

Ru2+

N

N R N N CH3

e-

O

OO

N

N

O

O

O

O

NOON

OO

O

OO

N

N

O

O

O

O

N O ON

OO

S

S

S

S

O

O

O

O

N

N

+

+

e-

Clark, D. C. et. al. J. Am. Chem. Soc. 1997, 119, 10525-10531

N

N

NNR = (CH2)n, n = 2-8

+ +Ru2+

N

N R N N CH3

Light harvesting and electron transfer:the molecules

[email protected]

Page 29: Dendrimers and light: towards electroactive and photoactive dendrimers

Why use dendrimers in OLEDs?

Site-isolatedlight emittingchromophore

“Insulating”building block

Hole or electrontransporting moiety

Preorganization of active components and building blocksA collaboration with Prof. M. Thompson, USC

Page 30: Dendrimers and light: towards electroactive and photoactive dendrimers

h h

Metal cathodeITO anode

Glass substrate

Dendrimers in single layer OLED’s

[email protected]

O

NO

O

N

N

OO

N

O

OO

O

O

N

O

O

N

N

O

O

N

OO

OO

O

NO

O

N

N

OO

N

O

OO

O

O

N O

O

O

NN

O

A collaboration withProf. M. Thompson, USC

Page 31: Dendrimers and light: towards electroactive and photoactive dendrimers

Synthesis of Dye-Labeled Cores

Coumarin 343 (C343)max(abs) = 425 nm

max(em) = 478 nm

N O

OH

O

O

Br

Br

Br

Br

+O

Br

Br

Br

N O

O

O

KHCO318-crown-6

acetoneCH2Cl2,

71%

"pentathiophene" (T5)max(abs) = 425 nmmax(em) = 550 nm

SS S

S SOH

O

C8H17

Br

Br

Br

Br

O

Br

Br

BrS

S SS S

O

C8H17KHCO3

18-crown-62-butanoneCH2Cl2,

64%

Page 32: Dendrimers and light: towards electroactive and photoactive dendrimers

Synthesis of HT-Labeled Monodendrons

OHHO

OH

+

K2CO318-crown-6

acetone, 71% O O

OH

NO

O

N

NO

O

N

N

O

N

O

Br

+

OHHO

OH

N

O

N

O

OH

NBr

K2CO318-crown-6

acetone, 79%

TAA2-[G-1]-OH

CBr4, PPh3THF

0 °C - rt83%

PPh3, Br2CH2Cl2

96%

BrOH Br O O N

O O

O

PPTS

CH2Cl296%

(Naph)PhNHPd2(dba)3

DPPF

NaOtBu

toluene, 95° C98%

Page 33: Dendrimers and light: towards electroactive and photoactive dendrimers

Synthesis of Reactive Monodendrons

TAA2-[G-1]-OHDCC, DPTSCH2Cl2, 97%

TAA4-[G-2]-OHDCC, DPTSCH2Cl2, 94%

HO

O

OH

O

OH

SiO

SiO

O O

OSi O

Si

HO

O

OH

OTBDMSClimidazole

DMF87%

AcOHH2O

THF82%

N

O

O

N

N

O

O

N

O

O

O

O

OSi

N

O

O

N

O

O

N

OO

N

O

N

O

O

N

O

O

N

OO

N

O

O O

OSi

Page 34: Dendrimers and light: towards electroactive and photoactive dendrimers

Synthesis of Fully-Labeled Dendrimers

RO

NO

O

N

N

OO

N

O

OO

O

O

N

O

O

N

N

O

O

N

OO

OO

O

NO

O

N

N

OO

N

O

OO

O

O

N

O

O

N

N

O

O

N

OO

OO

O Si

K2CO3, KF18-crown-6

acetone, THF

RO

Br

Br

Br

SS S

S SO

C8H17

N O

O

OR = 40%

59%R =

Page 35: Dendrimers and light: towards electroactive and photoactive dendrimers

Single-Layer OLEDs

ITO

DENDRIMER + PBD

Mg-Ag CATHODE

h

All devices herein were single-layer, twocomponent devices consisting of the fully-labeled dendrimers (for HT and emission) andthe molecular electron transporter, PBD.

1. Spin cast a glyme solution of thecomponents (~ 10 mg/mL) onto a patternedITO substrate. @ 2000 rpm for 40seconds, pinhole free films with an averageellipsometric thickness were ~ 900 Åproduced.

2. A Mg-Ag cathode (9:1) was vapordeposited to a thickness of 500 Å andsubsequently capped with an additional1000 Å of Ag.

