DEAR SDD --> SIDDHARTA

29
DEAR SDD --> SIDDHARTA DEAR SDD --> SIDDHARTA Si Si licon licon D D rift rift D D etector for etector for H H adronic adronic A A tom tom R R esearch and esearch and T T iming iming A A pplications pplications Carlo Fiorini Carlo Fiorini (Politecnico di Milano) (Politecnico di Milano) Development of a soft X-ray detection apparatus, based on Silicon Drift Detectors (SDD), with high energy resolution and high background reduction for application in exotic atoms researches

description

DEAR SDD --> SIDDHARTA Si licon D rift D etector for H adronic A tom R esearch and T iming A pplications Carlo Fiorini (Politecnico di Milano) Development of a soft X-ray detection apparatus, based on Silicon Drift Detectors (SDD), with high energy resolution - PowerPoint PPT Presentation

Transcript of DEAR SDD --> SIDDHARTA

Page 1: DEAR   SDD --> SIDDHARTA

  

DEAR SDD --> SIDDHARTADEAR SDD --> SIDDHARTA

SiSilicon licon DDrift rift DDetector foretector for H Hadronic adronic AAtom tom RResearch and esearch and TTiming iming AApplicationspplications

Carlo FioriniCarlo Fiorini(Politecnico di Milano)(Politecnico di Milano)

 

Development of a soft X-ray detection apparatus,based on Silicon Drift Detectors (SDD),

with high energy resolution and high background reduction

for application in exotic atoms researches

Page 2: DEAR   SDD --> SIDDHARTA

Experimental requirements Experimental requirements

Page 3: DEAR   SDD --> SIDDHARTA

Experimental requirements

Exotic atom

e.m. position

of K line

(keV)

(eV)

(eV)

Required precision 

(eV) (eV)

hydrogen 6.46 160 200 ~ 5 ~ 10

deuterium 7.81 500 800 ~ 25 ~ 100

Page 4: DEAR   SDD --> SIDDHARTA

Working principles of the SDDWorking principles of the SDD

Page 5: DEAR   SDD --> SIDDHARTA

n

n+

p+ -V cc

The classical PIN diode detector

The anode capacitance is proportional to the detector active area

Page 6: DEAR   SDD --> SIDDHARTA

n

n+

p+ -V cc

p+

The Semiconductor Drift Detector

AnodeThe electrons are collected by the small anode,characterised by a low output capacitance.

Advantages: very high energy resolution at fast shaping times, due to the small anode capacitance, independent of the active area of the detector

Page 7: DEAR   SDD --> SIDDHARTA

The Silicon Drift Detector with on-chip JFET

JFET integrated on the detector• capacitive ‘matching’: Cgate = Cdetector

• minimization of the parasitic capacitances• reduction of the microphonic noise• simple solution for the connection detector-electronics in monolithic arrays of several units

Page 8: DEAR   SDD --> SIDDHARTA

The integrated JFET

Detector produced at the MPI Halbleiterlabor, Munich, Germany

Page 9: DEAR   SDD --> SIDDHARTA

Performances of the SDDsPerformances of the SDDs

Page 10: DEAR   SDD --> SIDDHARTA

Quantum efficiency of a 300 m thick SDD 55Fe spectrum measured with a SDD (5 mm2) at –10°C with 0.5 s shaping time

Silicon Drift Detector performances

Page 11: DEAR   SDD --> SIDDHARTA

Silicon Drift Detector Droplet or SD3

T=-30°C a τsh=1µs

5000 5500 6000 6500 7000EN ER G Y [eV ]

0

2000

4000

6000

8000

CO

UN

TS

Fe55

K

K

FW HM =131 eV

Canode= 50 fF

(vs. 100fF conventional SDD)

Page 12: DEAR   SDD --> SIDDHARTA

Resolution in the line shift measurementResolution in the line shift measurement

Page 13: DEAR   SDD --> SIDDHARTA

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1100

200

300

400

500

600

700

800

A (cm-2)

FW

HM

(eV

)

SDD PIN Si(Li) 150 K 5.9 keV line

PIN Tsh=20us

Si(Li) Tsh=20us

SDD Tsh=1us

Spectroscopic resolution: detector comparison - 1

Page 14: DEAR   SDD --> SIDDHARTA

FWHMmeas of monoenergetic emission line 5.9 keV1cm2 detector at 150 K

SDD FWHM=140eV shap =1sSi(Li) FWHM=180eV shap =15s PIN diode FWHM=750eV shap =20sCCD FWHM=140eV frame=1s

Spectroscopic resolution: detector comparison - 2

Page 15: DEAR   SDD --> SIDDHARTA

Measure of the line shift – ideal case *

The case: kaonic hydrogen, 200 cm2 detection systemFor 6000 events (~ 50 pb-1 )Estimated peak position 6.3 keV, line width about 245 eV, peak shift about 160 eVDetection system based on SDDs

* No background contribution considered

222222 )245()140()200( eVeVeVFWHMFWHMFWHM SDDlinemeas

eVeV

N

FWHM

phot

meas 3.16000

10035.2/

%1160

3.1

eV

eV

shiftPeak

Page 16: DEAR   SDD --> SIDDHARTA

Background reductionBackground reduction

Page 17: DEAR   SDD --> SIDDHARTA

hIK

IA

h

tIA

tdr max

Timing with the anode signal

Page 18: DEAR   SDD --> SIDDHARTA

10-2

10-1

100

101

10-8

10-7

10-6

10-5

Area (cm2)

Tdr

ift (

s)

