CURENT ERC 2016

76
1 Electric Machines Leila Parsa Rensselaer Polytechnic Institute

Transcript of CURENT ERC 2016

Page 1: CURENT ERC 2016

1

Electric Machines

Leila Parsa Rensselaer Polytechnic Institute

Page 2: CURENT ERC 2016

2

Hybrid Vehicles

Page 3: CURENT ERC 2016

3

Electric Ship Applications

Page 4: CURENT ERC 2016

4

Page 5: CURENT ERC 2016

5

Electric Ship Power System

http://www.navy.mil/navydata/cno/n87/usw/issue_9/power_system.html

Page 6: CURENT ERC 2016

6

Page 7: CURENT ERC 2016

7http://navy-matters.beedall.com/images/20mw.gif

Propulsion Motor 19MW

Page 8: CURENT ERC 2016

8

Electric Mining Trucks

One of the haul trucks fitted with a pantograph for the trolley-assist system, which uses electric power from the main grid to move the trucks up the steep pit ramps.

Page 9: CURENT ERC 2016

9

Electric Shovel and Truck

Electric shovels load the broken material into trucks for transport from the pit. Initial pit equipment included shovels with 11 cubic yard buckets and 85 ton production trucks. For the 1990s, the mine is converting its fleet to 170 and 190 ton trucks.

Page 10: CURENT ERC 2016

10

Unmanned Aerial Vehicle

Page 11: CURENT ERC 2016

11

Manned Aerial Vehicle

Sonex AircraftE-Flight Initiative

brushless dc motorefficiency: 96%motor weight: 50 lbs.flight time: 1 hr.motor power: 100 hp.voltage: 270 Vdc

Page 12: CURENT ERC 2016

12

Reference Frame Theory

Introduced by R.H. Park in 1929 to model synchronous machines

Page 13: CURENT ERC 2016

13

Three-Phase Transformationto the Arbitrary Reference Frame

abcsssqd fKf 0

cs

bs

as

abcs

fff

f0

0

qs

qd s ds

s

ff f

f

f = voltage, current, or flux linkage

a = a-phaseb = b-phasec = c-phase

q = q-axis (quadrature axis)d = d-axis (direct axis)0 = zero sequence

Page 14: CURENT ERC 2016

14

The Reference Frame Transformation

21

21

21

32sin

32sinsin

32cos

32coscos

32

sK

= reference frame speed (rad/sec)= reference frame position (rad)

Page 15: CURENT ERC 2016

15

13

2sin3

2cos

13

2sin3

2cos

1sincos1

sK

sqdsabcs fKf 01

The Inverse Transformation

Page 16: CURENT ERC 2016

16

2 cosas s e vv V

22 cos3bs s e vv V

22 cos3cs s e vv V

f

ee

sVv

- electric frequency (Hz)- electric radian frequency (rad/sec)- electrical position (rad)- rms Voltage (V)- phase shift (rad)