3. Typical turn-on voltages for these deviceswere 12-15 V, and most could be driven atvoltages exceeding 30 V.

PBD (electron transport)

NN

O

A collaboration with Prof. M. Thompson, USC

Page 36: Dendrimers and light: towards electroactive and photoactive dendrimers

Device Fabrication

glass

ITO

photoresist,insulating strip

Teflontape

Working deviceTop View

Mg:Agwith Ag cap

(+)

(-)

(+)

(-)

light out

Working deviceBottom View

Patterned ITOPrior to vapor deposition

A collaboration with Prof. M. Thompson, USC

Page 37: Dendrimers and light: towards electroactive and photoactive dendrimers

0

0.2

0.4

0.6

0.8

1

1.2

300 400 500 600 700 800

wavelength (nm)

inte

nsity

(a.u

.)

PL ( TAA only )

PL ( dendrimer only )

PL ( dendrimer + PBD )EL ( dendrimer + PBD )

TAA = TAA2-[G-1]-OH

Photo- and electroluminescenceof C343 labeled dendrimers

O

NO

O

N

N

OO

N

O

OO

O

O

N

O

O

N

N

O

O

N

OO

OO

O

NO

O

N

N

OO

N

O

OO

O

O

N O

O

O

NN

OPBD =A collaboration with Prof. M. Thompson, USC

Page 38: Dendrimers and light: towards electroactive and photoactive dendrimers

0

0.2

0.4

0.6

0.8

1

1.2

300 400 500 600 700 800

wavelength (nm)

inte

nsi

ty (

a.u

.)

PL ( dendrimer only)PL ( dendrimer + PBD)

EL ( dendrimer + PBD)

Photo- and Electroluminescenceof T5 Labeled Dendrimers

O

NO

O

N

N

OO

N

O

OO

O

O

N

O

O

N

N

O

O

N

OO

OO

O

NO

O

N

N

OO

N

O

OO

O

OS

S SS S

O

C8H17

NN

OPBD =

A collaboration with Prof. M. Thompson, USC

Page 39: Dendrimers and light: towards electroactive and photoactive dendrimers

Color Tunable OLEDs by Mixing Dendrimers

0

0.2

0.4

0.6

0.8

1

1.2

300 400 500 600 700 800

wavelength (nm)

inte

ns

ity

(a

.u.)

C343 only

C343 : T5

5 : 1

3 : 1

2 : 1

1 : 1

C343T5

O

NO

O

N

N

OO

N

O

OO

O

O

N

O

O

N

N

O

O

N

OO

OO

O

NO

O

N

N

OO

N

O

OO

O

O

N O

O

O

O

NO

O

N

N

OO

N

O

OO

O

O

N

O

O

N

N

O

O

N

OO

OO

O

NO

O

N

N

OO

N

O

OO

O

OS

S SS S

O

C8H17

The smalldendrimer

affords partialsite-isolation

Page 40: Dendrimers and light: towards electroactive and photoactive dendrimers

Increasing the size of the dendrimer will increase site isolation of the central lumophore; this should lead to enhanced color

tunability of devices containing mixtures of dendrimers.

Surface (HT)chromophores

Centrallumophore

Interior “insulating”monomer layers

Towards enhanced properties…

[email protected]

Page 41: Dendrimers and light: towards electroactive and photoactive dendrimers

Increasing dendrimer size for enhanced site-isolation

DYE

N

O

Ar

Ar

N

O

Ar

Ar

N

O

Ar

Ar

N

O

Ar

Ar

OO

OO

O

N

O

Ar

Ar

NO

Ar

Ar

N

O

Ar

Ar N

O

Ar Ar

OO

O

O

O

O

O

N

O

Ar

Ar N

O

Ar Ar

N

O

Ar

Ar

N OAr

Ar

O

OO

O

DYE O

O

O

O

OO

NArAr

N ArAr

O

O O

NAr

ArN

ArAr

O

O

O

ONAr

Ar

NAr

ArO

O

O

N

Ar

Ar

N

Ar

Ar

O

OO

OO

NArAr

N ArAr

O

O O

NAr Ar

NAr Ar

O

O

O

ONAr

Ar

N

Ar

ArO

O

O

N

Ar

Ar

N

Ar

Ar

O

OO

O

O

N

Ar

Ar

N

ArAr

O

O

O

N Ar

Ar

N

Ar

Ar

OO

O

O

N

Ar

Ar

N

Ar

Ar

O

O

O

N Ar

Ar

NAr

Ar

OO

O

[email protected]

Page 42: Dendrimers and light: towards electroactive and photoactive dendrimers

Current status of project

• A new family of fully-labeled dendrimers has been successfully prepared via a modular approach.

• Photoluminescence studies indicate that efficient Forster energy transfer between peripheral and core chromophores occurs within these dendrimers.

