Coupled Surface and Saturated/Unsaturated Ground Water ... ... Coupled Surface and...
date post
31-Dec-2020Category
Documents
view
0download
0
Embed Size (px)
Transcript of Coupled Surface and Saturated/Unsaturated Ground Water ... ... Coupled Surface and...
Coupled Surface and Saturated/Unsaturated
Ground Water Flow in Heterogeneous Media
Heiko Berninger∗, Ralf Kornhuber, and Oliver Sander
Université de Genève∗, Freie Universität Berlin and Matheon
Multiscale Simulation & Analysis in Energy and the Environment,
Radon Special Semester 2011
Outline
Richards equation with homogeneous equations of state: Berninger, Kh. & Sander 10
• solver friendly finite element discretization: linear efficiency and robustness
Heterogeneous equations of state: Thesis of Berninger 07, Berninger, Kh. & Sander 07,09,...
• nonlinear domain decomposition: linear efficiency and robustness
Coupled Richards and shallow water equations: Ern et al. 06, Sochala et al. 09, Dawson 08, Berninger et al. 11
• continuous of mass flow and discontinuous pressure (clogging)
• mass conserving discretization (discontinuous Galerkin, ...) Dedner et al. 09, ...
• Steklov–Poincaré formulation and substructuring
• numerical experiments
All computations made with Dune Bastian, Gräser, Sander, ...
Outline
Richards equation with homogeneous equations of state: Berninger, Kh. & Sander 10
• solver friendly finite element discretization: linear efficiency and robustness
Heterogeneous equations of state: Thesis of Berninger 07, Berninger, Kh. & Sander 07,09,...
• nonlinear domain decomposition: linear efficiency and robustness
Coupled Richards and shallow water equations: Ern et al. 06, Sochala et al. 09, Dawson 08, Berninger et al. 11
• continuous of mass flow and discontinuous pressure (clogging)
• mass conserving discretization (discontinuous Galerkin, ...) Dedner et al. 09
• Steklov–Poincaré formulation and substructuring
• numerical experiments
All computations made with Dune Bastian, Gräser, Sander, ...
Runoff Generation for Lowland Areas
γE
γSP
saturated
γD
h
γSP
γE
vadose
mathematical challenges:
• saturated/unsaturated ground water flow: non-smooth degenerate pdes l Signorini-type bc (seepage face)
• coupling subsurface and surface water: heterogeneous domain decomposition
• uncertain parameters (permeability, ...): stochastic pdes Forster & Kh. 10, Forster 11
Saturated/Unsaturated Groundwater Flow: Richards Equation
∂
∂t θ(p) + div v(x, p) = 0 , v(x, p) = −K(x) kr(θ(p))∇(p− ̺gz)
equations of state: (Brooks & Corey, Burdine)
θ(p) =
{
θm + (θM − θm) (
p pb
)−ε
(p ≤ pb)
θM (p ≥ pb) kr(θ) =
(
θ − θm θM − θm
)3+2ε
−5 −4 −3 −2 −1 0 1 2 3 4 5 0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
saturation vs. pressure: p 7→ θ(p)
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
relative permeability vs. saturation: θ 7→ kr(θ)
Saturated/Unsaturated Groundwater Flow: Richards Equation
∂
∂t θ(p) + div v(x, p) = 0 , v(x, p) = −K(x) kr(θ(p))∇(p− ̺gz)
equations of state: (Brooks & Corey, Burdine)
θ(p) =
{
θm + (θM − θm) (
p pb
)−ε
(p ≤ pb)
θM (p ≥ pb) kr(θ) =
(
θ − θm θM − θm
)3+2ε
−5 −4 −3 −2 −1 0 1 2 3 4 5 0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
saturation vs. pressure: p 7→ θ(p)
pb, ε → 0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
relative permeability vs. saturation: θ 7→ kr(θ)
Homogeneous Equations of State Alt & Luckhaus 83, Otto 97
Kirchhoff Transformation: κ(p) :=
∫ p
0
kr(θ(q)) dq =⇒ ∇κ(p) = kr(θ(p))∇p
−3 −1 0 3 −4/3
−1
0
3
generalized pressure: u := κ(p)
−2 −4/3 −1 0 2 0
0.21
0.95
1
M(u) := θ(κ−1(u))
separation of ill–conditioning and numerical solution: semilinear variational equation
u(t) ∈ H10(Ω) :
∫
Ω
M(u)t v dx+
∫
Ω
(
K∇u−kr(M(u))̺gez )
∇v dx = 0 ∀v ∈ H10(Ω)