e e t

2e f

Example: Three-Phase Set of Voltages

Page 17: CURENT ERC 2016

17

0qd s s abcsv K v

0

2 2cos cos cos2 cos3 3

2 2 2 2sin sin sin 2 cos3 3 3 3

1 1 1 22 cos2 2 2 3

s e vqs

ds s e v

s

s e v

Vvv Vv

V

Transform to the Arbitrary Reference Frame

Page 18: CURENT ERC 2016

18

2 2 2 23 3 3 3

3cos cos cos cos cos cos cos2

x y x y x y x y

using the identity,

vesqs Vv cos2

Voltages in Arbitrary Reference Frame

2 2 2 23 3 3 3

2 2 cos cos cos cos cos cos3qs s e v e v e vv V

q-axis voltage

2 2 2 23 3 3 3

3sin cos sin cos sin cos sin2

x y x y x y x y

vesds Vv sin2

2 2 2 23 3 3 3

2 2 sin cos sin cos sin cos3ds s e v e v e vv V

d-axis voltage

zero sequence voltage

using the identity,

2 20 3 3

1 2 cos cos cos 03s s e v e v e vv V

Page 19: CURENT ERC 2016

19

208 V, 3-phase, f = 60 Hz (208 V line-to-line rms)

208 V 120 V3sV 0v

1. Stationary reference frame 0

2 cossqs s ev V

2 sinsds s ev V

2. Synchronous reference frame e

svseqs VVv 2cos2

0sin2 vseds Vv

Numerical Example

Page 20: CURENT ERC 2016

20

Axis Sketch with =0

essqs Vv cos2

essds Vv sin2

Page 21: CURENT ERC 2016

21

Axis Sketch with =e

2 cos 170Veqs s vv V

0sin2 vseds Vv

Page 22: CURENT ERC 2016

22

=e and v=30o

2 cos 147 Veqs s vv V

2 sin 85Veds s vv V

Page 23: CURENT ERC 2016

23

Arbitrary

Stationary

Synchronous

Rotor

0

e

r

sdsqs fff 0,,

ss

dss

qs fff 0,,

se

dse

qs fff 0,,

sr

dsr

qs fff 0,,

sK

rsK

ssK

esK

csbsass ffff 31

0

abcsssqd vKv 0

abcses

esqd vKv 0

compact notation Notes: In all reference frames

Commonly Used Reference Frames

Page 24: CURENT ERC 2016

24

abcsTabcs

cs

bs

as

csbsascscsbsbsasasin iviii

vvvivivivP

1 1 1 10 0 0 0

T TTin s qd s s qd s qd s s s qd sP K v K i v K K i

1 1

3 0 02

30 02

0 0 3

T

s sK K

ssdsdsqsqsin ivivivP 00323

Real Power in the q-d Reference Frame

Page 25: CURENT ERC 2016

25

Reference Frame Transformation

Developed by R.H. Park in 1929 for analysis of synchronous machines.

Allows treatment of balanced three-phase ac systems as two-phase dc systems.• This leads to application of classical control theory• Also simplifies control equations of some systems

Page 26: CURENT ERC 2016

26

asasas pRiv

asas Li

bsbsbs pRiv

bsbs Li

cscscs pRiv

cscs Li

Transforming Circuit Elements: R-L Example

voltage equations

flux linkage equations

note:dpdt

Page 27: CURENT ERC 2016

27

abcsabcs Li

abcssabcssabcss iLKLiKK

sqdsqd Li 00

1. Compress equations

Transform Flux Linkage Equations

qsqs Li

dsds Li

ss Li00

2. Transform equations

3. Expand equations

Page 28: CURENT ERC 2016

28

abcsabcsabcs pRiv

s abcs s abcs s abcsK v K Ri K p

}{ 01

00 sqdsssqdsqd KpKRiv

sqdsssqdsssqd KpKpKKRi 01

01

0 }{

Transform Voltage Equations

1. Compress equations

2. Transform equations

IKK ss 1

Page 29: CURENT ERC 2016

29

03

2cos3

2sin

03

2cos3

2sin

0cossin

}{ 1

sKp

0000000

}{ 1

ss KpK

dqssqdsqdsqd pRiv 000

0

ds

dqs qs

3. Expand equations

dsqsqsqs pRiv

qsdsdsds pRiv

sss pRiv 000

Page 30: CURENT ERC 2016

30

qsqs Li dsds Li 0 0s sLi

dsqsqsqs pRiv qsdsdsds pRiv sss pRiv 000

Equivalent Circuit

q-axis d-axis zero sequence

Page 31: CURENT ERC 2016

31

abcsabcsabcs pRiv

dqssqdsqdsqd pRiv 000

0qs

ds

dqs

Coupled Inductors

voltage equations

Page 32: CURENT ERC 2016

32

cs

bs

as

mslsmsms

msmslsms

msmsmsls

cs

bs

as

iii

LLLL

LLLL

LLLL

21

21

21

21

21

21

flux linkage equations

Coupled Inductors

abcssabcs iL

abcsssabcss iKK L

sqdssssqd iKK 01

0 L

Page 33: CURENT ERC 2016

33

ls

msls

msls

sss

L

LL

LL

KK

00

0230

0023

1L

qsmslsqs iLL

23

dsmslsds iLL

23

0 0s ls sL i

expanded form

Page 34: CURENT ERC 2016

34

Transformation of Circuit Elements

Balanced three-phase ac circuits transformed to two-phase dc circuits (neglecting the zero sequence and assuming analysis in the synchronous reference frame)

Flux linkage equations for inductive circuits were used for generality to other circuits; including electric machines

Coupling terms between the q- and d-axes result from the transformation. These will later be viewed as back-emf terms when observing electric machinery in the synchronous reference frame.

