CSiGe Z = Nº atómico 61432 Estructura electrónica [He]2s2 2p2[Ne]3s2 3p2 [Ar]3d10 4s2 4p2 P.F....

15
C Si Ge Z = Nº atómico 6 14 32 Estructura electrónic a [He]2s2 2p2 [Ne]3s2 3p2 [Ar]3d10 4s2 4p2 P.F. (ºC) Varios estados alotrópico s 1410 940 Conductivida d ( m -1 ) 2,52 × 10 -4 1,45 Radio atómico 1 1,51 1,59

Transcript of CSiGe Z = Nº atómico 61432 Estructura electrónica [He]2s2 2p2[Ne]3s2 3p2 [Ar]3d10 4s2 4p2 P.F....

Page 1: CSiGe Z = Nº atómico 61432 Estructura electrónica [He]2s2 2p2[Ne]3s2 3p2 [Ar]3d10 4s2 4p2 P.F. (ºC) Varios estados alotrópicos 1410940 Conductividad (

C Si Ge

Z = Nº atómico

6 14 32

Estructura electrónica

[He]2s2 2p2 [Ne]3s2 3p2[Ar]3d10 4s2

4p2

P.F. (ºC) Varios estados

alotrópicos

1410 940

Conductividad

(m-1)2,52 × 10-4 1,45

Radio atómico relativo 1 1,51 1,59

Page 2: CSiGe Z = Nº atómico 61432 Estructura electrónica [He]2s2 2p2[Ne]3s2 3p2 [Ar]3d10 4s2 4p2 P.F. (ºC) Varios estados alotrópicos 1410940 Conductividad (

Ambos pertenecen a la misma familia del C, pero aún teniendo la misma estructura electrónica, es muy notable el cambio del carácter metálico que se encuentra al bajar por la columna.

Fullereno Grafito Diamante

Definidamente no metálico

Intermedio. “Metaloide”

Características físico-químicas de metal

Page 3: CSiGe Z = Nº atómico 61432 Estructura electrónica [He]2s2 2p2[Ne]3s2 3p2 [Ar]3d10 4s2 4p2 P.F. (ºC) Varios estados alotrópicos 1410940 Conductividad (

El silicio es un elemento muy abundante en la corteza terrestre (28%) y forma una enorme cantidad de minerales. Es tan importante para el mundo mineral como lo es el carbono para el mundo vivo.

El germanio es un elemento muy escaso. Es uno de los elementos predicho por Mendeleiev (eka-silicio) y fue descubierto y aislado recién en 1886.

Ambos pueden obtenerse por reducción con C o Mg de su dióxido

SiO2 + C Si + CO2

GeO2 + 2Mg Ge + 2MgO

Page 4: CSiGe Z = Nº atómico 61432 Estructura electrónica [He]2s2 2p2[Ne]3s2 3p2 [Ar]3d10 4s2 4p2 P.F. (ºC) Varios estados alotrópicos 1410940 Conductividad (

El estado sólido. En un sólido cristalino los átomos, iones o moléculas que lo integran están dispuestos según un patrón geométrico fijo que se repite una y otra vez en las tres dimensiones. Hay distintos patrones según el tipo de átomos presente y siempre se tiende a estructuras lo más compactas posibles.

Este alto grado de orden de la microestructura se traduce, frecuentemente, en la formación de cristales macroscópicos con forma geométrica precisa. En el caso del silicio y del germanio, la estructura es de un cubo con átomos adicionales en el centro de cada cara.

Como resultado de esta disposición, cada átomo está rodeado de otros cuatro, situados en los vértices de un tetraedro. El vínculo entre cada átomo es un par de electrones en un orbital sp3.

enlace covalente

Las especiales propiedades eléctricas de estos materiales está relacionada con estos electrones apareados…

Page 5: CSiGe Z = Nº atómico 61432 Estructura electrónica [He]2s2 2p2[Ne]3s2 3p2 [Ar]3d10 4s2 4p2 P.F. (ºC) Varios estados alotrópicos 1410940 Conductividad (

Modelo de la conductividad del enlace covalente

Hagamos una representación bidimensional de la estructura

Éstos son los electrones apareados sp3

Átomos de Si o Ge

Cada átomo tiene cuatro pares de electrones de enlace alrededor

Cada átomo está rodeado por otros cuatro

Los electrones apareados están firmemente ligados a sus núcleos. No pueden desplazarse lejos de ellos. No pueden participar de ningún proceso de transporte de carga. Sin embargo…

Page 6: CSiGe Z = Nº atómico 61432 Estructura electrónica [He]2s2 2p2[Ne]3s2 3p2 [Ar]3d10 4s2 4p2 P.F. (ºC) Varios estados alotrópicos 1410940 Conductividad (

…esto sería estrictamente cierto a 0 Kelvin. A temperatura ambiente, en el caso del Si, aproximadamente uno de cada billón de átomos (10-12), tiene un electrón “libre”, que puede desplazarse por el cristal y puede participar de un proceso de transporte de carga (corriente eléctrica).

Esto se refleja en estos valores de conductividad eléctrica (en -1m-1):

Cu 0,56 x 108

Si 2,52 × 10-4

S 0,5 x 10-15

Page 7: CSiGe Z = Nº atómico 61432 Estructura electrónica [He]2s2 2p2[Ne]3s2 3p2 [Ar]3d10 4s2 4p2 P.F. (ºC) Varios estados alotrópicos 1410940 Conductividad (

Los metales, como el Cu, tienen muchísimos electrones “libres”. Los materiales aislantes, como el S, prácticamente no tienen y materiales como el Si y el Ge están en una situación intermedia.