Solver-Friendly Discretization
lumped implicit/explicit-upwind discretization in time, finite elements Sj ⊂ H 1 0(Ω):
un+1j ∈ Sj :
∫
Ω
ISj(M(u n+1 j ) v) dx+
∫
Ω
τK∇un+1j ∇v dx = ℓunj (v) ∀v ∈ Sj
equivalent convex minimization problem
uj ∈ Sj : J (uj) + φj(uj) ≤ J (v) + φj(v) ∀v ∈ Sj
quadratic energy J (v) = 12 (τK∇v,∇v) − ℓunj (v)
convex, l.s.c., proper functional φj(v) = ∑
Φ(v(p)) hp = ∫
Ω ISj(Φ(v)) dx
nonlinear convex function Φ : R → R ∪ {+∞} with ∂Φ = M
Algebraic Solution: Monotone Multigrid Kh. 99, 02, Gräser & Kh. 07
• given iterate uνj
• fine grid smoothing: − successive 1D minimization of J + φj in direction of nodal basis functions of Sj:
1 step of nonlinear Gauss–Seidel iteration → smoothed iterate ūνj
• coarse grid correction:
− Newton linearization of M(u) at ūνj − constrain corrections to smooth regime of M
1 step of damped MMG → new iterate uν+1j
=⇒ (J + φj)(u ν+1 j ) ≤ (J + φj)(u
ν j )
0.02 0.04 0.06 0.08 0.1 0.12 0.14 0
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
1.8
� � �
� � �
ūνj (p) u
M(u)
Theorem: (for V –cycle) Global convergence and asymptotic multigrid convergence ∀ −pb, ε ≥ 0 (robustness).
Algebraic Solution: Monotone Multigrid Kh. 99, 02, Gräser & Kh. 07
• given iterate uνj
• fine grid smoothing: − successive 1D minimization of J + φj in direction of nodal basis functions of Sj:
1 step of nonlinear Gauss–Seidel iteration → smoothed iterate ūνj
• coarse grid correction:
− Newton linearization of M(u) at ūνj − constrain corrections to smooth regime of M
1 step of damped MMG → new iterate uν+1j
=⇒ (J + φj)(u ν+1 j ) ≤ (J + φj)(u
ν j )
0.02 0.04 0.06 0.08 0.1 0.12 0.14 0
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
1.8
� � �
� � �
ūνj (p) u
M(u)
Signorini condition
0
Theorem: (for V –cycle) Global convergence and asymptotic multigrid convergence ∀ −pb, ε ≥ 0 (robustness).
Solver–Friendly Discretization
• Kirchhoff transformation
• discretization: discrete minimization problem for uj
• algebraic solution by monotone multigrid (descent method!)
• inverse discrete Kirchhoff transformation
Solver–Friendly Discretization
• Kirchhoff transformation: u = κ(p)
• discretization: discrete minimization problem for uj
• algebraic solution by monotone multigrid (descent method!)
• inverse discrete Kirchhoff transformation
Solver–Friendly Discretization
• Kirchhoff transformation: u = κ(p)
• discretization: discrete minimization problem for uj
• algebraic solution by monotone multigrid (descent method!)
• inverse discrete Kirchhoff transformation
Solver–Friendly Discretization
• Kirchhoff transformation: u = κ(p)
• discretization: discrete minimization problem for uj
• algebraic solution by monotone multigrid
• inverse discrete Kirchhoff transformation
Solver–Friendly Discretization
• Kirchhoff transformation: u = κ(p)
• discretization: discrete minimization problem for uj
• algebraic solution by monotone multigrid
• discrete inverse Kirchhoff transformation: pj = Ij(κ −1(uj))
Reinterpretation and Convergence Analysis Berninger, Kh. & Sander 10
reinterpretation in terms of physical variables:
inexact finite element discretization with special quadrature points
convergence properties:
generalized variables: uj → u and M(uj) → M(u) in H 1(Ω)
physical variables pj → p and θj(pj) = Ij (M(uj)) → θ(p) in L 2(Ω)
Reinterpretation and Convergence Analysis Berninger, Kh. & Sander 10
reinterpretation in terms of physical variables:
inexact finite element discretization with special quadrature points
convergence properties:
generalized variables: uj → u and M(uj) → M(u) in H 1(Ω)
physical variables pj → p and θj(pj) = Ij (M(uj)) → θ(p) in L 2(Ω)
Experimental Order of L2-Convergence
model problem: time discretized Richards equation without g