Page 35: CURENT ERC 2016

35

vjas sV V e

~

as s vV V

23 vj j

bs sV V e

23 vj j

cs sV V e

Balanced Steady-State Voltages

2 cosas s e vv V t

22 cos3bs s e vv V t

22 cos3cs s e vv V t

Page 36: CURENT ERC 2016

36

2 coseqs s vV V

2 sineds s vV V

2 22 e e

s qs dsV V V

1tane

dsv e

qs

VV

Synchronous: = e

note:

Synchronous Reference Frame q-d Voltages

Page 37: CURENT ERC 2016

37

edse

eqs

eqs LIRIV

eqse

eds

eds LIRIV

Steady-State Calculation (=e)

steady-state equations

Page 38: CURENT ERC 2016

38

e

ds

eqs

e

e

eeds

eqs

VV

RLLR

LRII

222

1

solve for currents

eds

eqs

e

ee

ds

eqs

II

RLLR

VV

steady-state equations in matrix form

Page 39: CURENT ERC 2016

39

Steady-State q-d Calculations

In the synchronous reference frame, the q-d circuits are supplied from dc and the corresponding dc solution is steady-state (inductors treated as short-circuit, capacitors treated as open-circuit)

Can be used to analyze steady-state operation of electric machines

Equations can be linearized about the dc operating point for application of control theory

Page 40: CURENT ERC 2016

40

PMSM Rotor and Stator

Page 41: CURENT ERC 2016

41

Rotor and Stator Designs

Page 42: CURENT ERC 2016

42

Some PMSM Applications

Electric bike Electric airplane

Remote operated vehicle All-terrain vehicle

Page 43: CURENT ERC 2016

Permanent magnet AC motors (PMAC) :• quasi-rectangular fed BLDC Motor• Sinusoidally fed PMSM

BLDC motors:• Two phases are conducting at each instant of time• A low resolution position sensor (Hall Sensor) is enough for providingcommutation instants• Higher torque density compared to PMSM at low and medium speeds• Commutation torque pulsation• The performance deteriorates at high speeds

PMSM :• Position information is needed at each instant of time• More advanced control techniques with faster transient response is applicable to this kind of drive over the whole speed range.

Permanent Magnet Motor Drives

Page 44: CURENT ERC 2016

BLDC Motors

BLDC Current Waveform

Back-EMF and phase current

Page 45: CURENT ERC 2016

BLDC Motors

c

b

a

c

b

a

c

b

a

c

b

a

eee

iii

dtd

MLML

ML

iii

RR

R

vvv

0 00 00 0

0 00 00 0

)(1ccbbaa

re ieieieT

rr

Le Bdt

dJTT

Equations governing three phase BLDC motor:

where ea , eb , and ec are trapezoidal back-EMFs.

The electromagnetic torque is expressed as:

And, the interaction of Te with the load torque determines how the motor speed builds up:

Page 46: CURENT ERC 2016

High Speed Operation of BLDC Motors

• The BLDC operation above rated speed is being performed by advanceangle technique• At a given torque or a given speed, it is difficult to find the exact advance-angle to be applied.• At high speeds the stator winding inductance's can cause the phase currentto deviate significantly from the ideal rectangular waveform which will reducethe torque production at high speeds

Page 47: CURENT ERC 2016

PMSM

rr

Le Bdt

dJTT

dtdiLiLirv ds

dsqsqsdssds

dtdi

LiLirv qsqsmdsdsqssqs )(

qsdsdsqsqsmne iiLLiPT

Equations governing three phase PMSM motor:

Transformation from stationary frame of reference to rotating frame of reference

Torque equation:

Electromechanical motion equation

B

V

i

P/T

PMSM

t

t

t

Page 48: CURENT ERC 2016

High Speed Operation of PMSM

222 )()( ratedqsds Iii

222 )()()(r

ratedqsqs

rdsdsm

ViLiL

Based on the above two limits the amount of d axis current to be injected is known at any given speed

SpeedBase Speed

Power

Torque

q

d

ψm ψs

ψt

E

Isids

iqs

The PMSM operation above rated speed is being performed by injecting negative id (field weakening) and considering current and voltage limitation:

Page 49: CURENT ERC 2016

49

Permanent Magnet Synchronous Machines (PMSMs)

assume: 1. Round rotor 2. Sinusoidal flux linkages

msmdmq LLL23

motor construction

winding connection

Page 50: CURENT ERC 2016

50

Basic Magnetic Equations

Ni Al

or Ni

2N iN

2NLLi

BA N A

l

NiH

define inductance

flux linkage and current areproportional to B and H

HB

Page 51: CURENT ERC 2016

51

= MMF (A∙t)

= reluctance (1/H)

l = flux path length (m)

μo = 4π*10-7 H/m permeability of free space

μr = relative permeability μr = 4000 iron, μr = 2000 steel

Φ = magnetic flux (Wb=V∙sec)

λ = Flux linkage (V∙sec)

L = inductance (H=Ω∙sec)

B = flux density (V∙sec/m2)