Drift time vs. Active area

A=0.1cm2 Tdrift = 70ns

A=0.5cm2 Tdrift =350ns

A= 1cm2 Tdrift =700ns

With: = 2k/cmH = 450m

Timing resolution with SDD

2

2

HN

A

qTdrift

Dn

s

Page 19: DEAR   SDD --> SIDDHARTA

Triggered acquisition

Kaontrigger

Concidencewindows

Detectedpulses

Consideredpulses

Kaon trigger X-ray pulseBackground pulse

dr max

Page 20: DEAR   SDD --> SIDDHARTA

Background reduction with triggered acquisition

=number of detected kaons per detected X-ray = 103

Br=background rate = 103 events/s

Tw=sinchronization window

Tw = r x drift max = 103 x 1 s = 1ms

B = Br x Tw = 103 s-1 x 10-3 s = 1

S/B = 1/1

Page 21: DEAR   SDD --> SIDDHARTA

    Actual value of the S/B ratio measured with DEAR at DANE

using CCDs

S/B 1/100 in kaonic hydrogen

expected:

S/B 1/500 in kaonic deuterium

Signal/Background with CCD

Page 22: DEAR   SDD --> SIDDHARTA

hIK

IA

Timing with the prompt signal from the backplane

IA

IK

h

t

t

tdr maxEstimated time resolution: about 300 ns

Page 23: DEAR   SDD --> SIDDHARTA

Reliability of the detection set upReliability of the detection set up

Page 24: DEAR   SDD --> SIDDHARTA

1400 1600 1800 2000C ha nne ls

0

1000

2000

3000

Co

un

ts

SDD # 1

1400 1600 1800 2000C ha nne ls

0

1000

2000

3000

Co

un

ts

SDD # 2

1400 1600 1800 2000C ha nne ls

0

500

1000

1500

2000

2500

Co

un

ts

SDD # 3

1400 1600 1800 2000C ha nne ls

0

500

1000

1500

2000

2500

Co

un

ts

SDD # 4

1400 1600 1800 2000C ha nne ls

0

1000

2000

3000

Co

un

ts

SDD # 5

1400 1600 1800 2000C ha nne ls

0

1000

2000

3000

Co

un

ts

SDD # 6

1400 1600 1800 2000C ha nne ls

0

500

1000

1500

2000

2500

Co

un

ts

SDD # 7

600 800 1000 1200 1400C ha nne ls

0

400

800

1200

1600

2000

Co

un

ts

SDD # 8

1400 1600 1800 2000C ha nne ls

0

1000

2000

3000

Co

un

ts

SDD # 9

1400 1600 1800 2000C ha nne ls

0

500

1000

1500

2000

2500

Co

un

ts

SDD # 10

1400 1600 1800 2000C ha nne ls

0

500

1000

1500

2000

2500

Co

un

ts

SDD # 11

1400 1600 1800 2000C ha nne ls

0

500

1000

1500

2000

2500

Co

un

ts

SDD # 12

1400 1600 1800 2000C ha nne ls

0

500

1000

1500

2000

2500

Co

un

tsSDD # 13

1000 1200 1400C ha nne ls

0

500

1000

1500

2000

2500

Co

un

ts

SDD # 14

1400 1600 1800 2000C ha nne ls

0

500

1000

1500

2000

2500

Co

un

ts

SDD # 15

1400 1600 1800 2000C ha nne ls

0

500

1000

1500

2000

2500

Co

un

ts

SDD # 16

1400 1600 1800 2000C ha nne ls

0

500

1000

1500

2000

2500

Co

un

ts

SDD # 17

1400 1600 1800 2000C ha nne ls

0

500

1000

1500

2000

2500

Co

un

ts

SDD # 18

1400 1600 1800 2000C ha nne ls

0

500

1000

1500

2000

2500

Co

un

ts

SDD # 19

Monolithic array of Silicon Drift Detectors

Pixel area = 5 mm2

Total array area = 95 mm2

Page 25: DEAR   SDD --> SIDDHARTA

DEAR test setup (SDD) at the BTF

BTF e+/e - beam

e+, e – shower

Pb plateTi foil

Zr foil

SDD X-ray detector (4 chips prototype)

Pb shielding

S2

X-ray lines

S1

scintillators

Page 26: DEAR   SDD --> SIDDHARTA

Operations:

The first stage of the project of the new detector deals with the characterization of the SDD performances.

The characterization concerns the finalization of trigger efficiency and energy resolution, as a function of background environment and time window. This information will fix also the dimension of the single cell. These measurements are planned to be performed with a prototype device. The answers coming from these tests will be used for the construction of the final detector array and associated electronics with optimal characteristics.

Page 27: DEAR   SDD --> SIDDHARTA

Beam conditions at BTF:

Energy: varying between 50 ÷ 750 MeV

Intensity: varying between 1÷ 103 e+/e- s-1 (preference is for positrons)

bunch : 10 ns; bunch frequency: 1 ÷ 49 Hz

Gate window 0.1 – 1 s

BTF run period required:

2-4 weeks in the period June 2003 - October 2003

Page 28: DEAR   SDD --> SIDDHARTA

The detector: 1 cm2 SDD prototype

Front-side: field strips, JFET Back-side: entrance window

• 65 rings, 1 cm2 area• 280m high-resistivity + 12m epi-layer

detector presently under test at Politecnico di Milano

Page 29: DEAR   SDD --> SIDDHARTA

Preliminary measurements

0 20 40 60 80 100Voltage [V ]

-1E-9

0E+0

1E-9

2E-9

3E-9

4E-9

Cur

rent

[A]

Leakage current ~ 3 nA @ room T

-60 -40 -20 0Voltage [V ]

-1 .2E-5

-8.0E-6

-4.0E-6

0.0E+0

Cur

rent

[A]

Voltage divider threshold voltage ~ -50V for 8 rings ( 65 rings biasshould be feasible with ~ - 400V)