• Analogous energy conveyance processes occur in single-layer OLEDs containing these dendrimers and exclusive emission from the core chromophores is observed.

• Site isolation of chromophoric dyes within the dendrimer affords some degree of color tunability.

Page 43: Dendrimers and light: towards electroactive and photoactive dendrimers

Porphyrin-core stars as photo- and electroactive polymers

peripheral functionalities(chromophores or solubilizing groups)

porphyrin-core unit(energy sink and catalytic site)

polymer backbone(UV-transparent and redox-stable)

advantages: ease and flexibility of preparation/modification efficient shielding of the core (site isolation) solvent-induced change of shape and size potential: photoresponsive devices and sensors, catalysts

Page 44: Dendrimers and light: towards electroactive and photoactive dendrimers

Solar Energy Concentration and Conversion

water-soluble micellar structure solvophobically-driven catalysis

substratesubstrate productproduct

Toward Light-driven Supermolecular Catalysis

Page 45: Dendrimers and light: towards electroactive and photoactive dendrimers

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

OO

O

O

OO

O

OOO

O

OOO

O

HN

OO

O

O

O

O

HN

OO

O

O

O

O

O

NH

O

O

O O

O

O O

OOO

HN

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

OO

O

O

OO

O

OOO

O

OOO

O

O

O

NH

OO

O

O

O

O NH

OO

O

O

O

O

O

NH

O

O

O O

O

O O

OOO

HN

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

OO

O

O

OO

O

OO O

O

OO O

O

HN

OO

O

O

O

OHN

OO

O

O

O

O

O

NH

O

O

OO

O

OO

O OO

NH

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

OO

O

O

OO

O

OO O

O

OO O

O

O

O

NH

OO

O

O

O

ONH

OO

O

O

O

O

O

NH

O

O

OO

O

OO

O OO

NH

O

O

Fe NNN N

Myoglobin Mimics - Oxygen Binding in Artificial Enzymes:

see also: Jiang and Aida Chem. Commun. 1996, 1523 (polyether dendrimers)

dioxygen binding affinity: 1500 times higher than hemoglobin (T-state)

Collman, Fu, Zingg, and DiederichChem. Commun. 1997, 193

Encapsulated porphyrins - a retrospective

Page 46: Dendrimers and light: towards electroactive and photoactive dendrimers

Pollak, Leon, Fréchet, Maskus, Abruña Chem. Mater. 1998, 10, 30

O

O

O

OO

OO

O

O

O

OO

O

O

O

O

O

OO

O

O

O

O

O

O

O O

O

O

O

Zn

N

N

N

N

O

O

O

OO

O

O

O

O

O

O

O

O

O

O

O

O

OO

O

O

O

O

O

O

O

O

O

O

O

O

O

O

OO

O

O

O

O

O

O

O

O

O

O

O

O

OO

O

O

O

O

O

O

O

O

O

O

O

O

O

O

OO

OO

O

O

O

OO

O

O

O

O

O

OO

O

O

O

O

O

O

O O

O

O

O

Hemeprotein Mimics - Tuning of Redox properties by Isolation of the Core:

see also: Diederich and coworkers Angew. Chem. Int. Ed. Engl. 1994, 33, 1739; Angew. Chem. Int. Ed. Engl. 1995, 34, 2725; Helv. Chim. Acta 1997, 80, 1773

Jin, Aida, Inoue Chem. Commun. 1993, 1260Aida and coworkers Macromolecules 1996, 29, 5236

Encapsulated porphyrins - a retrospective

Page 47: Dendrimers and light: towards electroactive and photoactive dendrimers

HO

HO

O

O

OHOH

OO

OH

OH

O

O

OH OH

O O

NH

HN

N

N

OHOH

OO

HO

HO O

O

HOHO

OO

HOHO

OO

HO

HO O

O

OHOH

OO

OH

OHO

ONH

HN

N

NO

OH

OHO

HO

OH

OH

OH

NH

HN

N

N

OH

HO

HO

HO

HO

OH

OHNH

HN

N

NOH

Por

Por

O

OCO2H

1.