A = cross sectional area (m2)

H = magnetic field intensity (A∙t/m)

Basic Magnetic Definitions

Page 52: CURENT ERC 2016

52

mslsasas LLL

lsL

msL

o 1cos 1202asbs ms msL L L

mslssbsbsasas LLLLL csc

mscsbscsasbscsbsasascsasbs LLLLLLL21

- stator leakage inductance (H)

- stator magnetizing inductance (H)

Inductance Termsconsider a current in the a-phase winding

self inductance Lasas

mutual inductance Lasbs (determines the component of as due to ibs)

remaining inductance terms

Page 53: CURENT ERC 2016

53

Inductance Related to Machine Dimensions

20

2s

ms

r lNLg

Page 54: CURENT ERC 2016

54

rmasm ' sin

32sin rmbsm '

32sin rmcsm '

Magnet Fluxmagnet flux linking the a-phase

magnet flux linking the b- and c-phase

Page 55: CURENT ERC 2016

55

asassas pirv

bsbssbs pirv

cscsscs pirv

PMSM Equationsmachine coil variables

flux linkages

1 1

sin2 21 1 2sin2 2 31 1 2sin2 2 3

as asls ms ms msr

bs ms ls ms ms bs m r

ms ms ls ms rcs cs

iL L L L

L L L L i '

L L L L i

Page 56: CURENT ERC 2016

56

Reduced Flux Linkage Equations

1 1 sin2 2

3 1 sin2 2

as ls ms as ms bs ms cs m r

ls ms as ms as bs cs m r

L L i L i L i '

L L i L i i i '

for a wye connection,ias + ibs + ics = 0

sinas s as m rL i '

where Ls = Lls + (3/2)Lms

cosas s as s as r m r

s as s as as

v r i L pi 'r i L pi e

eas - a-phase back-emf

Page 57: CURENT ERC 2016

57

asassas pirv

bsbssbs pirv

cscsscs pirv

r r r rqs s qs r ds qsv r i p

r r r rds s ds r qs dsv r i p

0 0 0s s s sv r i p

Coil Voltage Equationsmachine variables

rotor reference frame, q-d variables

Page 58: CURENT ERC 2016

58

1 1

sin2 21 1 2sin2 2 31 1 2sin2 2 3

as asls ms ms msr

bs ms ls ms ms bs m r

ms ms ls ms rcs cs

iL L L L

L L L L i

L L L L i

abcmabcssabcs i L

Flux Linkage Expressions

compress equations

Page 59: CURENT ERC 2016

59

r r rs abcs s s abcs s abcmK K i K L

1

0 0 0r r r r r

qd s s s s qd s qd mK K i

L

ls

msls

msls

rss

rs

L

LL

LL

KK

00

0230

0023

1L

mslss LLL23

define

Transform Flux Linkages

inductance

magnet flux linkage

0

0

0

r rqd m s abcm mK

Page 60: CURENT ERC 2016

60

rqss

rqs iL

'iL mr

dssrds

0 0s ls sL i

Flux Linkage Equationsin the Rotor Reference Frame

compared to a-b-c variables:no coupled terms and no rotor position dependence

0 0

0 0 00 00 0 0

r rqs s qsr r

ds s ds m

s ls s

L iL i '

L i

Page 61: CURENT ERC 2016

61

'iLpiLirv mrrdssr

rqss

rqss

rqs r

qssrr

dssr

dssrds iLpiLirv

Equivalent Circuit Model

substitute flux linkage equations into voltage equations

q-axis circuit d-axis circuit

Page 62: CURENT ERC 2016

62

r - electrical rotor position (rad)

rm - mechanical rotor position (rad)

r - electrical rotor speed (rad/sec)

rm - mechanical rotor speed (rad/sec)

rmrP2

rmrP2

General Machine with P Poles

Page 63: CURENT ERC 2016

63

rqsmr

rds

rqssr

rqsmr

rqs

rdssrout i'iiLi'iiLP

23

23

rermeout TP

TP 2

r

oute

PPT2

rqsme i'PT

223

Torque Equation from Power

Page 64: CURENT ERC 2016

64

torque control

in q-d-0 variables

rqsme i'PT

223

Torque Control

Page 65: CURENT ERC 2016

65

dtd

JT rm

rmLrmme JpTBT

Mechanical Equations

Te - electrical torque (N∙m)Bm - friction constant (Kg∙m2/sec)J - total inertia (Kg∙m2)rm - mechanical speed (rad/sec)TL - load torque (N∙m)rm - mechanical rotor position (rad)

also rmrm p

Page 66: CURENT ERC 2016

66

PMSM ModelThe PMSM can be modeled with a fairly straightforward resistance, inductance, and back-emf term in each phase.