Por eso se los llama “semiconductores”

GaAs

InP

CdS

CdTe

Hay otros materiales semiconductores “compuestos”:

3 y 5 electrones de valencia

2 y 6 electrones de valencia

En “promedio” tienen 4 electrones de valencia

Page 8: CSiGe Z = Nº atómico 61432 Estructura electrónica [He]2s2 2p2[Ne]3s2 3p2 [Ar]3d10 4s2 4p2 P.F. (ºC) Varios estados alotrópicos 1410940 Conductividad (

Esta descripción es válida para los materiales “puros”. Pequeñísimas concentracio-nes de átomos extraños, hacen variar fuertemente la cantidad de electrones libres.

La enorme utilidad de los semiconductores proviene de la posibilidad de regular artificialmente su conductividad y para eso es necesario poder obtener un material de partida extremadamente puro y con cristalización perfecta. (Monocristales)

Tres tipos de sólidos, clasificados por su ordenación atómica: La estructura cristalina y amorfa son ilustradas con una vista microscópica de sus átomos, mientras la estructura policristalina se muestra de una forma más macroscópica con sus pequeños cristales con distinta orientación pegados unos con otros.

Page 9: CSiGe Z = Nº atómico 61432 Estructura electrónica [He]2s2 2p2[Ne]3s2 3p2 [Ar]3d10 4s2 4p2 P.F. (ºC) Varios estados alotrópicos 1410940 Conductividad (

Obtención de Si puro

Materia prima: Sílice en forma de cuarzo. Muy abundante

2) Reducción del SiO2 a alta temperatura:

Silicio + Carbón a 2000ºC Silicio metalúrgico, Si al 98%. 

3) Si metalúrgico + ClH (Clorhídrico)SiHCl3 TricloroSilano

4) Destilación del SiHCl3 SiHCl3 TricloroSilano puro.

5) Reducción del SiHCl3

SiHCl3 + H2 Si de alta pureza Si Policristalino

Concentración impurezas < 10-10 (1 átomo extraño cada 10.000.000.000).

Page 10: CSiGe Z = Nº atómico 61432 Estructura electrónica [He]2s2 2p2[Ne]3s2 3p2 [Ar]3d10 4s2 4p2 P.F. (ºC) Varios estados alotrópicos 1410940 Conductividad (

Dos métodos para obtener Si monocristalino

a) Método de Czochralski

b) Método de Zona flotante

Page 11: CSiGe Z = Nº atómico 61432 Estructura electrónica [He]2s2 2p2[Ne]3s2 3p2 [Ar]3d10 4s2 4p2 P.F. (ºC) Varios estados alotrópicos 1410940 Conductividad (

Método de Czochralski

Page 12: CSiGe Z = Nº atómico 61432 Estructura electrónica [He]2s2 2p2[Ne]3s2 3p2 [Ar]3d10 4s2 4p2 P.F. (ºC) Varios estados alotrópicos 1410940 Conductividad (

Método de Czochralski

Se coloca el Si policristalino en el crisol y el horno se calienta hasta fundirlo.

Se introduce la semilla en el fundido (muestra pequeña del cristal que se quiere crecer)

Se levanta lentamente la semilla (se gira la semilla en un sentido y el crisol en el contrario)

El progresivo enfriamiento en la interface sólido-líquido proporciona un Si monocristalino con la misma orientación cristalina que la semilla pero de mayor diámetro

Page 13: CSiGe Z = Nº atómico 61432 Estructura electrónica [He]2s2 2p2[Ne]3s2 3p2 [Ar]3d10 4s2 4p2 P.F. (ºC) Varios estados alotrópicos 1410940 Conductividad (

Método de Zona Flotante •El proceso parte de un cilindro de silicio policristalino

•Se sostiene verticalmente y se conecta uno de sus extremos a la semilla

•Una pequeña zona del cristal se funde mediante un calentador por radio frecuencia que se desplaza a lo largo de todo el cristal desde la semilla

•Cuando la zona flotante se desplaza hacia arriba, el silicio monocristalino se solidifica en el extremo inferior de la zona flotante y crece como una extensión de la semilla

•Las impurezas tienden a concentrarse en la zona fundida y son “barridas” hasta el extremo del lingote.

Page 14: CSiGe Z = Nº atómico 61432 Estructura electrónica [He]2s2 2p2[Ne]3s2 3p2 [Ar]3d10 4s2 4p2 P.F. (ºC) Varios estados alotrópicos 1410940 Conductividad (

CO2 SiO2 GeO2

Los óxidos. La misma fórmula estequiométrica

Muy diferentes propiedades...

Existen moléculas individuales con esa composición

Es una macromolécula cristalina

…y estructura

Page 15: CSiGe Z = Nº atómico 61432 Estructura electrónica [He]2s2 2p2[Ne]3s2 3p2 [Ar]3d10 4s2 4p2 P.F. (ºC) Varios estados alotrópicos 1410940 Conductividad (

Las propiedades del SiO2 se adaptan muy bien a las necesidades de la fabricación de circuitos integrados:

• Se genera fácilmente sobre la superficie del Si por simple calentamiento

•Es muy buen aislante eléctrico.

•Protege y pasiva la circuitería debajo suyo.

•Sirve como máscara para distintas etapas del proceso por tecnología planar.

Estas propiedades, más la abundancia y bajo costo del silicio y su mejor comportamiento eléctrico en un mayor rango de temperaturas, son las causas que explican el desplazamiento del germanio, que fue el material más utilizado al comenzar la era de los semiconductores.