DIC, DPTS (THF, CH2Cl2)

2. 2 M H2SO4

(THF, MeOH)

O

O

n

Sn(Oct)2

105 oC

branched initiators star polymers

Synthesis of branched porphyrin-core star polymers

Page 48: Dendrimers and light: towards electroactive and photoactive dendrimers

OO

O O

O

O

OH

NNHN HN

n-1

chain ends

repeat units1H NMR Analysis:

Characterization of porphyrin-core star polymers

Page 49: Dendrimers and light: towards electroactive and photoactive dendrimers

free base star

coumarin star

core modification (metalation): end-group modification (esterification):

16-armstar

O

OO

O

OO

O

OO

O

OO

O

OO

O

OO

O

OO

O

OO

O

O O

O

OO

O

OO

O

O O

O

OO

O

OO

O

O O

O

O O

O(

O)

O

O(

O)

O

O

O

O(

O)

O

O(

O)

O

)O

(O

O

)O

(O

O

OO

OO

OO

O

)O

(O

O

)O

(O

O

OO

NH

HN

N

N

O O(

O)

O

O(

O)

O

O

)O

(O

O

)O

(O

O

O

)O

(O

O

)O

(O

O

O O(

O)

O

O(

O)

O

O

n/16

n/16

n/16

n/16

n/16

n/16

n/16

n/16

n/16

n/16

n/16n/16

n/16

n/16

n/16

n/16

O O

O

Cl

DMAP(CH2Cl2, pyridine)

O(

O)

O

HO(

O)

O

H

OO

O(

O)

O

HO(

O)

O

H

)O

(O

O

H )O

(O

O

H

OO

OO

OO

O

)O

(O

O

H )O

(O

O

H

OO

N

N

N

N

O O(

O)

O

HO(

O)

O

H

O

)O

(O

O

H )O

(O

O

H

O

)O

(O

O

H )O

(O

O

H

O O(

O)

O

HO(

O)

O

H

O

Zn

n/16

n/16

n/16

n/16

n/16

n/16

n/16

n/16

n/16

n/16

n/16

n/16n/16

n/16

n/16

n/16

Zn(OAc)2

(CHCl3, MeOH)

Modification of porphyrin-core star polymers

300 400 500 600 700

0.0

0.2

0.4

0.6

0.8

1.0 free base star Zn star coumarin star

abso

rban

ce /

a.u.

wavelength / nm

500 550 600 650

x 5

Page 50: Dendrimers and light: towards electroactive and photoactive dendrimers

Q

q1 k [Q]

Stern-VolmerAnalysis

enhanced shielding of the core moiety by the polymer backbonedegree of site isolation is a function of the chain length

fluorescence quenching experiments: employing methyl viologen in acetonitrile

Accessibility of the zinc porphyrin core

Page 51: Dendrimers and light: towards electroactive and photoactive dendrimers

Förster, Fluoreszenz Organischer Verbindungen, Vandenhoech and Ruprech: Göttingen, 1951

τkΦ ETET 6

22

ETkDA

AD

R

μμ )J(ε

R

kκk A

DA

oD

6

2

ETk

distancespectraloverlap

O

OO

O

OO

O

OO

O

OO

O

OO

O

OO

O

OO

O

OO

O

O O

O

OO

O

OO

O

O O

O

OO

O

OO

O

O O

O

O O

O(

O)

O

O(

O)

O

O

O

O(

O)

O

O(

O)

O

)O

(O

O

)O

(O

O

OO

OO

OO

O

)O

(O

O

)O

(O

O

OO

NH

HN

N

N

O O(

O)

O

O(

O)

O

O

)O

(O

O

)O

(O

O

O

)O

(O

O

)O

(O

O

O O(

O)

O

O(

O)

O

O

n/16

n/16

n/16

n/16

n/16

n/16

n/16

n/16

n/16

n/16

n/16n/16

n/16

n/16

n/16

n/16

300 350 400 450 500 550 600 650

acceptor(Porphyrin)

donors(coumarins)

wavelength / nm

Energy transfer in coumarin-terminatedporphyrin-core star polymers

Page 52: Dendrimers and light: towards electroactive and photoactive dendrimers

correlation between energy transfer efficiency and average donor-acceptor distance

quenched donor emission in chloroform:

Influence of the chain length on the energy transfer

Page 53: Dendrimers and light: towards electroactive and photoactive dendrimers

solvation-induced change of average donor-acceptor distance:

bad solvent (MeCN)collapsed conformation

good solvent (CHCl3)extended conformation

Influence of the solvent on the energy transfer

Page 54: Dendrimers and light: towards electroactive and photoactive dendrimers

The role of concentration - trivial vs. non-trivial energy transfer

Page 55: Dendrimers and light: towards electroactive and photoactive dendrimers

Photo and electroactive dendrimers: some conclusions

• Dendrimers are ideally suited for the design of nanometer scale antennas.• Through space energy transfer is very efficient.• Site isolation of chromophores at the core of dendrimer provides for unique behaviors not achievable with ordinary chromophores or polymers.• Energy transfer on surfaces opens avenues for the fabrication of novel photonic devices.• Applications include photonic devices, solar cells, OLEDs, sensors, light-powered reactors, etc.