If the zero sequence current can be neglected, the q-d model represents the machine as a two-phase circuit with dc quantities in the steady-state. The two circuits are coupled by back-emfterms.

The torque equation in the q-d model is simplified compared to the machine-variable (a-b-c) model. This property will be used for developing a torque control.

The q-d model also leads to simple control in other systems such as induction machines, active rectifiers, and active filters.

Page 67: CURENT ERC 2016

67

round rotor machine sdq LLL

rqsv r

dsv rqsi r

dsi

rqsV r

dsV rqsI r

dsI

constant

use notation

'ILIrV mrrdssr

rqss

rqs

rqssr

rdss

rds ILIrV

Lrmmrqsme TB'IPT

223

PMSM Steady-State Equations

with 0dtdp

Page 68: CURENT ERC 2016

68

solving for voltages

0

'II

rLLr

VV mr

rds

rqs

ssr

srsr

ds

rqs

222srs

rds

mrr

qs

ssr

srs

rds

rqs

LrV

'VrL

Lr

II

solving for currents

222

'

srs

rdssrmr

rqssr

qs LrVLVr

I

222srs

rdssmr

rqssrr

ds LrVr'VL

I

Steady-State Solutions

Page 69: CURENT ERC 2016

69

inverter voltages resulting currents

vrsas Vv cos2

32cos2 vrsbs Vv

32cos2 vrscs Vv

vsr

qs VV cos2

vsr

ds VV sin2

22

21 r

dsr

qss VVV

rqs

rds

v VV1tan

irsas Ii cos2

32cos2 irsbs Ii

32cos2 irscs Ii

isrqs II cos2

isrds II sin2

22

21 r

dsrqss III

1tanrds

i rqs

II

PMSM with Drive (Steady-State)

Page 70: CURENT ERC 2016

70

Ideal Drive Calculations with v = 0

Te 0.33N mTe32

P2 'm Iqsr

i 68 degi atanIdsr

Iqsr

2 Is 3.79AIs 2.7AIs1

2Iqsr

2 Idsr2

Idsr 3.51A

Iqsr 1.42AIqsr

Idsr

rs

r Ls

r Ls

rs

1Vqsr r 'm

Vdsr

Vdsr 0VVdsr 2 Vs sin v

Vqsr 127VVqsr 2 Vs cos v

q- and d-axis voltages and currents

r 628rads

rP2rm

rm 628rads

rm 6000 RPM

v 0 radVs 90 V

operating conditions'm 0.156 V sLs 11.4 mHrs 2.9 P 2

motor parameters

Page 71: CURENT ERC 2016

71

PMSM Steady-Sate Example v=0

Page 72: CURENT ERC 2016

72

Ideal Drive Calculations with i = 0

put all current in the q-axisi 0 deg

Iqsr 2 Is cos i Iqsr 3.79A

Idsr 2 Is sin i Idsr 0A

Vqsr

Vdsr

rs

r Ls

r Ls

rs

Iqsr

Idsr

r 'm

0

Vqsr 109V

Vdsr 27.1 V

Vs1

2Vqsr

2 Vdsr2

Vs 79.4V 2 Vs 112V

v atanVdsr

Vqsr

v 14deg

Te32

P2 'm Iqsr Te 0.89N m

Page 73: CURENT ERC 2016

73

PMSM Steady-Sate Example with i = 0

Page 74: CURENT ERC 2016
Page 75: CURENT ERC 2016

Reference Frame Theory A three-phase inductive load is connected to a three-phase voltage source. The inductance is

1 mHL and the source has parameters of 120VsV , o45v , and Hz60f (where tftee 2 ). Calculate the steady-state q- and d-axis voltages and currents in the

synchronous reference frame. Sketch these quantities and the rotating voltage and current vectors on the graph below. Sketch the q- and d-axis voltages in the synchronous reference frame for two cycles of e .

Page 76: CURENT ERC 2016

Permanent-Magnet Ac Drives A PMAC machine with the parameters

4P 1sr 5mHsL 0.95V srm'

is operating with negligible friction and without load. Given that the applied voltage and phase angle is

V270sV o20v

Determine the steady-state no-load mechanical rotor speed. At no-load speed, compute the electrical input power, mechanical output power, and power losses. Compute the q- and d-axis voltages and currents. Sketch these quantities and the rotating voltage and current vectors on the graph below. Is the machine operating with a leading or lagging power factor?